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Preface

Welcome to the 2007 International Workshop on Description Logics, DL07,
in Brixen-Bressanone, Italy, 8-10 June 2007. The workshop, arriving this year to
its 20th edition, continues the long-standing tradition of international workshops
devoted to discussing developments and applications of knowledge representation
formalisms and systems based on Description Logics. The list of the International
Workshops on Description Logics can be found at http://dl.kr.org.

There were 86 papers submitted to DL07, more than double of the submissions
in each of the past few editions. Each paper was reviewed by at least three members
of the program committee or additional reviewers recruited by the PC members.

Papers were accepted in three categories: long papers, regular papers (with and
without associated presentation), and posters. In addition to the presentation of
the accepted papers, posters, and demos, the following speakers gave invited talks
at the workshop:

– Alex Borgida: Knowledge Representation Meets Databases — a view of the
symbiosis

– Hector Levesque: Some Further Thoughts on Expressiveness and Tractability
– Renee J. Miller: Retrospective on Clio: Schema Mapping and Data Exchange

in Practice

The chairs the DL07 workshop gratefully acknowledge the support of the Free
University of Bozen-Bolzano (www.unibz.it) in both the financial and logistical
support, in particular with the registration process. Additionally, we would like to
thank the organisers of DL’06, Bijan Parsia, Ulrike Sattler, and David Toman, for
donating the surplus they made in 2006 in the form of Student Travel Awards.

Our thanks go to all the authors for submitting to DL’07, and to the invited
speakers, PC members, and all additional reviewers who made the technical pro-
gramme possible. In particular, we like to emphasise the effort of the four area
chairs Volker Haarslev, Domenico Lembo, Boris Motik, and Anni-Yasmin Turhan
in the co-ordination and organisation of both the review process and the workshop
programme.

The organisation of the workshop also greatly benefited from the help of many
people at the Free University of Bozen-Bolzano. Finally, we would like to acknowl-
edge that the work of the PC was greatly simplified by using the EasyChair con-
ference management system (www.easychair.org) developed by Andrei Voronkov.

Diego Calvanese, Enrico Franconi, and Sergio Tessaris
Description Logics 2007 workshop chairs
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Knowledge Representation meets Databases

— a view of the symbiosis —

Alex Borgida

Dept. of Computer Science
Rutgers University

New Brunswick, NJ 08904, USA
borgida@cs.rutgers.edu

Abstract. This rather informal paper surveys a personal selection of
research projects which addressed new problems related to Databases,
and whose solution was both inspired by ideas from the field of Knowl-
edge Representation and Reasoning, and at the same time ended up
contributing new ideas to that field. The problems include natural lan-
guage access to databases, Information System (environment) design,
permitting exceptions to integrity constraints, configuration databases,
and goal-oriented schema design.

1 Introduction

It is possible to view KR&DB research from multiple viewpoints. First, it can
be considered as applying database notions to knowledge representation sys-
tems. The typical concerns of database research are taken to be persistence and
scale, which require special data storage techniques and possibly optimization of
queries. Less frequently considered outside the DB field, but just as important,
are notions such as concurrency control and recovery in case of failures. Thus for
any KR&R system equipped with a Tell/Ask interface (e.g., a rule-based system,
description logic reasoner), there have been investigations on how to add (some
of) the above “database properties”. For example, Chaudri et al. [7] considered
the issue of concurrency control for knowledge bases.

In the opposite direction, one can view KR&DB research as applying KR
ideas to traditional database problems. For example, normally the standard first
step in database schema design is drawing an Entity-Relationship diagram. It
turns out that one can check the self-consistency of ER diagrams, or of single
entity sets in them, by translating them into a description logic, and then using
a standard DL reasoner, as done by the i.Com tool [9].

I will focus instead on the mutually supportive research at the meet of these
two areas. Invoking the privilege of an invited speaker, I will concentrate exclu-
sively on work that I have personally witnessed or been involved in1.
1 I have had the great fortune to collaborate on much of this work with John My-

lopoulos and Ron Brachman, who are not just outstanding scientists but, even more
importantly to me, the nicest, most easy-going and supportive people one could hope
to meet. It gives me great pleasure to acknowledge their invaluable help.

Proceeding of DL2007 - Invited Talks 1
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To give some shape to my presentation I will use a list of topics that have
been the focus of considerable research in the KR&R field:

1. semantic networks
2. objects/classes with instanceOf and IsA
3. First Order Logic
4. Description Logics
5. goals

and discuss how attempting to solve new database-related problems led to solu-
tions inspired by these notions, and frequently new results of interest to KR&R
itself. Given the nature of the audience, I will also try to point occasionally to
interesting connections to topics such as Description Logics and the Semantic
Web.

2 Semantic Networks

In 1974/75 John Mylopoulos was flooded by a large group of new students inter-
ested in AI research (including James Allen, Phil Cohen, Hector Levesque, John
Tsotsos and yours truly). He proposed to work on the problem of natural lan-
guage access to databases - the Torus project. (Other significant AI research
in NLP was being driven by the same problem, including William Woods’ LU-
NAR project, and William A. Martin’s EQS/OWL projects.) To solve the NLP
problem, one needs, of course, a representation of the semantics of sentences,
and this being the mid 1970’s, the answer was semantic networks: labeled di-
rected graphs, which in our case had an open-ended label set for nodes, but only
employ a fixed pre-determined set of possible edge labels.

Fig.1 is based on [14], and illustrates part of a semantic network graph de-
scribing the process of writing, sending and receiving recommendation letters.

What makes this interesting from a KR&DB point of view is that in order to
answer questions such as “Did we receive any letters for Jimbo?”, the semantic
representation needs to be connected to the database. Supposing that there is a
database table

RecLetterTable(Name,Source,Address,Text,DateReceived)
this is accomplished by connecting every column to a node in the graph (e.g.,
Name to Applicant, Source to Recommender, . . . ). The result is that the seman-
tic network acts as a semantic data model for the database — one providing, in
fact, considerably richer semantics than standard ER diagrams. What was miss-
ing of course, as elsewhere in AI, is precise semantics for semantic networks.

KR&R Resonances

The following quotes from the IJCAI’75 papers on Torus resonate interestingly
with later topics in the field of DL:

– “Due to the properties of the sub/superset hierarchy, there is a unique posi-
tion in the semantic net for each semantic graph we wish to integrate”. For

2 Proceeding of DL2007 - Invited Talks
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Fig. 1. Part of a Torus Semantic Network

example, as illustrated in Fig.1, “recommender writing a recommendation
letter” is a specialization of “writing”. Thus Torus’ (graph) classification re-
sembles concept classification in DLs, but without a clear idea of what is a
definition vs primitive, or what is the semantics of subsumption.

– The term “definitional axis” is mentioned in [15], but with no further expla-
nation.

– Torus represents properties, such as hasColor, using so-called “characteris-
tics”:

PHYS_OBJECT <--ch-- COLOR --val--> COLOR_VALUE

/ /

/ /

eltOf eltOf

/ /

PapaSmurf <--ch-- COLOR --val--> Blue

which resembles the representation suggested in the recent Dolce ontology
[10], based on the notion of qualia.

– Some concepts, like ADRESS_VALUE, have an associated “recognition func-
tion” to recognize instantiations, such as ‘65 st george street, toronto’.
This prefigured the test-defined concepts of the Classic description logic [5]
(and of Taxis [16]): these are concepts that have associated procedures for
recognizing instances, so that they support instance classification, but are
treated as primitive “blackbox” concepts as far as concept classification.

Proceeding of DL2007 - Invited Talks 3
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3 Inheritance and Meta-classes Everywhere

In 1977, Mylopoulos and Wong, with the assistance of Phil Bernstein, embarked
on the Taxis project [16], whose goal was to develop a language for design-
ing/implementing Information Systems at a conceptual, rather than “log-
ical”/“physical” level. Taxis provided a conceptual modeling language not just
for objects but also for procedures, exceptions, exception handlers, and even-
tually workflows. So, for example, after specifying Students, Courses, and how
to Enroll students into courses, one could describe Part Time Students, Gradu-
ate Courses, and additional details concerning the procedure to enroll for these
specialized arguments. My participation in the project concerned the formal se-
mantics of Taxis, especially procedures, workflows (“scripts”), and the overall
methodology of programming by specialization.

KR&R Resonances

– IsA hierarchies of procedures were also a new idea in KR&R — see [2].
– Taxis scripts [1] which prefigured workflows, were also organized in inheri-

tance hierarchies. This echoes somewhat the application of DLs to workflow
fragment management [11].

While Taxis pushed to the limits the use of inheritance, meta-classes become
essential when moving to the creation of an IS software development envi-
ronments. The result was the language Telos [17], which allowed one to define
(conceptual) models, and to state meta-data constraints. For example, consider
the use of a property category like “initial condition” in

PERSON
initial condition

age : {0}

This allowed what were essentially assertions in a complex temporal logic to
be abbreviated so the time aspects did not appear in formulas. By thinking of
properties, such as age, as classes (instantiated potentially for each individual
of their domain class), property categories, like initial condition, become
meta-classes, like INITIAL_PROP_CLASS: classes with classes as instances. So,
given that property classes p have associated p.Class, p.Name, and p.Range, in
our example we would have

p0.Class=PERSON, p0.Name = age , p0.Range = {0}
and p0 would be made an instance of property meta-class INITIAL_PROP_CLASS,
which would be defined to have an (obscure) invariant constraint

∀p ∈ INIT IAL PROP CLASS.∀t ∈ TIME.∀x.
(x ∈ p.Class@t ∧ x �∈ p.Class@(t− 1))⇒ x.(p.Name)@t ∈ p.Range

describing the temporal semantics.
Incidentally, according to its formalization, a Telos KB consists of a set

of “units”, each with 4 associated fields: [[source, identifier, destination, time-
interval]]. For example,
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p1 with [[Jimbo,instanceOf,PERSON,2/feb/1992 - 31/dec/2067]]

p2 with [[PERSON,age,{0},all_time]]

p3 with [[p2,instanceOf,INITIAL_PROP_CLASS,all_time]]

Jimbo with [[Jimbo,Jimbo,Jimbo, 2/feb/1992 - 31/dec/2067]]

As the last line above indicates, even objects were units with 4 fields.

KR&R Resonances

– RDF(S) anyone? Telos’ treatment of properties as objects that link a source
to a destination via a name echo RDF’s <subject, predicate, object> triples,
especially the fact that properties can have properties themselves. The main
difference is Telos’ addition of a temporal interval.

– While Telos was a theoretical language, it was made into a practical system,
ConceptBase [12], by adding deductive rules to it. The considerable success
of ConceptBase (downloaded at over 500 sites) lies at least in part in its
uniform treatment of everything as an object that can have properties, which
allows meta-statements to be easily recorded.

4 First Order Logic

Integrity Constraints are intended to detect inconsistencies after database up-
dates. But, when dealing with the natural world, these constraints are almost
always over-generalizations. Hence, one desires to allow the coexistence of
general constraints such as

IC : ∀e. e ∈ EMP⇒(e.salary > 1000)∧ (e.salary < e.manager.salary)

and occasional exceptions such as

calvin.salary=20000
calvin.manager = hobbes
hobbes.salary=15000

where the problem might be blamed on the fact that hobbes is only temporarily
assigned to be calvin’s manager. But this leads to a difficulty: once even one
exception is allowed to persist, this IC will always evaluate to false, and can no
longer detect errors in future updates (e.g., when judy’s salary is changed to
900), which is “a new reason for it to be false”. Therefore we want to modify
the constraint to restore its error detection role. In [3], I propose that one first
rewrite IC in FOL without function symbols:

∀e.(e ∈ EMP ∧ sal(e, se))⇒ (se > 1000)∧
∀me, sm.(mgr(e, me) ∧ sal(me, sm))⇒se < me)

Then, rather than going for the obvious

∀e.(e �= hobbes ∧ e ∈ EMP ∧ sal(e, se))⇒(se > 1000)∧
∀me, sm.(mgr(e, me) ∧ sal(me, sm))⇒se < me)
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(which is not good enough because in this IC there are two conditions that are
being checked at the same time), we propose to use the the more subtle

∀e.(e ∈ EMP ∧ sal(e, se))⇒(se > 1000)∧
([mgr(e, me) ∧ ¬(e = calvin ∧me = hobbes)] ∧ sal(me, sm))⇒se < me)

Interestingly, this corresponds to a model theoretic specification: minimally muti-
late all models of the original IC, so that the exceptional fact (manager(calvin, hobbes))
is counter-factual. The nice property of this is that (i) there is a syntactic trans-
formation corresponding to it, and (ii) the actual syntactic form of the ICs does
not matter. (I owe Ray Reiter a debt for helping me see the above.)

KR&R Resonances

My student, Mukesh Dalal used this idea of minimal mutilation of models to
obtain a propositional knowledge-base revision operator update(kb, u) [8] — (al-
most) the first one that was insensitive to the syntactic form of the theory kb
or the update u. (To get the models of update(kb, u), it iteratively mutilated
single atoms of kb models till at least one model consistent with u was found.)
Interestingly, through the advice of David Israel, this seems to also have been
the first AI paper to mention the Alchourrón - Gärdenfors - Makinson belief
revision axioms.

5 The Classic Description Logic

Classic [5] was probably the most widely used second-generation description logic
system: one with precise semantics, polynomial time subsumption checking, and
complete algorithm (when one-of and fills were used with individuals that
themselves had no properties, such as numbers, enumerations, etc.).

More significantly, Classic was used in real, industrial applications dealing
with configuration management, as well as (attempted) support for data explo-
ration/mining carried out by humans.

Not only was Classic first published in the SIGMOD database conference
(rather than an AI conference), but special strengths of description logics
became apparent when viewing DLs as languages used for interacting
with a database-like system. Specifically, one can adopt a Levesque- and
SQL-inspired view of a knowledge base management system as a black box with

– create operator to declare new identifiers, with possible definitions
– constrain operator to express integrity constraints on valid states of the KB
– update operator to manage facts about a specific world (A-box)
– inquire operator to ask about the state of the world (A-box)

Now, each of the first three operators x above involves a language Lx, while
inquire involves two languages: one for stating questions, Lquery, and one for
expressing answers, Lanswer. By considering what happens when each of these
languages is a DL such as Classic, one gets the following insights:
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– Lcreate: DLs provide the (well-known) opportunity to add not just primitive
but also defined concepts (“views”), and to automatically organize these in
subsumption hierarchies.

– Lconstrain: DLs allow necessary conditions to be stated on primitive concepts,
which are like Integrity Constraints. (These are the first key ingredient in
configuration management applications.)

– Lupdate: By asserting a description such as ∀friends.(∀gender.FEMALE)
about DonJuan, one is able to say things about an indefinite number of
objects – the current and any yet to be specified friends of Don Juan. This
is the source of considerable expressive power for DL-based knowledge/data
management, in contrast to null values in relational databases, and the sec-
ond key to the success of Classic in configuration management. Note that
this benefit of dealing with incomplete information accrues even when the
language does not support disjunction, and has polynomial time reasoning.

– Lquery : Of course, DL concepts are well suited to retrieve sets of values —
their instances; a benefit here is that queries can themselves be organized in
subsumption hierarchies, which facilitates re-use and query refinement. (On
the down side, DL concepts cannot express even some very simple conjunc-
tive queries [4] — the bread and butter of database research.)

– Lanswer: When using DL concepts as part of answers, one gets the benefit of
descriptive, rather than just enumerated, answers. For example, in response
to the query “Who is female?” one might get not just Eve, but also “the
friends of Don Juan”.

KR&R Resonances

It may be worth recording that essential to the practical success of Classic was
the ability to extend its expressive power as needed (through test functions). I
believe that OWL has not yet met the hard-nosed challenge of real applications,
where customers may walk away if their needs are not served. I do not see any
reasons why OWL cannot be made extensible at least to the point of allowing
arbitrary “concrete domains”, and then maintaining libraries of such extensions,
just like we will maintain libraries of concepts (ontologies).

A more interesting reverberation was our application of Classic-like ideas to
the specification of Corba services [6], which is exactly like the use of DLs for
specifying services on the Semantic Web.

6 Goals

In the past decades, research in Requirements Engineering for software has un-
dergone a revolution, whereby the standard functional specification stage is now
preceded by a new phase of early requirements, dealing with the intentions of
the agents and organizations in the environment where the software is to be
used. Because of its focus on goals, and how they are to be achieved, this is
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known as Goal-Oriented Requirements Engineering (GORE). One of the impor-
tant aspects of GORE is dealing with so-called non-functional (soft) goals, such
as efficiency, accuracy, etc. — goals that do not have clear criteria of success.

The field of database specification, on the other hand, has remained pretty-
well unchanged since the mid-70’s: one still starts by constructing a concep-
tual schema as an ER or maybe UML diagram. In recent joint work with
Jiang, Topaloglou and Mylopoulos [13], we have started to look at a goal-
oriented approach to database design. As in GORE, we start with vari-
ous stakeholders, and their general hard and soft goals; decompose these into
subgoals using AND/OR graphs; then apply means/ends analysis to find tasks
that achieve them. See Fig. 2 for a small example, which uses the i∗ nota-
tion [19]. In diagrams, we use contribution edges labeled with + or − (or

Acccuurraatteellyy

PROFESSOR

Give
course

Teach
material

Select
textbook

Minimize  eeffffoorrtt

Do
research

AND

AND

-

+

+ +

-

DDoo  aa ggoooodd  jjoobb

Give multiple
exams

Give one
exam

Evaluate
students

OR

Fig. 2. A Goal Model in i*

even ++ and −−) to indicate how goals influence each other. Thus, in Fig.2,
the softgoal (peanut-shape) of evaluating students accurately contributes posi-
tively towards the “Do a good job” softgoal, but performing the task of giving
a single exam (hexagon) contributes negatively towards accurate evaluation.
One important advantage of goal-oriented approaches is that they provide con-
sideration of design alternatives, and traceability for decisions based on such
contribution dependencies. So, for example, we might choose between schemas
StudentTable1(studentId,examGrade)and StudentTable1(studentId,exam1,
exame2,averageGrade)) based on which goals are more important.
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Continuing with our goal-based schema design, our methodology suggests
analyzing the textual description of goals, and the participants in the tasks, to
obtain a list of “relevant concepts”, which is then organized into a domain model
(expressed in some conceptual modeling language); its purpose is to provide a
shared understanding of the domain for database designers and end-users. The
conceptual schema of the database is then derived from this by addressing a
list of questions concerning issues such as persistence, time, data quality, etc.
For each such category, we have a number of alternative schema manipulation
operators which can be applied to derive the final conceptual schema from the
domain model.

KR&R Resonances

Of course, one of the earliest KR&R proposals in Artificial Intelligence was
Simon and Newell’s GPS, which was also concerned with means-ends analysis
to achieve goals. And, in a separate context, it was Simon who introduced the
important notion of “satisficing”, which is applicable for such goals.

Although it is clear how to formalize AND/OR goal decomposition even in
Horn propositional logic, notions like softgoals, their satisficing, and contribution
edges would seem to be inherently “soft” — hard to reason with. Sebastiani et
al [18] however show how to formalize even this aspect: Since there could be con-
flicting evidence concerning any goal g, the secret is to replace proposition g by
propositions fully satisfied g, partially satisfied g, partially denied g, and fully denied g.
An edge g

−−→ h then introduces axiom

partially satisfied g⇒partially denied h

while edge g
−−−→ h also adds axiom

fully satisfied g⇒fully denied h

By using a suitable extension of this set of axioms, and a min-sat solver, it
is then possible to find minimal sets of “input/bottom” goals that guarantee
desired top-level goals.

7 Conclusions

I have briefly reviewed a sample of database-inspired projects which had con-
nections to KR&R topics: natural language access to databases ↔ semantic
networks; information system design ↔ inheritance & metaclasses; exceptions
to database integrity constraints ↔ First Order Logic and minimal mutilations;
querying and verifying consistency of incomplete databases↔ description logics;
goal-based database design ↔ goal analysis and satisfaction/satisficing. In each
case, I tried to give an impression of the benefits each field, DB and KR&R,
derived from the other, as a result of the research carried out. Of course, the
above survey was highly skewed towards my own experiences — there are many
more such examples, both extant and to come.

Proceeding of DL2007 - Invited Talks 9



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 10 — #20 i
i

i
i

i
i

Acknowledgments

I am most grateful to all my collaborators over the years for making this such
an enjoyable adventure. I single out Enrico Franconi for particular thanks for
suggesting “KR&DB” as the topic of this paper, and for his comments on the
write up. All remaining errors are of course my own.

This work was supported in part by the U.S. DHS under ONR grant N00014-
07-1-0150.

References

1. J.L. Barron, ”Dialogue and Process Design for Interactive Information Systems
using Taxis”, Proceedings ACM SIGOA, pp. 12-20, Philadelphia, June 1982

2. Alexander Borgida: On the Definition of Specialization Hierarchies for Procedures.
IJCAI 1981: 254-256

3. Alexander Borgida: Language Features for Flexible Handling of Exceptions in
Information Systems. ACM Trans. Database Syst. 10(4): 565-603 (1985)

4. Alexander Borgida: On the Relative Expressiveness of Description Logics and
Predicate Logics. Artif. Intell. 82(1-2): 353-367 (1996)

5. Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, Lori Alperin
Resnick: CLASSIC: A Structural Data Model for Objects. SIGMOD Conference
1989: 58-67

6. Alexander Borgida, Premkumar T. Devanbu: Adding more “DL” to IDL: Towards
More Knowledgeable Component Inter-Operability. ICSE 1999: 378-387

7. Chaudhri, V., Hadzilacos, V. and Mylopoulos, J., ”Concurrency Control for
Knowledge Bases”, Third International Conference on Knowledge Representation
and Reasoning, Boston, October 1992.

8. Mukesh Dalal: Investigations into a Theory of Knowledge Base Revision. AAAI
1988: 475-479

9. Enrico Franconi, Gary Ng: The i.com tool for Intelligent Conceptual Modeling.
KRDB 2000: 45-53

10. Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, Luc
Schneider: Sweetening Ontologies with DOLCE. EKAW 2002: 166-181

11. Antoon Goderis, Ulrike Sattler, Carole A. Goble: Applying Description Logics for
Workflow Reuse and Repurposing. Description Logics 2005

12. Matthias Jarke, Rainer Gallersdrfer, Manfred A. Jeusfeld, Martin Staudt: Con-
ceptBase - A Deductive Object Base for Meta Data Management. J. Intell. Inf.
Syst. 4(2): 167-192 (1995)

13. Lei Jiang, Thodoros Topaloglou, Alexander Borgida, John Mylopoulos: Incorpo-
rating Goal Analysis in Database Design: A Case Study from Biological Data
Management. RE 2006: 196-204

14. John Mylopoulos, Alexander Borgida, P. Cohen, Nick Roussopoulos, John K. Tsot-
sos, Harry K. T. Wong: TORUS - A Natural Language Understanding System For
Data Management. IJCAI 1975: 414-421

15. John Mylopoulos, P. Cohen, Alexander Borgida, L. Sugar: Semantic Networks and
the Generation of Context. IJCAI 1975: 134-142

16. John Mylopoulos, Philip A. Bernstein, Harry K. T. Wong: A Language Facility
for Designing Database-Intensive Applications. SIGMOD 1978 (Abstract). ACM
Trans. Database Syst. 5(2): 185-207 (1980)

10 Proceeding of DL2007 - Invited Talks



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 11 — #21 i
i

i
i

i
i

17. John Mylopoulos, Alexander Borgida, Matthias Jarke, Manolis Koubarakis: Telos:
Representing Knowledge About Information Systems. ACM Trans. Inf. Syst. 8(4):
325-362 (1990)

18. Roberto Sebastiani, Paolo Giorgini, John Mylopoulos: Simple and Minimum-Cost
Satisfiability for Goal Models. CAiSE 2004: 20-35

19. Eric S. K. Yu, John Mylopoulos: From E-R to A-R — Modelling Strategic Actor
Relationships for Business Process Reengineering. Int. J. Cooperative Inf. Syst.
4(2-3): 125-144 (1995)

Proceeding of DL2007 - Invited Talks 11



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 12 — #22 i
i

i
i

i
i

Some further thoughts on expressiveness and
tractability

Hector Levesque

University of Toronto, Toronto, CANADA

Abstract. Since the mid 1980s, there has been considerable research
studying the expressiveness and the tractability of various description
logics. In this talk, we consider this issue as it was then and now. We
argue that an overly strict interpretation may have caused the work on
description logic to be seen as less relevant than it used to be to the
general AI enterprise.
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Retrospective on Clio: Schema Mapping and
Data Exchange in Practice

Renée J. Miller

Bell University Labs Chair of Information Systems
Department of Computer Science

University of Toronto
miller@cs.toronto.edu

Abstract. Clio is a joint research project between the University of
Toronto and IBM Almaden Research Center started in 1999 to address
both foundational and systems issues related to the management of het-
erogeneous data. In this talk, I will take a look back over the last eight
years of this project to review its achievements, the lessons learned, and
the challenges that remain.

Key words: Schema mapping, mapping generation, mapping compila-
tion and execution, data exchange, data integration

The Clio project was founded to tackle the challenging issues raised by the
proliferation of independently developed data sources that are heterogeneous
in their design and content. Heterogeneous data sets contain data that have
been represented using different data models, different structuring primitives,
or different modeling assumptions. Such data sets often have been developed
and modeled with different requirements in mind. As a consequence, different
schemas may have been used to represent the same or related data. To manage
heterogeneous data, we must be able to manage these schemas and mappings
between the schemas. Clio is a management system for heterogeneous data that
couples traditional data management solutions with additional tools for cre-
ating, using and maintaining mappings between schemas. Our first results on
schema mapping generation [MHH00] were first demonstrated at SIGMOD 2001
[HMH01]. The main contributions of the Clio project include the following. .

Schema mapping generation. In many integration applications, data that con-
forms to a (source) schema (also called a local schema), may be queried or viewed
through another (target) schema (also called a global schema). The relationship
between the source and the target schema is modeled through a set of artifacts
called schema mappings. Prior to Clio, most work on automating schema map-
ping generation focused on finding simple attribute-attribute correspondences or
matches (using text similarity or natural language techniques). Clio introduced
a novel interactive mapping creation paradigm [MHH00] for creating mappings
that represent structural transformations of data. These mappings are created
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using the semantics encoded in the schemas, and represent the semantic rela-
tionship between schemas. We have investigated how to automate the mapping
creation process, and how to effectively solicit user input when the semantics
of the schemas are ambiguous or incomplete [MHH00,PVM+02]. This work was
demonstrated at ICDE 2002 [HPV+02]. In addition, we have developed a data-
driven visualization tool to help users understand and refine mappings as they
are generated [YMHF01]. We use carefully chosen data examples to explain map-
pings and alternative mappings to help a user arrive at a correct and complete
mapping. Most recently, we have considered the generation of mappings that
may be correlated with other mappings [FHH+06], work that was demonstrated
at ICDE 2007 [HHP+07]

Schema mapping specification. Mappings are specified using an expressive declar-
ative language with a formal semantics. The mapping language is suitable for
relational schemas and for nested structures including XML schema, DTDs, and
concept hierarchies. The expressiveness of this mapping language enables a wide
range of transformations and makes the language suitable for use in a variety of
mapping applications [PVM+02,FHH+06].

In creating a mapping from a source schema to a target schema, we do not
assume that the schemas represent the same data. Certainly, there may be source
data that are not represented in the target. Additionally, there may be target
data that are not represented in the source. An accurate mapping must be able
to represent missing (unmapped) source and target data [PVM+02].

Using Mappings. The mappings produced by Clio can be used for both data in-
tegration (where the target data is virtual) [YP04] and for data exchange (where
the target data is materialized) [PVM+02]. For data exchange, we faced the
challenge of being able to generate new values for unspecified (unmapped) tar-
get data that are essential for ensuring the consistency of the target database.
Clio presented the first algorithm for data exchange in 2002 using a solution that
is guaranteed to generate a valid target database [PVM+02].

We have gone on to investigate some of the foundations of data exchange
[FKMP03,FKMP05] with a formal study of how data exchange differs from data
integration. Importantly, this formal study uses a mapping language (tuple-
generating dependencies) that are inspired by the Clio system. We have con-
sidered how to characterize the best data exchange solution [FKP05], how to do
data exchange in networks of peer schemas [FKMT06], how to compose map-
pings [FKPT05], and a number of other issues surrounding the use of mappings
[Fag06].

Mapping compilation and execution. Mappings can be compiled into executable
queries or programs which perform data exchange [PVM+02]. Depending on the
application environment, Clio can generate SQL queries, Xquery, XSLT, among
other formats, for execution. Alternatively, Clio also provides its own optimized
execution engine for efficient evaluation of data exchange programs [JHPH07].

14 Proceeding of DL2007 - Invited Talks



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 15 — #25 i
i

i
i

i
i

Our declarative mapping formalism is sufficiently expressive to capture the se-
mantics of a wide variety of integration and exchange applications, and as a
result, the ability to compile mappings into different runtime environments for
efficient execution is critical.

Managing and maintaining mappings. Our declarative mappings can be adapted
and reused more easily than low-level procedural mapping scripts. We have pre-
sented solutions for adapting mapping as schemas evolve [VMP03,VMP04,YP05],
demonstrated at ICDE 2004 [VMPM04].

Industrial impact. Clio technology has been transferred into IBM’s product lines,
and forms a core component of IBM’s Rational Data Architect [HHH+05]. The
use of declarative mappings (over hand-coded procedural scripts) is now con-
sidered “best-practice” in commercial products and Clio has lead the way in
changing the culture. In addition, Clio has been a leader in demonstrating that
both schemas and mappings are dynamic artifacts that must be managed effec-
tively.
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Abstract. In Description Logics (DLs), both tableau-based and
automata-based algorithms are frequently used to show decidability and
complexity results for basic inference problems such as concept satisfi-
ability. Whereas tableau-based algorithms usually yield worst-case opti-
mal algorithms in the case of PSpace-complete logics, it is often very
hard to design optimal tableau-based algorithms for ExpTime-complete
DLs. In contrast, the automata-based approach is usually well-suited
to prove ExpTime upper-bounds, but its direct application will usually
also yield an ExpTime-algorithm for a PSpace-complete logic since the
(tree) automaton constructed for a given concept is usually exponen-
tially large. In the present paper, we formulate conditions under which
an on-the-fly construction of such an exponentially large automaton can
be used to obtain a PSpace-algorithm. We illustrate the usefulness of
this approach by proving a new PSpace upper-bound for satisfiability
of concepts w.r.t. acyclic terminologies in the DL SI.

1 Introduction

Two of the most prominent methods for showing decidability and complexity
results for DLs are the tableau-based [4] and the automata-based [7] approach.
Both approaches basically depend on the tree-model property of the DL under
consideration: if a concept is satisfiable, then it is also satisfiable in a tree-
shaped model. They differ in how they test for the existence of a tree-shaped
model. Tableau-based algorithms try to generate such a model in a top-down
non-deterministic manner, starting with the root of the tree. Automata-based
algorithms construct a tree automaton that accepts exactly the tree-shaped mod-
els of the concept, and then test the language accepted by this automaton for
emptiness. The usual emptiness test for tree automata is deterministic and works
in a bottom-up manner. This difference between the approaches also leads to dif-
ferent behaviour regarding elegance, complexity, and practicability.

If the logic has the finite tree model property, then termination of tableau-
based algorithms is usually easy to achieve. If, in addition, the tree models these
algorithms are trying to construct are of polynomial depth (as is the case for the
PSpace-complete problem of satisfiability in ALC), then one can usually modify
? Funded by the DFG, Graduiertenkolleg Wissensrepräsentation, Uni Leipzig.
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tableau-based algorithms such that they need only polynomial space: basically,
they must only keep one path of the tree in memory [17]. However, the automaton
constructed in the automata-based approach is usually exponential, and thus
constructing it explicitly before applying the emptiness test requires exponential
time and space. In [8], we formulate conditions on the constructed automaton
that ensure—in the case of finite tree models of polynomially bounded depth—
that an on-the-fly construction of the automaton during a non-deterministic
top-down emptiness test yields a PSpace algorithm.

If the logic does not have the finite tree model property, then applying the
tableau-based approach in a straightforward manner leads to a non-terminating
procedure. To ensure termination of tableau-based algorithms in this case, one
must apply an appropriate cycle-checking technique, called “blocking” in the DL
literature [4]. This is, for example, the case for satisfiability in ALC w.r.t. general
concept inclusions (GCIs) [1], which has both the finite model property and
the tree model property, but not the finite tree model property. Since blocking
usually occurs only after an exponential number of steps and since tableau-based
algorithms are non-deterministic, the best complexity upper-bound that can be
obtained this way is NExpTime. This is not optimal since satisfiability in ALC
w.r.t. GCIs is “only” ExpTime-complete. The ExpTime upper-bound can easily
be shown with the automata-based approach: the constructed automaton is of
exponential size, and the (bottom-up) emptiness test for tree automata runs in
time polynomial in the size of the automaton.

Although the automata-based approach yields a worst-case optimal algo-
rithm in this case, the obtained algorithm is not practical since it is also expo-
nential in the best case: before applying the emptiness test, the exponentially
large automaton must be constructed. In contrast, optimised implementations
of tableau-based algorithms usually behave quite well in practice [9], in spite of
the fact that they are not worst-case optimal.

There have been some attempts to overcome this mismatch between practical
and worst-case optimal algorithms for ExpTime-complete DLs. In [5] we show
that the so-called inverse tableau method [19] can be seen as an on-the-fly imple-
mentation of the emptiness test in the automata-based approach, which avoids
the a priori construction of the exponentially large automaton. Conversely, we
show in [2] that the existence of a sound and complete so-called ExpTime-
admissible tableau-based algorithm for a logic always implies the existence of an
ExpTime automata-based algorithm. This allows us to construct only the (prac-
tical, but not worst-case optimal) tableau-based algorithm, and get the optimal
ExpTime upper-bound for free.

In the present paper, we extend the approach from [8] mentioned above such
that it can also deal with PSpace-complete logics that do not have the finite
tree model property. A well-known example of such a logic is ALC extended
with transitive roles [14]. To illustrate the power of our approach, we use the
more expressive DL SI as an example, which extends ALC with transitive and
inverse roles. In addition, we also allow for acyclic concept definitions. To the
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best of our knowledge, the result that satisfiability in SI w.r.t. acyclic concept
definitions is in PSpace is new.

For lack of space we must omit most of the proofs of our results. Detailed
proofs can be found in [3].

2 Hintikka trees for SI with general TBoxes

The DL SI extends ALC with transitive and inverse roles, i.e. if NC is the set
of concept names and NR is the set of role names, then there is a set NT ⊆ NR

of transitive role names and, if r ∈ NR, we can use r− in concept expressions
like a role name. The semantics of SI is defined as usual (see e.g. [11]). For
convenience, we introduce the following notation: for an SI role s, the inverse
of s (denoted by s) is s− if s is a role name, and r if s = r− for a role name r.
Since a role is interpreted as transitive iff its inverse is interpreted as transitive,
we will use the predicate trans(r) on SI roles to express that r or r belongs
to NT .

An acyclic TBox is a set of concept definitions A
.= C, where A is a concept

name and C is an SI concept term, with the additional condition that definitions
are unique and acyclic in the sense that a concept name does not directly or
indirectly appear in its own definition. A general TBox is an acyclic TBox which
can additionally contain GCIs (general concept inclusion axioms) of the form
C v D, where both C and D are SI concept terms. Please note that this
definition is slightly non-standard because we do not allow cyclic definitions in
general TBoxes. Obviously, an arbitrary set of definitions can be transformed
into a general TBox by replacing cyclic definitions with GCIs. The semantics of
TBoxes and the satisfiability problem are defined as usual (see e.g. [4]).

The definition of acyclic TBoxes ensures that the concept definitions simply
introduce abbreviations (macro definitions), which could in principle be com-
pletely expanded by repeatedly replacing defined names by their definitions.
Thus, acyclic TBoxes do not increase the expressive power, but they increase
succinctness because expansion can lead to an exponential blow-up [13].

For the DL ALC, it is known that the satisfiability problem is PSpace-
complete w.r.t. acyclic TBoxes [12] and ExpTime-complete w.r.t. general
TBoxes [16]. We will show in this paper that the same is true for SI.

Tree models of satisfiable SI concepts can be obtained by applying the well-
known technique of unravelling [6]. For example, the SI concept A is satisfiable
w.r.t. the general TBox {A v ∃r.A} in a one-element model whose single element
belongs to A and is related to itself via r. The corresponding unravelled model
consists of a sequence d0, d1, d2, . . . of elements, all belonging to A, where di

is related to di+1 via r. Intuitively, Hintikka trees are tree models where every
node is labelled with the concepts to which the element represented by the node
belongs. These concepts are taken from the set of subconcepts of the concept
to be tested for satisfiability and of the concepts occurring in the TBox. In our
example, the nodes di would be labelled by A and ∃r.A since each di belongs to
these concepts.
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To simplify the formal definitions, we assume in the following that all con-
cepts are in negation normal form (NNF), i.e. negation appears only directly in
front of concept names. Any SI concept can be transformed into NNF in linear
time using de Morgan’s laws, duality of quantifiers, and elimination of double
negation. We denote the NNF of a concept C by nnf(C) and nnf(¬C) by vC.

Definition 1 (Subconcepts, Hintikka sets). The set of subconcepts of an
SI concept C (sub(C)) is the least set S that contains C and has the following
properties: if S contains ¬A for a concept name A, then A ∈ S; if S contains
D tE or D uE, then {D,E} ⊆ S; if S contains ∃r.D or ∀r.D, then D ∈ S. For
a TBox T , sub(C, T ) is defined as follows:

sub(C) ∪
⋃

A
.
=D∈T

({A,¬A} ∪ sub(D) ∪ sub(vD)) ∪
⋃

DvE∈T
sub(vD t E)

A set H ⊆ sub(C, T ) is called a Hintikka set for C if the following three con-
ditions are satisfied: if D u E ∈ H, then {D,E} ⊆ H; if D t E ∈ H, then
{D,E} ∩H 6= ∅; and there is no concept name A with {A,¬A} ⊆ H.

For a TBox T , a Hintikka set H is called T -expanded if for every GCI D v
E ∈ T , it holds that vD tE ∈ H, and for every concept definition A

.= D ∈ T ,
it holds that, if A ∈ H then D ∈ H, and if ¬A ∈ H then vD ∈ H.3

Hintikka trees for C and T are infinite trees of a fixed arity k, which is
determined by the number of existential restrictions, i.e. concepts of the form
∃r.D, in sub(C, T ). For a positive integer k, we denote the set {1, . . . , k} by K.
The nodes of a k-ary tree can be denoted by the elements of K∗, with the empty
word ε denoting the root, and ui the ith successor of u. In the case of labelled
trees, we will refer to the label of the node u in the tree t by t(u).

In the definition of Hintikka trees, we need to know which successor in the tree
corresponds to which existential restriction. For this purpose, we fix a linear order
on the existential restrictions in sub(C, T ). Let ϕ : {∃r.D ∈ sub(C, T )} → K be
the corresponding ordering function, i.e. ϕ(∃r.D) determines the successor node
corresponding to ∃r.D. In general, such a successor node need not exist in a tree
model. To obtain a full k-ary tree, Hintikka trees contain appropriate dummy
nodes.

For technical reasons, which will become clear later on, the nodes of the
Hintikka trees defined below are not simply labelled by Hintikka sets, but by
quadruples (Γ,Π,Ω, %), where % is the role which connects the node with the
father node, Ω is the complete Hintikka set for the node, Γ ⊆ Ω consists of the
unique concept D contained in Ω because of an existential restriction ∃%.D in
the father node, and Π contains only those concepts that are contained in Ω
because of universal restrictions ∀%.E in the father node. We will use a special
new role name λ for nodes that are not connected to the father node by a role,

3 We will refer to this technique of handling concept definitions as lazy unfolding. Note
that, in contrast to GCIs, concept definitions are only applied if A or ¬A is explicitly
present in H.
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i.e. the root node and those (dummy) nodes which are labelled with an empty
set of concepts.

Definition 2 (Hintikka trees). The tuple ((Γ0, Π0, Ω0, %0), (Γ1, Π1, Ω1, %1),
. . ., (Γk, Πk, Ωk, %k)) is called C, T -compatible if, for all i, 0 ≤ i ≤ k, Γi∪Πi ⊆ Ωi,
Ωi is a T -expanded Hintikka set, and the following holds for every existential
concept ∃r.D ∈ sub(C, T ):

– if ∃r.D ∈ Ω0, then
1. Γϕ(∃r.D) consists of D;
2. Πϕ(∃r.D) consists of all concepts E for which there is a universal restric-

tion ∀r.E ∈ Ω0, and it additionally contains ∀r.E if trans(r);
3. for every concept ∀r.F ∈ Ωϕ(∃r.D), Ω0 contains F , and additionally ∀r.F

if trans(r);
4. %ϕ(∃r.D) = r;

– if ∃r.D /∈ Ω0, then Γϕ(∃r.D) = Πϕ(∃r.D) = Ωϕ(∃r.D) = ∅ and %ϕ(∃r.D) = λ.

A k-ary tree t is called a Hintikka tree for C and T if, for every node v ∈ K∗,
the tuple (t(v), t(v1), . . . , t(vk)) is C, T -compatible, and t(ε) has empty Γ - and
Π-components, an Ω-component containing C, and λ as its %-component.

Our definition of a Hintikka tree ensures that the existence of such a tree
characterises satisfiability of SI concepts. It basically combines the technique
for handling transitive and inverse roles introduced in [10]4 with the technique
for dealing with acyclic TBoxes employed in [8].
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%(1) = r
Ω(1) = {A, ∃s.B}
Π(1) = {∃s.B}
Γ (1) = {A}

Γ (12) = {B}
Π(12) = ∅
Ω(12) = {B, ∃r.A, ∀r.∃s.B}
%(12) = s

%(ε) = λ
Ω(ε) = {∃r.A u ∀r.∃s.B, ∃r.A, ∀r.∃s.B}
Γ (ε) = Π(ε) = ∅

Π(2) = ∅
Ω(2) = ∅
%(2) = λ

Γ (2) = ∅

ε

1

1211

2

21 2212

Fig. 1. A Hintikka tree for ∃r.A u ∀r.∃s.B.

Example 3. Figure 1 shows a Hintikka tree for the concept ∃r.A u ∀r.∃s.B,
where r is a transitive role. Since there are two existential subconcepts, the
model is a binary tree, and we assume that the first son stands for the concept

4 there used in the context of tableau-based algorithms.
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∃r.A and the second one for ∃s.B. Node number 1 is labelled with A, ∃s.B and,
since r is transitive, also with ∀r.∃s.B. Node number 2 is a dummy node (all
dummy nodes are shown as black). The label of node 12 has to contain B, but
the Ω set can contain any other concept that does not violate the conditions for
Hintikka sets, e.g. those shown in the label. Thus, in this case, node 121 cannot
be a dummy node, but it has to contain A and ∃s.B.

Theorem 4. The SI concept C is satisfiable w.r.t. the general TBox T iff there
exists a Hintikka tree for C and T .

3 Tree automata

The existence of a Hintikka tree can be decided with the help of so-called looping
automata, i.e. automata on infinite trees without a special acceptance condition.
After introducing these automata, we will first show how they can be used to
decide satisfiability in SI w.r.t. general TBoxes in exponential time. Then we
will introduce a restricted class of looping automata, and use it to show that
satisfiability in SI w.r.t. acyclic TBoxes can be decided in polynomial space.

3.1 Looping automata

The following definition of looping tree automata does not include an alphabet
for labelling the nodes of the trees. In fact, when deciding the emptiness prob-
lem for such automata, only the existence of a tree accepted by the automaton
is relevant, and not the labels of its nodes. Since all information relevant for
the existence is contained in the states of the automaton, the node labels are
redundant. For our reduction this implies that the automaton we construct for
a given input C, T does not actually accept the Hintikka trees for C, T . Instead,
it attempts to label the unlabelled tree as a Hintikka tree for the input. If C
is satisfiable w.r.t. T , then the automaton accepts the unlabelled tree and its
successful runs are the Hintikka trees for C and T .

Definition 5 (Automaton, run). A looping tree automaton over k-ary trees
is a tuple (Q,∆, I), where Q is a finite set of states, ∆ ⊆ Qk+1 is the transition
relation, and I ⊆ Q is the set of initial states.

A run of this automaton on the (unique) unlabelled k-ary tree t is a labelled
k-ary tree r : K∗ → Q such that (r(v), r(v1), . . . , r(vk)) ∈ ∆ for all v ∈ K∗. The
run is successful if r(ε) ∈ I. The emptiness problem for looping tree automata is
the problem of deciding whether a given looping tree automaton has a successful
run or not.

In order to decide the emptiness problem in time polynomial in the size of
the automaton, one computes the set of all bad states, i.e. states that do not
occur in any run, in a bottom-up manner [18, 5]: states that do not occur as first
component in the transition relation are bad, and if all transitions that have the
state q as first component contain a state already known to be bad, then q is
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also bad. The automaton has a successful run iff there is an initial state that is
not bad.

For an SI concept C and a general TBox T , we can construct a looping tree
automaton whose successful runs are exactly the Hintikka trees for C and T as
follows.

Definition 6 (Automaton AC,T ). For an SI concept C and a TBox T , let
k be the number of existential restrictions in sub(C, T ). Then the looping au-
tomaton AC,T = (Q,∆, I) is defined as follows:

– Q consists of all 4-tuples (Γ,Π,Ω, %) such that Γ ∪Π ⊆ Ω ⊆ sub(C, T ), Γ
is a singleton set, Ω is a T -expanded Hintikka set for C, and % occurs in C
or T or is equal to λ;

– ∆ consists of all C, T -compatible tuples ((Γ0, Π0, Ω0, %0), (Γ1, Π1, Ω1, %1),
. . . , (Γk, Πk, Ωk, %k));

– I := {(∅, ∅, Ω, λ) ∈ Q | C ∈ Ω}.
Lemma 7. AC,T has a successful run iff C is satisfiable w.r.t. T .

Since the cardinality of sub(C, T ) and the size of each of its elements is linear
in the size of C, T , the size of the automaton AC,T is exponential in the size
of C, T . Together with the fact that the emptiness problem for looping tree
automata can be decided in polynomial time, this yields:

Theorem 8. Satisfiability in SI w.r.t. general TBoxes is in ExpTime.

This complexity upper-bound is optimal since ExpTime-hardness follows
from the known hardness result for ALC with general TBoxes [16].

One could also try to solve the emptiness problem by constructing a successful
run in a top-down manner : label the root with an element q0 of I, then apply a
transition with first component q0 to label the successor nodes, etc. There are,
however, two problems with this approach. Firstly, it yields a non-deterministic
algorithm since I may contain more than one element, and in each step more
than one transition may be applicable. Secondly, one must employ an appropriate
cycle-checking technique (similar to blocking in tableau-based algorithms) to
obtain a terminating algorithm. Applied to the automaton AC,T , this approach
would at best yield a (non-optimal) NExpTime satisfiability test.

3.2 Blocking-invariant automata

In order to obtain a PSpace result for satisfiability w.r.t. acyclic TBoxes, we use
the top-down emptiness test sketched above. In fact, in this case non-determinism
is unproblematic since NPSpace is equal to PSpace by Savitch’s theorem [15].
The advantage of the top-down over the bottom-up emptiness test is that it is not
necessary to construct the whole automaton before applying the emptiness test.
Instead, the automaton can be constructed on-the-fly. However, we still need
to deal with the termination problem. For this purpose, we adapt the blocking
technique known from the tableau-based approach. In the following, when we
speak about a path in a k-ary tree, we mean a sequence of nodes v1, . . . , vm such
that v1 is the root ε and vi+1 is a direct successor of vi.
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Definition 9 (¾-invariant, m-blocking). Let A = (Q,∆, I) be a looping
tree automaton and ¾ be a binary relation over Q, called the blocking relation.
If q ¾ p, then we say that q is blocked by p. The automaton A is called ¾-
invariant if, for every q ¾ p, and (q0, q1, . . ., qi−1, q, qi+1, . . ., qk) ∈ ∆, it holds
that (q0, q1, . . ., qi−1, p, qi+1, . . .,qk) ∈ ∆.

A ¾-invariant automaton A is called m-blocking if, for every successful run
r of A and every path v1, . . . , vm of length m in r, there are 1 ≤ i < j ≤ m such
that r(vj) ¾ r(vi).

Obviously, any looping automaton A = (Q,∆, I) is =-invariant (i.e. the
blocking relation is equality) and m-blocking for every m > #Q (where “#Q”
denotes the cardinality of Q). However, we are interested in automata and block-
ing relations where blocking occurs earlier than after a linear number of transi-
tions.

To test an m-blocking automaton for emptiness, it is sufficient to construct
partial runs of depth m. More formally, we define K≤n :=

⋃n
i=0 Ki. A partial run

of depth m is a mapping r : K≤m−1 → Q such that (r(v), r(v1), . . . , r(vk)) ∈ ∆
for all v ∈ K≤m−2. It is successful if r(ε) ∈ I.

Lemma 10. An m-blocking automaton A = (Q,∆, I) has a successful run iff
it has a successful partial run of depth m.

1: if I 6= ∅ then
2: guess an initial state q ∈ I
3: else
4: return “empty”
5: if there is a transition from q then
6: guess such a transition (q, q1, . . . , qk) ∈ ∆
7: push(SQ, (q1, . . . , qk)), push(SN, 0)
8: else
9: return “empty”

10: while SN is not empty do
11: (q1, . . . , qk) := pop(SQ), n := pop(SN) + 1
12: if n ≤ k then
13: push(SQ, (q1, . . . , qk)), push(SN, n)
14: if length(SN) < m− 1 then
15: if there is a transition from qn then
16: guess a transition (qn, q′1, . . . , q

′
k) ∈ ∆

17: push(SQ, (q′1, . . . , q
′
k)), push(SN, 0)

18: else
19: return “empty”
20: return “not empty”

Fig. 2. The non-deterministic top-down emptiness test for m-blocking automata.

For k > 1, the size of a successful partial run of depth m is still exponential
in m. However, when checking for the existence of such a run, one can perform
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a depth-first traversal of the run while constructing it. To do this, it is basically
enough to have at most one path of length up to m in memory.5 The algorithm
that realizes this idea is shown in Figure 2. It uses two stacks: the stack SQ
stores, for every node on the current path, the right-hand side of the transition
which led to this node, and the stack SN stores, for every node on the current
path, on which component of this right-hand side we are currently working. The
entries of SQ and SN are elements of Qk and K ∪ {0}, respectively, and the
number of entries is bounded by m for each stack.

Note that the algorithm does not require the automaton A to be explicitly
given. It can be constructed on-the-fly during the run of the algorithm.

Definition 11. Assume that we have a set of inputs I and a construction that
yields, for every i ∈ I, an mi-blocking automaton Ai = (Qi,∆i, Ii) working on
ki-ary trees. We say that this construction is a PSpace on-the-fly construction
if there is a polynomial P such that, for every input i of size n we have

– mi ≤ P (n) and ki ≤ P (n);
– every element of Qi is of a size bounded by P (n);
– one can non-deterministically guess in time bounded by P (n) an element of

Ii and, for a state q ∈ Qi, a transition from ∆i with first component q.

The algorithms guessing an initial state (a transition starting with q) are
assumed to yield the answer “no” if there is no initial state (no such transition).

The following theorem is an easy consequence of the correctness of the top-
down emptiness test described in Figure 2 and Savitch’s theorem [15].

Theorem 12. If the automata Ai are obtained from the inputs i ∈ I by a
PSpace on-the-fly construction, then the emptiness problem for Ai can be de-
cided by a deterministic algorithm in space polynomial in the size of i.

4 Satisfiability in SI w.r.t. acyclic TBoxes

It is easy to see that the construction of the automaton AC,T from a given
SI concept C and a general TBox T satisfies all but one of the conditions
of a PSpace on-the-fly construction. The condition that is violated is the one
requiring that blocking must occur after a polynomial number of steps. In the
case of general TBoxes, this is not surprising since we know that the satisfiability
problem is ExpTime-hard. Unfortunately, this condition is also violated if T is
an acyclic TBox. The reason is that successor states may contain new concepts
that are not really required by the definition of C, T -compatible tuples, but are
also not prevented by this definition, like ∃r.A and ∀r.∃s.B in the label of node 12
in Example 3. In the case of acyclic TBoxes, we can construct a subautomaton
that avoids such unnecessary concepts. It has fewer runs than AC,T , but it
does have a successful run whenever AC,T has one. The construction of this
subautomaton follows the following general pattern.
5 This is similar to the so-called trace technique for tableau-based algorithms [17].
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Definition 13 (Faithful). Let A = (Q,∆, I) be a looping tree automaton on
k-ary trees. The family of functions fq : Q → QS for q ∈ QS is faithful w.r.t. A
if I ⊆ QS ⊆ Q, and the following two conditions are satisfied for every q ∈ QS:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆;
2. if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.6

The subautomaton AS = (QS,∆S, I) of A induced by this family has the transi-
tion relation ∆S := {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆ and q ∈ QS}.

Instead of testing A for emptiness, we can equivalently test AS.

Lemma 14. Let A be a looping tree automaton and AS its subautomaton in-
duced by the faithful family of functions fq : Q → QS for q ∈ QS. Then A has a
successful run iff AS has a successful run.

Intuitively, the range of fq contains the states that are allowed after state q
has been reached. Before we can define an appropriate family of functions for
AC,T , we must introduce some notation. For an SI concept C and an acyclic
TBox T , the role depth rdT (C) of C w.r.t. T is the maximal nesting of (universal
and existential) role restrictions in the concept obtained by expanding C w.r.t.
T . Obviously, rdT (C) is polynomially bounded by the size of C, T . For a set of SI
concepts S, its role depth rdT (S) w.r.t. T is the maximal role depth w.r.t. T of
the elements of S. We define sub6n(C, T ) := {D | D ∈ sub(C, T ) and rdT (D) ≤
n}, and S/r := {D ∈ S | there is an E such that D = ∀r.E}.

The main idea underlying the next definition is the following. If T is acyclic,
then, since we use lazy unfolding of concept definitions, the definition of C, T -
compatibility requires, for a transition (q, q1, . . . , qk) of AC,T , only the existence
of concepts in qi = (Γi, Πi, Ωi, %i) that are of a smaller depth than the maximal
depth n of concepts in q if %i is not transitive. If %i is transitive, then Πi may
also contain universal restrictions of depth n.

We can therefore remove from the states qi all concepts with a higher depth
and still maintain C, T -compatibility.

Definition 15 (Functions fq). For two states q = (Γ,Π,Ω, %) and q′ =
(Γ ′, Π ′, Ω′, %′) of AC,T with rdT (Ω) = n, we define the function fq(q′) as follows:

– if rdT (Γ ′) ≥ rdT (Ω), then fq(q′) := (∅, ∅, ∅, λ);
– otherwise, fq(q′) := (Γ ′, Π ′′, Ω′′, %′), where

• P = sub6n(C, T )/%′, if trans(%′); otherwise P = ∅;
• Π ′′ = Π ′ ∩ (sub6n−1(C, T ) ∪ P );
• Ω′′ = Ω′ ∩ (sub6n−1(C, T ) ∪Π ′′).

The definition of Π ′′ implies that we remove from Π ′ all concepts which have
a higher depth than the maximum depth in Ω, and we allow for a concept of
the same depth as in Ω only if it has the shape ∀%′.E and %′ is transitive. If T
6 Note that this condition does neither imply nor follow from condition 1, since q0

need not be equal to q, and it is not required that fq(q) equals q.
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is acyclic, then the set Ω′′ defined above is still a T -expanded Hintikka set after
removing these concepts. Looking back at Example 3, this means that node 12
could not contain any existential or value restrictions because node 1 has role
depth 1 and s is not transitive. Consequently, all sons of node 12 have to be
dummy nodes.

Lemma 16. The family of mappings fq (for states q of AC,T ) introduced in
Definition 15 is faithful w.r.t. AC,T .

Consequently, AC,T has a successful run iff the induced subautomaton AS
C,T

has a successful run.

Lemma 17. The construction of AS
C,T from an input consisting of an SI con-

cept C and an acyclic TBox T is a PSpace on-the-fly construction.

The main thing to show 7 in the proof is that blocking always occurs after a
polynomial number of steps. To show this, we use the following blocking relation:
(Γ1, Π1, Ω1, %1) ¾SI (Γ2, Π2, Ω2, %2) if Γ1 = Γ2, Π1 = Π2, Ω1/%1 = Ω2/%2, and
%1 = %2. If m := #sub(C, T ), then AS

C,T is m4-blocking w.r.t. ¾SI . The main
reasons for this to hold are the following: (i) if a successor node is reached w.r.t.
a non-transitive role, then the role depth of the Ω-component decreases, and
the same is true if within two steps two different transitive roles are used; (ii) if
a successor node is reached w.r.t. a transitive role, then there is an inclusion
relationship between the Π-components of the successor node and its father; the
same is true (though in the other direction) for the Ω/%-components.

Since we know that C is satisfiable w.r.t. T iff AC,T has a successful run iff
AS

C,T has a successful run, Theorem 12 yields the desired PSpace upper-bound.
PSpace-hardness for this problem follows directly from the known PSpace-
hardness of satisfiability w.r.t. the empty TBox in ALC [17].

Theorem 18. Satisfiability in SI w.r.t. acyclic TBoxes is PSpace-complete.

5 Conclusion

We have developed a framework for automata that adapts the notion of blocking
from tableau algorithms and makes it possible to show tight complexity bounds
for PSpace logics using the automata approach. In order to achieve this result,
we replace the deterministic bottom-up emptiness test with a nondeterministic
top-down test that can be interleaved with the construction of the automaton
and aborted after a “blocked” state is reached. If the number of transitions before
this happens is polynomial in the size of the input, emptiness of the automaton
can be tested using space polynomial in the size of the input rather than time
exponential in the size of the input. This illustrates the close relationship between
tableau and automata algorithms.

As an example for an application of this method, we have shown how blocking
automata can be used to decide satisfiability of SI concepts w.r.t. acyclic TBoxes
in PSpace.
7 A detailed proof can be found in [3].
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Abstract. We aim at representing and reasoning about actions and (high level)
programs over ontologies expressed in Description Logics. This is a critical is-
sue that has resisted good solutions for a long time. In particular, while well-
developed theories of actions and high-level programs exist in AI, e.g., the ones
based on SitCalc, these theories do not apply smoothly to Description Logic on-
tologies, due to the profoundly non-definitorial nature of such ontologies (cf.
cyclic TBoxes). Here we propose a radical solution: we assume a functional view
of ontologies and see them as systems that allow for two kinds of operations: ASK,
which returns the (certain) answer to a query, and TELL, which produces a new
ontology as a result of the application of an atomic action. We base atomic ac-
tions on instance level update and instance level erasure on the ontology. Building
on this functional view, we introduce Golog/ConGolog-like high-level programs
on ontologies. This paper demonstrates the effectiveness of the approach in gen-
eral, and presents the following specific results: we characterize the notion of
single-step executability of such programs, devise methods for reasoning about
sequences of actions, and present (nice) complexity results in the case where the
ontology is expressed in DL-Lite.

1 Introduction

Description Logics (DLs) [1] are generally advocated as the right tool to express ontolo-
gies, and this belief is one of the cornerstones of the Semantic Web [31, 15]. Notably,
semantic web services [22] constitute another cornerstone of the Semantic Web. These
are essentially high-level descriptions of computations that abstract from the technolog-
ical issues of the actual programs that realize them. An obvious concern is to combine
in some way the static descriptions of the information provided by ontologies with the
dynamic descriptions of the computations provided by semantic web services. Interest-
ingly, such a critical issue has resisted good solutions for a long time. Indeed even big
efforts such as OWL-S [22] have not really succeeded.

In AI, the importance of combining static and dynamic knowledge has been recog-
nized early [23, 24]. By now, well developed theories of actions and high level programs
exist in AI, e.g., the ones based on Reiter’s variant of SitCalc [28]. Note that high-level
programs [19, 10] share with semantic web services the emphasis on abstracting from
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the technological issues of actual programs, and are indeed abstract descriptions of
computations over a domain of interest.

Unfortunately, these theories do not apply smoothly to DL ontologies, due to the
profoundly non-definitorial nature of such ontologies. Indeed, concepts and roles ex-
pressions in a DL do not provide definitions of concepts and roles in general, but usu-
ally only describe interrelations between them (cf. cyclic TBox interpreted according
to the usual descriptive semantics [1]). Such non-definitorial nature of DL ontologies
makes them one of the most difficult kinds of domain descriptions for reasoning about
actions [2, 20].

Here we propose a radical solution: we assume a functional view [17] of ontologies
and see them as systems that allow for two kinds of operations: ASK, which returns the
(certain) answer to a query, and TELL, which produces a new ontology as a result of
the application of an atomic action. Observe that this approach, whose origins come
from [7, 13, 25, 32], has some subtle limitations, due to the fact that we lose the possi-
bility of distinguishing between “knowledge” and “truth” as pointed out in [30]. On the
other hand, it has a major advantage: it decouples reasoning on the static knowledge
from the one on the dynamics of the computations over such knowledge. As a result,
we gain the ability of lifting to DLs many of the results developed in reasoning about
actions in the years.

We demonstrate such an approach in this paper. Specifically, we base atomic actions
used by the TELL operation on instance level update and instance level erasure on the
ontology [8, 9]. Building on this functional view, we introduce Golog/ConGolog-like
high level programs over ontologies. We characterize the notion of single-step exe-
cutability of such programs, devise methods for reasoning about sequences of actions,
and present (nice) complexity results in the case where the ontology is expressed in
DL-Lite. We stress that this paper is really an illustration of what a functional view
on ontologies can bring about in combining static and dynamic aspects in the context
of DL ontologies, and that many extensions of this work can be investigated (we will
mention some of them in the conclusions).

2 Preliminaries

DL ontologies. Description Logics (DLs) [1] are knowledge representation formalisms
that are tailored for representing the domain of interest in terms of concepts (or classes),
which denote sets of objects, and roles (or relations), which denote denote binary rela-
tions between objects. DLs ontologies (aka knowledge bases) are formed by two distinct
parts: the so-called TBox, which represents the intensional level of the ontology, and
contains an intensional description of the domain of interest; and the so-called ABox,
which represents the instance level of the ontology, and contains extensional informa-
tion.

We give the semantics of a DL ontology in terms of interpretations over a fixed in-
finite domain ∆ of objects. We assume to have a constant for each object in ∆ denoting
exactly that object. In this way we blur the distinction between constants and objects, so
that we can use them interchangeably (with a little abuse of notation) without causing
confusion (cf. standard names [18]).
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An interpretation I = 〈∆, ·I〉 consists of a first order structure over ∆, where ·I is
the interpretation function, i.e., a function mapping each concept to a subset of ∆ and
each role to a subset of ∆×∆. We say that I is a model of a (TBox or ABox) assertion
α, or also that I satisfies α, if α is true in I. We say that I is a model of the ontology
s = 〈T ,A〉, or also that I satisfies the ontology s, if I is a model of all the assertions in
T and A. Given a set S of (TBox or ABox) assertions, we denote as Mod(S) the set of
interpretations that are models of all assertions in S. In particular, the set of models of
an ontology s, denoted as Mod(s), is the set of models of all assertions in T andA, i.e.,
Mod(s) = Mod(〈T ,A〉) = Mod(T ∪ A). An ontology s is consistent if Mod(s) 6= ∅,
i.e., it has at least one model. We say that an ontology s logically implies an expression
α (e.g., an assertion, an instantiated union of conjunctive queries, etc.), written s |= α,
if for every interpretation I ∈ Mod(s), we have I ∈ Mod(α), i.e., all the models of s
are also models of α. When dealing with queries, we are interested in query answering
(for CQs and UCQs): given an ontology s and a query q(x) over s, return the certain
answers to q(x) over s, i.e., all tuples t of elements of ∆I such that, when substituted
to x in q(x), we have that s |= q(t).

DL-LiteF . In this paper, we focus on a particular DL, namely DL-LiteF , belonging to
the DL-Lite family [4, 5] of DLs, which are tailored towards capturing conceptual mod-
eling constructs (such as those typical of UML Class Diagrams or Entity-Relationship
Diagrams), while keeping reasoning, including conjunctive query answering, tractable
and first-order reducible (i.e., LOGSPACE in data complexity). In DL-LiteF , which is
the logic originating the whole DL-Lite family, concepts are defined as follows:

B ::= A | ∃R C ::= B | ¬B R ::= P | P−

where A denotes an atomic concept, P an atomic role, B a basic concept, and C a
general concept. A basic concept can be either an atomic concept, a concept of the form
∃P , i.e. the standard DL construct of unqualified existential quantification on roles, or
a concept of the form ∃P−, which involves inverse roles. A DL-LiteF TBox is a finite
set of universal assertions of the form

B v C inclusion assertion

(funct R) functionality assertion

Inclusion assertions are interpreted as usual in DLs, while functionality assertions ex-
press the (global) functionality of atomic roles or of inverses of atomic roles.

A DL-LiteF ABox is a finite set of membership assertions of the form, B(a) or
R(a, b), which state, respectively, that the object a is an instance of the basic concept
B, and that the pair of objects (a, b) is an instance of the role R.

Query answering of EQL-Lite(UCQ) queries over DL-LiteF ontologies. As query
language, here we consider EQL-Lite(UCQ) [6]. This is essentially formed by full
(domain-independent) FOL query expressions built on top of atoms that have the form
Kα, where α is a union of conjunctive queries1. The operator K is a minimal knowl-

1 For queries consisting of only one atom Kα, the K operator is omitted.
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edge operator [17, 27, 18], which is used to formalize the epistemic state of the ontol-
ogy. Informally, the formula Kα is read as “α is known to hold” or “α is logically
implied by the ontology”. Answering EQL-Lite(UCQ) queries over DL-LiteF ontolo-
gies is LOGSPACE, and, notably, can be reduced to evaluating (pure) FOL queries over
the ABox, when considered as a database. We refer to [6] for more details.

DL instance-level updates and erasure. Following the work in [8, 9], we adopt
Winslett’s notion of update [33, 34] and its counterpart, defined in [16], as the notion
of erasure. However, we refine such notions to take into account that we are interested
in studying changes at the instance level, while we insist that the intensional level of
the ontology is considered stable and hence remains invariant. Intuitively, the result of
updating (resp., erasing) an ontology s with a finite set F of membership assertions is a
new ontology that logically implies (resp., does not logically imply) all assertions in F ,
and whose set of models minimally differs from the set of models of s. Unfortunately,
as shown in [21, 8, 9], in general the result of update and erasure cannot be expressed in
the same language as the original ontology.2 Hence, we focus on maximally approxi-
mated update and erasure. The maximally approximated update (erasure) is an ontology
in the same language as the original one and whose models are the models of the update
(erasure) which minimally differ from the models of the original ontology.

Below, when we talk about update and erasure, we always consider their approx-
imated versions. More precisely, let s = 〈T ,A〉 be an ontology and F a finite set of
membership assertions such that Mod(T ∪ F) 6= ∅: we denote by s ◦T F the (max-
imally approximated) update of s with F . Similarly, assuming Mod(T ∪ ¬F) 6= ∅,
where ¬F denotes the set of membership assertions {¬Fi | Fi ∈ F}3: we denote by
s•T F the (maximally approximated) erasure of s with F . Computing both (maximally
approximated) update and erasure of a DL-LiteF ontology swith a setF of membership
assertions is polynomial in the sizes of s and F [9].

3 Atomic actions

Under a functional view [17], ontologies are seen as systems that are able to perform
two basic kinds of operations, namely ASK and TELL operations (cf. [17, 18]):

– ASK: given an ontology and a query (in the query language recognized by the ontol-
ogy), returns a finite set of tuples of objects (constituting the answers to the query
over the ontology).

– TELL: given an ontology and an atomic action, returns a new ontology resulting
from executing the action, if the action is executable wrt the given ontology.

2 The form of the DL-LiteF ABox considered above is that of the original proposal in [4], and
is a restriction w.r.t. the one studied in [8], where instance-level updates in DLs of the DL-Lite
family were first introduced. Specifically, here we do not allow for negation and “variables”
in the membership assertions, cf. [8]. With this restriction DL-LiteF becomes akin to the vast
majority of DLs, see [21], in that the result of updates and erasure is not expressible as a new
DL-LiteF ABox, thus requiring approximation [9].

3 Observe that ¬Fi might not be in the language of ABoxes, see [9].
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In this paper, we focus on DL-LiteF [4, 5] as ontology language, and EQL-
Lite(UCQ) [6] as query language. Hence, we base ASK on certain answers to such
queries. Specifically, we denote by q(x) an (EQL-Lite(UCQ)) query with distinguished
variables x. We define ASK(q(x), s) = {t | s |= q(t)}, where s is an ontology and t
is a tuple of constants of the same arity as x. We denote by φ queries with no distin-
guished variables. Such queries are called boolean queries and return either true (i.e.,
the empty tuple) or false (i.e., no tuples at all).

As for TELL, we base atomic actions on instance level update and erasure [8, 9].
Specifically, we allow for atomic actions of the following form:

updateL(x) where q(x)

eraseL(x) where q(x)

where q(x) stands for a query with x as distinguished variables and L(x) stands for a
set of membership assertions on constants and variables in x. We define

TELL([updateL(x) where q(x)], s) = s ◦T
⋃

t∈ASK(q(x),s) L(t)

if Mod(T ∪⋃
t∈ASK(q(x),s) L(t)) 6= ∅

TELL([eraseL(x) where q(x)], s) = s•T
⋃

t∈ASK(q(x),s) L(t)

if Mod(T ∪ ¬⋃
t∈ASK(q(x),s) L(t)) 6= ∅

If the conditions in the equivalences above are not satisfied, we say that the
atomic action a is not executable in s. We extend ASK to expressions of the form
ASK([executable(a)], s), so as to be able to check executability of actions. Observe that
the executability of actions as defined above can indeed be checked on the ontology.

Notice that both ASK and TELL for DL-LiteF defined above can be computed in
polynomial time, considering the size of the query fixed [6, 9].

4 Programs

We now consider how atomic actions can be organized within a program. In particular,
we focus on a variant of Golog [19, 10, 29] tailored to work on ontologies. Instead of
situations, we consider ontologies, or, to be more precise, ontology states. We recall
that when considering ontologies we assume the TBox to be invariant, so the only part
of the ontology that can change as a result of an action (or a program) is the ABox.

Proceeding of DL2007 - Long Papers 33



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 34 — #44 i
i

i
i

i
i

While all constructs of the original Golog/ConGolog have a counterpart in our vari-
ant, here for brevity we concentrate on a core fragment only, namely:

a atomic actions

ε the empty sequence of actions

δ1; δ2 sequential composition

if φ then δ1 else δ2 if-then-else

while φ do δ while

pick q(x).δ[x] pick

where a is an atomic instruction which corresponds to the execution of the atomic
action a; ε is an empty sequence of instructions (needed for technical reasons)
if φ then δ1 else δ2 and while φ do δ are the standard constructs for conditional choice
and iteration, where the test condition is a boolean query (or an executability check) to
be asked to the current ontology; finally pick q(x).δ[x] picks a tuple t in the answer
to q(x), instantiates the rest of the program δ by substituting x with t and executes
δ. The latter construct is a variant of the pick construct in Golog: the main difference
being that t is bounded by a query to the ontology. Also, while in Golog such a choice
is nondeterministic, here we think of it as possibly made interactively, see below.

The general approach we follow is the structural operational semantics approach
based on defining a single step of program execution [26, 10]. This single-step seman-
tics is often called transition semantics or computation semantics. Namely, to formally
define the semantics of our programs we make use of a transition relation, named
Trans , and denoted by “−−−→”:

(δ, s) a−−−→(δ′, s′)

where δ is a program, s is an ontology in which the program is executed, a is the
executed atomic action, s′ is the ontology obtained by executing a in δ and δ′ is what
remains to be executed of δ after having executed a.

We also make use of a final predicate, named Final , and denoted by “
√

”:

(δ, s)
√

where δ is a program that can be considered (successfully) terminated with the ontology
s.

Such a relation and predicate can be defined inductively in a standard way, using
the so called transition (structural) rules. The structural rules for defining the transition
relation and the final predicate are given in Figure 1 and Figure 2 respectively. All
structural rules have the following schema:

CONSEQUENT

ANTECEDENT
if SIDE-CONDITION
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act :
(a, s)

a−−−→(ε, TELL(a, s))

true
if a is executable in s

seq :
(δ1; δ2, s)

a−−−→(δ′1; δ2, s
′)

(δ1, s)
a−−−→(δ′1; s

′)

(δ1; δ2, s)
a−−−→(δ′2, s

′)

(δ2, s)
a−−−→(δ′2; s

′)
if (δ1, s)

√

if :
(if φ then δ1else δ2, s)

a−−−→(δ′1, s
′)

(δ1, s)
a−−−→(δ′1, s

′)
if ASK(φ, s) = true

(if φ then δ1else δ2, s)
a−−−→(δ′2, s

′)

(δ2, s)
a−−−→(δ′2, s

′)
if ASK(φ, s) = false

while :
(while φ do δ, s) a−−−→(δ′; while φ do δ, s′)

(δ, s)
a−−−→(δ′, s′)

if ASK(φ, s) = true

pick :
(pick q(x). δ[x], s)

a−−−→(δ′[t], s′)

(δ[t], s)
a−−−→(δ′[t], s′)

(for t = CHOICE[ASK(q(x), s)])

Fig. 1. Transition rules

ε :
(ε, s)

√

true
seq :

(δ1; δ2, s)
√

(δ1, s)
√
∧ (δ2; s)

√

if :
(if φ then δ1else δ2, s)

√

(δ1, s)
√ if ASK(φ, s) = true

(if φ then δ1else δ2, s)
√

(δ2, s)
√ if ASK(φ, s) = false

while :
(while φ do δ, s)

√

true
if ASK(φ, s) = false

(while φ do δ, s)
√

(δ, s)
√ if ASK(φ, s) = true

pick :
(pick q(x). δ[x], s)

√

(δ[t], s)
√ (for t = CHOICE[ASK(q(x), s)])

Fig. 2. Final rules

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION → CONSEQUENT)
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where ∀Q stands for the universal closure of all free variables occurring in Q, and, typ-
ically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables. The
structural rules define inductively a relation, namely: the smallest relation satisfying the
rules.

Observe the use of the parameter CHOICE, which denotes a choice function, to
determine the tuple to be picked in executing the pick constructs of programs. More
precisely, CHOICE stands for any function, depending on an arbitrary number of pa-
rameters, returning a tuple from the set ASK(q(x), s). In the original Golog/ConGolog
proposal [19, 10] such a choice function (there also extended to other nondeterministic
constructs) is implicit, the idea there being that Golog executions use a choice function
that would lead to the termination of the program (angelic nondeterminism). In [29], a
choice function is also implicit, but based on the idea that choices are done randomly
(devilish nondeterminism). Here, we make use of choice functions explicitly, so as to
have control on nondeterministic choices. Indeed, one interesting use of CHOICE is to
model the delegation of choices to the client of the program, with the idea that the pick
construct is interactive: it presents the result of the query to the client, who chooses
the tuple s/he is interested in. For example, if the query is about hotels that are avail-
able in Rome, the client sees the list of available hotels resulting from the query and
chooses the one s/he likes most. We say that a program is deterministic when no pick
instructions are present or a fixed choice function for CHOICE is considered.

Examples Let us look at a couple of simple examples of programs. Consider the fol-
lowing ontology on companies and grants.

∃owns v Company
∃owns− v Company

PublicCompany v Company
PrivateCompany v Company
∃grantAsked v exResearchGroup
∃grantAsked− v Company
IllegalOwner v Company

The first program we write aims at populating the concept IllegalOwner with those
companies that own themselves, either directly or indirectly. We assume temp to be an
additional role in the alphabet of the TBox. Then, the following deterministic program
ComputeIllegalOwners can be used to populate IllegalOwner :

ComputeIllegalOwners =
erase temp(x1,x2) where q(x1,x2) <- temp(x1,x2);
erase IllegalOwner(x) where q(x) <- IllegalOwner(x);
update temp(x1,x2) where q(x1,x2) <- owns(x1,x2);
while (q() <- K(temp(y1,z), owns(z,y2)), not K(temp(y1,y2))) do (
update temp(x1,x2) where

q(x1,x2) <- K(temp(x1,z), owns(z,x2)), not K(temp(x1,x2))
);

update IllegalOwner(x) where q(x) <- temp(x,x)

The second program we look at is a program that, given a research group r and
a company c, interactively –through a suitable choice function for CHOICE– selects a
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public company owned by c to ask a grant to; if c does not own public companies, then
it selects the company c itself:

askNewGrant(r,c) =
if (q() <- owns(c,y), PublicCompany(y)) then (
pick (q(x) <- owns(c,x), PublicCompany(x)). (
update grantAsked(r,x) where true

)
)
else update grantAsked(r,c) where true

5 Results

In this section, we assume that ontologies are expressed in DL-LiteF and that the ASK
and TELL operations are those defined for DL-LiteF in Section 3.

Given an ontology s and a program δ, we define the set next step, denoted by Next ,
as:

Next(δ, s) = {〈a, δ′, s′〉 | (δ, s) a−−−→(δ′, s′)}
The following two theorems tell us that programs are indeed computable.

Theorem 1. Let s be an ontology and δ a program. Then, the set Next(δ, s) has a finite
cardinality, and can be computed in polynomial time in s and δ (considering the size of
the queries in δ fixed). Moreover, if δ is deterministic then, for each action a, the number
of tuples 〈a, δ′, s′〉 ∈ Next(δ, s) is at most one (one if a is executable, zero otherwise).

Theorem 2. Let s be an ontology and δ a program. Then, checking (δ, s)
√

can be done
in polynomial time in s and δ (considering the size of the queries in δ fixed).

Given an ontology s0 and a sequence ρ = a1 · · · an of actions, we say that ρ is a
run of a program δ0 over the ontology s0 if there are (δi, si), for i = 1, . . . , n, such that

(δ0, s0)
a1 > (δ1, s1)

a2−−−→· · · an−−−→(δn, sn)

We call δn and sn above respectively the program and the ontology resulting from
the run ρ. If (δn, sn) is final (i.e., (δn, sn)

√
), then we say that ρ is a terminating run.

Note that, if the program δ0 is deterministic, then (δn, sn) is functionally determined
by (δ0, s0) and ρ.

Theorem 3. Let s0 be an ontology, δ0 a deterministic program, and ρ = a1 · · · an a
sequence of actions. Then checking whether ρ is a run of δ0 starting from s0 can be
done in polynomial time in the size of s0, ρ, and δ0 (considering the size of the queries
in δ0 fixed)

Theorem 4. Let s0 be an ontology, δ0 a deterministic program, and ρ a run of δ0 start-
ing from s0. Then, computing the resulting program δn and the resulting ontology sn,
as well as checking (δn, sn)

√
and computing a query q(x) over sn, can be done in

polynomial time in the size of s0, ρ, and δ0 (considering the size of the queries in δ0
fixed).
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For nondeterministic programs, i.e., when we do not fix a choice function for
CHOICE, Theorems 3 and 4 do not hold anymore. Indeed, it can be shown the prob-
lems in the theorems become NP-complete.

We conclude this section by turning to the two classical problem in reasoning about
actions, namely the executability problem and the projection problem [28]. In our set-
ting such problems are phrased as follows:

– executability problem: check whether a sequence of actions is executable in an
ontology;

– projection problem: compute the result of a query in the ontology obtained by exe-
cuting a sequence of actions in an initial ontology.

Now, considering that a sequence of actions can be seen as a simple deterministic pro-
gram, from the theorems above we get the following result:

Theorem 5. Let s0 be an ontology and ρ a sequence of actions. Then, checking the
executability of ρ in s0, and computing the result of a query q(x) over the ontology
obtained by executing ρ in s0, can both be done in polynomial time in the size of s0 and
ρ.

In fact, all the above results can be immediately extended (with different complexity
bounds) to virtually every DL and associated ASK and TELL operations, as long as ASK
and TELL are both decidable.

6 Conclusion

In this paper we have laid the foundations for an effective approach to reasoning about
actions and programs over ontologies, based on a functional view of the ontology.
Namely, the ontology is seen as a system that can perform two kinds of operations:
ASK and TELL. We have focused on DL-Lite, but the approach applies to more expres-
sive DLs. It suffices to have a decidable ASK, i.e., decidable query answering on the
chosen query and ontology languages, and a decidable TELL, i.e., define atomic actions
so that, through their effects, they produce one successor ontology (or, in fact, a finite
number of successor ontologies) and such that their executability can be decided. Works
such as those reported in [2, 20, 14] are certainly relevant.

Our approach (and the results for DL-LiteF ) can be extended to all other program-
ming constructs studied within Golog (i.e., non determinism, procedures) [19], Con-
Golog (i.e., concurrency, prioritized interrupts) [10] and, with some care –see the dis-
cussion on analysis and synthesis below– even to those in IndiGolog (search) [29].

Also, the works on forms of execution developed within
Golog/ConGolog/IndiGolog can be lifted to DL ontologies by applying the pro-
posed approach. Specifically, notions like online execution [29], offline execution [19,
10], monitored execution [11], can all be lifted to the setting studied here.

Golog/ConGolog-like programs do not have a store to keep memory of previous
results of queries to the ontology. An interesting extension would be to introduce such a
store, i.e., variables for storing results of queries or partial computations. Notice that this
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would make also the program infinite state in general (the ontology is already infinite
state). Also, this would make such programs much more alike programs in standard
procedural languages such as C or Java, which manipulate global data structures –in
our case the ontology– and local data structures –in our case the information stored in
the variables of the program.

Finally, we can adopt the functional view of ontologies also to specify interactive
and nonterminating processes acting on them, similarly to what is currently done when
specifying web services on relational databases [3, 12].

We close the paper by noticing that, since the ontology is not finite state, tasks
related to automated analysis and automated synthesis of programs (e.g., verifying ex-
ecutability on every ontology, verifying termination, synthesizing a plan that achieves
a goal, or synthesizing a service that fulfills a certain specification) are difficult in gen-
eral. This difficulty is shared with SitCalc-based and Golog/ConGolog-like high-level
programs. One of the most promising techniques to effectively tackle such tasks is to
rely on a suitable finite state abstraction (cf. [35]) of the ontology, and use such an
abstraction in the analysis and in the synthesis.
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1 Motivation

The design, maintenance, reuse, and integration of ontologies are complex tasks. Like
software engineers, ontology engineers need to be supported by tools and methodolo-
gies that help them to minimize the introduction of errors, i.e., to ensure that ontologies
are consistent and do not have unexpected consequences. In order to develop this sup-
port, important notions from software engineering, such asmodule, black-box behavior,
andcontrolled interaction, must be adapted.

Recently, there has been growing interest in the topic of modularity in ontology
engineering [10, 9, 8, 5, 3], motivated by the above mentioned application needs. This
paper extends our previous results[3]. We focus on the problem of “safe” reuse of on-
tologies and consider the scenario in which we are developing an ontologyP and want
to reuse a setS of symbols—that is, concept names, role names and individuals— from
a “foreign” ontologyQ without changing their meaning.

Suppose that an ontology engineer is building an ontology about research projects,
which specifies different types of projects according to the research topics they focus on.
For example, the conceptsGenetic Disorder Project and Cystic Fibrosis EUProject
describe projects about genetic disorders and European projects about cystic fibrosis
respectively, as given by the axioms P1 and P2 in Figure 1. The ontology engineer is an
expert on research projects; he knows, for example, that every instance ofEU Project
must be an instance ofProject (axiom P3) and that the rolehas Focus can be applied
only to instances ofProject (axiom P4). He may be unfamiliar, however, with most
of the topics the projects cover and, in particular, with the termsCystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In order to complete the projects ontology
with suitable definitions of these medical terms, he decides to reuse the knowledge
about these subjects from a well-established medical ontology.

Suppose thatCystic Fibrosis andGenetic Disorder are described in an ontologyQ
containing axioms M1-M4 in Figure 1. The most straightforward way to reuse these
concepts is to import inP the ontologyQ—that is, to add the axioms fromQ to the
axioms ofP and work with the extended ontologyP ∪Q. Importing additional axioms
into an ontology may result into new logical consequences. For example, axioms M1–
M4 inQ imply that every instance ofCystic Fibrosis is an instance ofGenetic Disorder:

Q |= α := (Cystic Fibrosis v Genetic Disorder) (1)

Indeed,α1 = (Cystic Fibrosis v Genetic Disorder) follows from axioms M1 and M2
as well as from M1 and M3;α follows from α1 and M4. Using inclusionα from
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Ontology of medical research projectsP :

P1 Genetic Disorder Project ≡ Project u ∃has Focus.Genetic Disorder

P2 Cystic Fibrosis EUProject ≡ EUProject u ∃has Focus.Cystic Fibrosis

P3 EUProject v Project

P4 ∃has Focus.> v Project

E1 Project u (Genetic Disorder u
::

Cystic Fibrosis) v ⊥
E2 ∀

:
has Focus.Cystic Fibrosis v ∃has Focus.Genetic Disorder

Ontology of medical termsQ:

M1Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

M2Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

M3Fibrosis u ∃located In.Pancreas v Genetic Fibrosis

M4Genetic Fibrosis v Genetic Disorder

Fig. 1: Reusing medical terminology in an ontology on research projects

(1) and axioms P1–P3 from ontologyP we can now prove that every instance of
Cystic Fibrosis EUProject must also be an instance ofGenetic Disorder Project:

P ∪Q |= β := (Cystic Fibrosis EUProject v Genetic Disorder Project) (2)

Note that, on the one hand,P 6|= β and, on the other hand, the ontology engineer might
be not aware of (2), even though it concerns the terms of primary scope inP.

It is to be expected that axioms likeα in (1) from an imported ontologyQ cause new
entailments likeβ in (2) over the terms defined in the main ontologyP. One would not
expect, however, that the meaning of the terms defined inQ changes as a consequence
of the import since these terms are supposed to be completely specified withinQ. Such
a side effect is highly undesirable for the modeling of ontologyP since the ontology
engineer ofP might not be an expert on the subject ofQ and is not supposed to alter
the meaning of the terms defined inQ, not even implicitly. The meaning of the reused
terms might change after the import due, for example, to modeling errors. In particular,
suppose the ontology engineer has learned about the conceptsGenetic Disorder and
Cystic Fibrosis from the ontologyQ (including the dependency (1)) and has decided to
introduce additional axioms formalizing the following statements:

“Every instance ofProject is different from every instance ofGenetic Disorder

::::
and every instance ofCystic Fibrosis.”(3)

“
:::::
Every

:::::::
project thathas Focus onCystic Fibrosis, alsohas Focus onGenetic Disorder”(4)

Note that the statements (3) and (4) add new information about projects and, intuitively,
they should not change or constrain the meaning of the medical terms.

Suppose the ontology engineer has formalized statements (3) and (4) inP using ax-
ioms E1 and E2 respectively. At this point, he has introduced modeling errors by trans-
lating the wordsandandeveryas conjunctionu and value restriction∀ respectively. As
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a consequence, axioms E1 and E2 do not correspond to (3) and (4): E1 actually formal-
izes the following statement:“Every instance ofProject is different from every common
instance ofGenetic Disorder andCystic Fibrosis” , and E2 expresses that“Every object
that has Focus only on Cystic Fibrosis if at all, alsohas Focus on Genetic Disorder” .
This kind of modeling errors are difficult to detect, especially when they do not lead to
inconsistencies in the original ontology.

Note that, although axiom E1 does not correspond to fact (3), it is still a consequence
of (3) and hence it should not constrain the meaning of the medical terms. In contrast, E2
is not a consequence of (4) and, in fact, it does constrain the meaning of these medical
terms. Indeed, axioms E1 and E2 together with axioms P1-P4 fromP imply new axioms
about the conceptsCystic Fibrosis andGenetic Disorder, namely their disjointness:

P |= γ := (Genetic Disorder u Cystic Fibrosis v ⊥) (5)

The entailment (5) can be proved using axiom E2 which is equivalent to:

> v ∃has Focus.(Genetic Disorder t ¬Cystic Fibrosis) (6)

The inclusion (6) and P4 imply that every element in the domain must be a project—
that is,P |= (> v Project). Now, together with axiom E1, this implies (5). The
axioms E1 and E2 not only imply new statements about the medical terms, but also
cause inconsistencies when used together with the imported axioms fromQ. Indeed,
from (1) and (5) we obtainP ∪ Q |= δ := (Cystic Fibrosis v ⊥) which expresses the
inconsistency of the conceptCystic Fibrosis.

To summarize, we have seen that importing an external ontology can lead to unde-
sirable side effects in our knowledge reuse scenario, like the entailment of new axioms
or even inconsistencies over the reused vocabulary.

The contributions of this paper are as follows. First, we formalize some reasoning
services that are relevant for ontology reuse. In particular, we propose the notion of safe
reuse of a signature in an ontology. Second, we show that the problem of checking safety
is undecidable inALCO. This result leaves us with two alternatives: we can either
focus on simple DLs for which this problem is decidable, or we may look for sufficient
conditions for safety—that is, an incomplete solution. We define in general terms the
notion of a sufficient condition for safety— asafety class— and define a family of safety
classes—called locality— with some compelling properties. We have implemented a
safety checking algorithm and obtained empirical evidence of its usefulness in practice.

This paper comes with an extended version available online [4]; we refer the reader
to the extended version for further technical details.

2 Conservative Extensions and Safety

As argued in the previous section, an important requirement for the reuse of an ontol-
ogyQ within an ontologyP should be thatP ∪ Q produces exactly the same logical
consequences over the vocabulary ofQ asQ alone does. This requirement can be nat-
urally formulated using the well-known notion of a conservative extension, which has
recently been investigated in the context of ontologies [7, 8].
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Definition 1 (Conservative Extension).Let L be a description logic and letO1 ⊆
O be two ontologies, andS a signature overL. We say thatO is an S-conservative
extensionofO1 w.r.t.L, if for every axiomα overL with Sig(α) ⊆ S, we haveO |= α
iff O1 |= α. We say thatO is a conservative extensionof O1 w.r.t. L if O is an S-
conservative extension ofO1 w.r.t.L for S = Sig(O1).

Definition 1 implies that, in order to show thatP ∪Q is not aS-conservative extension
of Q it suffices to find an axiomα overS that is implied byP ∪Q but not byQ alone.
In our example, the ontologyP ∪ Q is not a conservative extension ofQ w.r.t. S =
{Cystic Fibrosis,Genetic Disorder} sinceP ∪ Q impliesα1 = (Cystic Fibrosis v ⊥)
andα2 = (Genetic Disorder v ⊥) overS, butQ does not.

Definition 1 applies to fixedP,Q. In realistic scenarios, however, the reused ontol-
ogyQ mayevolvebeyond the control of the designers ofP, which may not be autho-
rized to modifyQ, or may decide at a later time to reuse the symbolsCystic Fibrosis
andGenetic Disorder from a medical ontology other thanQ. Therefore, for application
scenarios in which the external ontologyQ may change, it is reasonable to “abstract”
from the particularQ under consideration. In other words, the fact that the axioms in
P do not change the meaning of the external symbols inS should beindependentfrom
the particular meaning of these symbols. This idea can be made precise as follows:

Definition 2 (Safety for a Signature).LetL be an ontology language, and letO be
an ontology andS a signature overL. We say thatO is safe forS w.r.t.L, if for every
ontologyO′ overL with Sig(O)∩ Sig(O′) ⊆ S, we have thatO∪O′ is a conservative
extension ofO′ w.r.t.L.

Definition 2 captures the intuition in our example: the axioms inP should not yield new
consequences over the signatureS and the signatureSig(Q) of the reused ontologyQ,
independently of the particularQ under consideration. In our example, the ontology
O = {E2} is not safe w.r.t.S = {Cystic Fibrosis,Genetic Disorder} andL = ALC.
Indeed, takeQ1 = { > v Cystic Fibrosis; Genetic Disorder v ⊥}. Then,Q1 ∪ O is
inconsistent whereasQ1 is consistent. Consequently,Q1 ∪ O is not aS-conservative
extension ofQ1 w.r.t.L = ALC, and thereforeO = {E2} is not safe forS andL.

Proving that an ontology is safe is more involved than proving that it is not. One way
to prove thatO is S-safe is the following: if we can take an arbitrary interpretation for
the symbols inS and extend it to a model ofO by interpreting the additional symbols
in Sig(O), thenO must beS-safe. This property can be formalized as follows:

Definition 3. Two interpretationsI1 = (∆I1 , ·I1) andI2 = (∆I2 , ·I2) coincide on a
signatureS (notation:I1|S = I2|S) if ∆I1 = ∆I2 andXI1 = XI2 for everyX ∈ S.

Lemma 1. LetO be aSHOIQ ontology andS a signature such that for every inter-
pretationI there exists a modelJ of O such thatJ |S = I|S. ThenO is safe forS
w.r.t.L = SHOIQ.

We can now prove that the ontologyP1 consisting of axioms P1-P4 is safe forS =
{Cystic Fibrosis,Genetic Disorder}. Take an arbitrary interpretationI of S and con-
struct an interpretationJ to be identical toI except for the interpretations of the atomic
conceptsGenetic Disorder Project, Cystic Fibrosis EUProject, Project, EUProject and
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the atomic rolehas Focus, all of which we interpret inJ as the empty set. All the ax-
ioms P1–P4, E2 are satisfied inJ and henceJ |= P1.

Using Lemma 1, we are now ready to show the main result in this section:

Theorem 1 (Undecidability for Safety of Ontologies).Given anALC-ontologyO
and a signatureS it is undecidable whetherO is S-safe w.r.t.L = ALCO.

Proof. The proof is based on a reduction to a domino tiling problem. A domino system
is a tripleD = (T,H, V ) whereT = {1, . . . , k} is a finite set oftilesandH,V ⊆ T×T
arehorizontalandvertical matching relations. A solutionfor a domino systemD is a
mappingti,j that assigns to every pair of integersi, j ≥ 1 an element ofT , such that
〈ti,j , ti,j+1〉 ∈ V and〈ti,j , ti+1,j〉 ∈ H. A periodic solutionfor a domino systemD
is a solutionti,j for which there exist integersm ≥ 1 , n ≥ 1 calledperiodssuch that
ti+m,j = ti,j andti,j+n = ti,j for everyi, j ≥ 1.

LetD be the set of all domino systems,Ds be the subset ofD that admit a solution
andDps be the subset ofDs that admit a periodic solution. It is well-known [1, Theorem
3.1.7] that the setsD \ Ds andDps are recursively inseparable, that is, there is no
recursive (i.e. decidable) subsetD′ ⊆ D of domino systems such thatDps ⊆ D′ ⊆
Ds. For every domino systemD, we construct a signatureS = S(D), an ontology
O = O(D) which consists of a singleALC-axiom such that:(a) if D does not have a
solution thenO = O(D) is safe forS = S(D) w.r.t.L = ALCO, and(b) if D has a
periodic solution thenO = O(D) is not safe forS = S(D) w.r.t.L = ALCO.

In other words, for the setD′ consisting of the domino systemsD such thatO =
O(D) is not safe forS = S(D) w.r.t. L = ALCO, we haveDps ⊆ D′ ⊆ Ds. Since
D\Ds andDps are recursively inseparable, this implies undecidability forD′ and hence
for the problem of checking ifO is anS-safe w.r.t.L = ALCO, because otherwise one
can use this problem for deciding membership inD′.

GivenD = (T,H, V ), let S consist of fresh atomic conceptsAi for everyi ∈ T
and atomic rolesrH andrV . Consider an ontologyOtile in Figure 2 constructed forD.
Note thatSig(Otile) = S. The axioms ofOtile express the tiling conditions for a domino

(q1) > v A1 t · · · tAk whereT = {1, . . . , k}
(q2) Ai uAj v ⊥ 1 ≤ i < j ≤ k
(q3) Ai v ∃rH .(

F
〈i,j〉∈H Aj ) 1 ≤ i ≤ k

(q4) Ai v ∃rV .(
F
〈i,j〉∈V Aj ) 1 ≤ i ≤ k

Fig. 2: An ontologyOtile = Otile(D) expressing tiling conditions for a domino systemD

systemD, namely(q1) and(q2) express that every domain element is assigned with a
unique tilet ∈ T ; (q3) and(q4) express that every domain element has horizontal and
vertical matching successors. Now lets be an atomic role andB an atomic concept with
s,B /∈ S. LetO := {β} where:

β := > v ∃s.
[ ⊔

(CivDi)∈Otile
(Ci u ¬Di) t (∃rH .∃rV .B u ∃rV .∃rH .¬B)

]
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We say thatrH andrV commute in an interpretationI = (∆I , ·I) if for every
domain elementsa, b, c, d1 andd2 from∆I with 〈a, b〉 ∈ rHI , 〈b, d1〉 ∈ rV I , 〈a, c〉 ∈
rV
I , and〈c, d2〉 ∈ rHI , we haved1 = d2. The following claims can be easily proved:

Claim 1. If Otile(D) has a modelI in whichrH andrV commute, thenD has a solution.

Claim 2. If I is a model ofO = {β}, then eitherI 6|= Otile or rH andrV do not
commute inI.

To prove Property (a), we use Lemma 1 and demonstrate that ifD has no solution then
for every interpretationI there exists a model ofJ of O such thatJ |S = I|S, which
implies thatO is safe forS w.r.t. L. Let I be an arbitrary interpretation. SinceD has
no solution, then by the contra-position of Claim 1 either (1)I is not a model ofOtile,
or (2) rH andrV do not commute inI. We demonstrate for both of these cases how to
construct the required modelJ of O such thatJ |S = I|S.

Case (1). IfI = (∆I , ·I) is not a model ofOtile then there exists an axiom(Ci v
Di) ∈ Otile such thatI 6|= (Ci v Di). That is, there exists a domain elementa ∈ ∆I
such thata ∈ CIi but a 6∈ DIi . Let us defineJ to be identical toI except for the
interpretation of the atomic roles which we define inJ assJ = {〈x, a〉 | x ∈ ∆}.
Since the interpretations of the symbols inS has remained unchanged, we havea ∈ CJi ,
a ∈ ¬DJi , and soJ |= (> v ∃s.[Ci u ¬Dj ]). This implies thatJ |= β, and so, we
have constructed a modelJ of O such thatJ |S = I|S.

Case (2). Suppose thatrH andrV do not commute inI = (∆I , ·I). This means that
there exist domain elementsa, b, c, d1 andd2 from ∆I with 〈a, b〉 ∈ rHI , 〈b, d1〉 ∈
rV
I , 〈a, c〉 ∈ rV

I , and 〈c, d2〉 ∈ rH
I , such thatd1 6= d2. Let us defineJ to be

identical toI except for the interpretation of the atomic roles and the atomic concept
B. We interprets in J assJ = {〈x, a〉 | x ∈ ∆}. We interpretB in J asBJ = {d1}.
Note thata ∈ (∃rH .∃rV .B)J anda ∈ (∃rV .∃rH .¬B)J sinced1 6= d2. So, we have
J |= (> v ∃s.[∃rH .∃rV .B u ∃rV .∃rH .¬B]) which implies thatJ |= β, and thus, we
have constructed a modelJ of O such thatJ |S = I|S.

To prove Property (b), assume thatD has a periodic solutionti,j with the periods
m,n ≥ 1. We show thatO is notS-safe w.r.t.L. We build anALCO-ontologyO′ with
Sig(O) ∩ Sig(O′) ⊆ S such thatO ∪ O′ |= (> v ⊥), butO′ 6|= (> v ⊥). This
will imply that O is not safe forO′ w.r.t. L = ALCO, and hence, is not safe forS
w.r.t.L = ALCO. We defineO′ such that every model ofO′ is a finite encoding of the
periodic solutionti,j . For every pair(i, j) with 1 ≤ i ≤ m and1 ≤ j ≤ n, introduce a
fresh individualai,j and takeO′ the extension ofOtile with the following axioms:

(p1) {ai1,j} v ∃rV .{ai2,j} (p2) {ai1,j} v ∀rV .{ai2,j}, i2 = i1 + 1 mod m

(p3) {ai,j1} v ∃rH .{ai,j2} (p4) {ai,j1} v ∀rH .{ai,j2}, j2 = j1 + 1 mod n

(p5) > v
⊔

1≤i≤m, 1≤j≤n {ai,j}
Axioms(p1)–(p5) ensure thatrH andrV commute in every model ofO′. IndeedO′ has
a model corresponding to every periodic solution forD with periodsm andn. Hence
O′ 6|= (> v ⊥). Also, since every model ofO′ is a model ofOtile in which rH andrV
commute, by Claim 2,O′ ∪ O is unsatisfiable, soO′ ∪ O |= (> v ⊥).

ut
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3 Safety Classes

Theorem 1 leaves us with two alternatives: first, we can focus simple DLs for which
this problem is decidable; second, we may look for sufficient conditions for the notion
of safety—that is, if an ontology satisfies our conditions then we can guarantee that it
is safe, but not necessarily vice versa. In this paper, we will explore the latter approach.

In general, any sufficient condition for safety can be represented by defining, for
every signatureS, the set of ontologies over a language that satisfy the condition for
that signature. These ontologies should be guaranteed to be safe.

Definition 4 (Class of Ontologies, Safety Class).A class of ontologies for a DLL
and a signatureS is a functionO(·) that assigns to every subsetS′ of S a setO(S′) of
ontologies inL; it is anti-monotonicif for everyS1 ⊆ S2, we haveO(S2) ⊆ O(S1);
it is subset-closedif for everyS andO1 ⊆ O we have thatO ∈ O(S) impliesO1 ∈
O(S); it is union-closedif O1 ∈ O(S) andO2 ∈ O(S) implies(O1 ∪O2) ∈ O(S) for
everyS. A safety classfor L is a class of ontologiesO(·) for L such that, for everyS,
every ontology inO(S) is safe forS.

Safety classes may admit many natural properties, as given in Definition 4.Anti-
monotonicityintuitively means that if an ontologyO can be proved to be safe w.r.t.S
using the sufficient condition, thenO can be proved to be safe w.r.t. every subset ofS.
Similarly, subset-closuremeans that under the same assumption, every subset ofO can
also be proved to be safe using the same sufficient condition. If a safety class isunion-
closedand two ontologiesO1 andO2 can be proved safe using that sufficient test, then
their unionO1 ∪ O2 can also be proved safe using the same test.

3.1 Locality

In this section we introduce a particular family of safety classes forL = SHOIQ, that
we call locality classes. In Section 2, we have seen that, according to Lemma 1, one
way to prove thatO is S-safe is to show that everyS-interpretation can be extended to
a model ofO. Local ontologies are those for which safety can be used using Lemma 1.

Definition 5 (Locality). Given aSHOIQ signatureS, we say that a set of interpreta-
tionsI is local w.r.t.S if for everySHOIQ-interpretationI there exists an interpreta-
tion J ∈ I such thatI|S = J |S. A class of interpretationsis a functionI(·) that given
a SHOIQ signatureS returns a set of interpretationsI(S); it is local if I(S) is local
w.r.t. S for everyS; it is monotonicif S1 ⊆ S2 impliesI(S1) ⊆ I(S2).

An axiomα (an ontologyO) is valid in I if every interpretationI ∈ I is a model of
α (respectivelyO). Given a class of interpretationsI(·), O(·) is the class of ontologies
O(·) based onI(·) if for everyS, O(S) is the set of ontologies that are valid inI(S);
if I(·) is local then we say thatO(·) is a class of local ontologies, and for everyS and
O ∈ O(S) and everyα ∈ O, we say thatO, respectivelyα is local (based onI(·)).
Example 1.Let Ir←∅A←∅(·) be a class ofSHOIQ interpretations defined as follows. Given
a signatureS, the setIr←∅A←∅(S) consist of interpretationsJ such thatrJ = ∅ for every
atomic roler /∈ S andAJ = ∅ for every atomic conceptA /∈ S. It is easy to show that
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Ir←∅A←∅(S) is local for everyS, since for every interpretationI = (∆I , ·I) and the inter-
pretationJ = (∆J , ·J ) defined by∆J := ∆I , rJ = ∅ for r /∈ S,AJ = ∅ for A /∈ S,
andXJ := XI for the remaining symbolsX, we haveJ ∈ Ir←∅A←∅(S) andI|S = J |S.
SinceIr←∅A←∅(S1) ⊆ Ir←∅A←∅(S2) for everyS1 ⊆ S2, we have thatIr←∅A←∅(·) is monotonic;
Ir←∅A←∅(·) is also compact, since for everyS1 andS2 the sets of interpretationsIr←∅A←∅(S1)
andIr←∅A←∅(S2) are defined differently only for elements inS1 M S2.

Given a signatureS, the setAxr←∅A←∅(S) of axioms that are local w.r.t.S based on
Ir←∅A←∅(S) consists of all axiomsα such for everyJ ∈ Ir←∅A←∅(S), we have thatJ |= α.
Then the class of local ontologies based onIr←∅A←∅(·) could be defined byO ∈ Or←∅

A←∅(S)
iff O ⊆ Axr←∅A←∅(S).

Proposition 1 (Locality Implies Safety). LetO(·) be a class of ontologies based on a
local class of interpretationsI(·). ThenO(·) is a subset-closed and union-closed safety
class forL = SHOIQ. If additionallyI(·) is monotonic, thenO(·) is anti-monotonic.

Proposition 1 and Example 1 suggest a particular way for proving safety of ontolo-
gies. Given anSHOIQ ontologyO and a signatureS it is sufficient to check if every
axiomα in O is satisfied by every interpretation fromIr←∅A←∅(S); that is, givenα andS,
it suffices to interpret every atomic concept and atomic role not inS as the empty set
and then check ifα is satisfied in all interpretations of the remaining symbols. Note that
for definingOr←∅

A←∅(S), we do not fix the interpretation of the individuals outsideS, but
in principle, we could do that. The reason is that there is no elegant way how to describe
such interpretations. Namely, every individual needs to be interpreted as an element of
the domain, and there is no “canonical” element of every domain to choose, as opposed
to the “canonical” subsets of (pairs of) the domain elements, which can be taken, say
as the empty set or the set of all (pairs of) the domain elements. These observations
suggest the following test for locality:

Proposition 2 (Testing Locality). Given aSHOIQ-signatureS, conceptC, axiomα
and ontologyO let τ(C,S), τ(α,S) andτ(O,S) be defined recursively as follows:

τ(C,S) ::= τ(A,S) = ⊥ if A /∈ S and otherwise= A; (a)
| τ(C1 u C2,S) = τ(C1,S) u τ(C2,S); (b)
| τ(¬C1,S) = ¬τ(C1,S); (c)
| τ(∃R.C1,S) = ⊥ if Sig(R) * S and otherwise= ∃R.τ(C1,S); (d)
| τ(>nR.C1,S) = ⊥ if Sig(R) * S and otherwise= (>nR.τ(C1,S)). (e)

τ(α,S) ::= τ(C1 v C2,S) = (τ(C1,S) v τ(C2,S)); (g)
| τ(R1 v R2,S) = (⊥ v ⊥) if Sig(R1) * S, otherwise

= ∃R1.> v ⊥ if Sig(R2) * S, otherwise= (R1 v R2); (h)
| τ(a :C,S) = a : τ(C,S); (i)
| τ(r(a, b),S) = > v ⊥ if r /∈ S and otherwise= r(a, b); (j)
| τ(Trans(r),S) = ⊥ v ⊥ if r /∈ S and otherwise= Trans(r); (k)
| τ(Funct(R),S) = ⊥ v ⊥ if Sig(R) * S and otherwise= Funct(R). (l)

τ(O,S) ::=
⋃
α∈O τ(α,S) (m)

Then,O ∈ Or←∅
A←∅(S) iff every axiom inτ(O,S) is a tautology.
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Example 2.LetO = {α} consists of axiomα = M2 from Figure 1. We demonstrate
using Proposition 2 thatO is local w.r.t.S = {Fibrosis, Genetic Origin}. According
to Proposition 2, in order to check ifO is local w.r.t.S1 it is sufficient to perform the
following replacements inα (the symbols fromS are underlined):

M2

⊥ [by (a)]︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u

⊥ [by (d)]︷ ︸︸ ︷
∃has Origin.Genetic Origin (7)

We obtainτ(M2,S) = (⊥ ≡ Fibrosis u⊥) which is aSHOIQ-tautology. HenceO is
local w.r.t.S and hence by Lemma 1 isS-safe w.r.t.SHOIQ.

By Proposition 2, one can use available DL-reasoners for testing locality. If this is
too costly, one can still formulate a tractable approximation of locality:

Definition 6 (Syntactic Locality for SHOIQ). Let S be a signature. The following
grammar recursively defines two sets of conceptsCon∅(S) andCon∆(S) for S:

Con∅(S) ::= A∅ | ¬C∆ | C u C∅ | ∃R∅.C | ∃R.C∅ | (>nR∅.C) | (>nR.C∅) .
Con∆(S) ::= ¬C∅ | C∆1 u C∆2 .

whereA∅ /∈ S is an atomic concept,R is a role, andC is a concept,C∅ ∈ Con∅(S),
C∆(i) ∈ Con∆(S), i = 1, 2, andR∅ is (possibly inverse of) an atomic roler∅ /∈ S. An

axiomα is syntactically local w.r.t.S if it is of one of the following forms:(1) R∅ v R,
or (2) Trans(R∅), or (3) Funct(R∅), or (4) C∅ v C, or (5) C v C∆, or (6) a :C∆. A
SHOIQ-ontologyO is syntactically local w.r.t.S if everyα ∈ O is syntactically local.

It is easy to see from the inductive definitions ofCon∅(S) andCon∆(S) in Definition 6
that for every interpretationI = (∆I , ·I) from Ir←∅A←∅(S) we have that(R∅)I = ∅,
(C∅)I = ∅ and(C∆)I = ∆I , C∅ ∈ Con∅(S) andC∆ ∈ Con∆(S). Hence, every
syntactically local axiom is satisfied in every interpretationI from Ir←∅A←∅(S), and so
is also semantically local. Furthermore, it can even be shown that the safety class for
SHOIQ based on syntactic locality enjoys all of the properties from Definition 4—that
is, it is anti-monotone, subset-closed and union-closed.

Example 3(Example 2 continued).Axiom M2 from Figure 1 is syntactically local w.r.t.
S1 = {Fibrosis, Genetic Origin}:

M2

∈ Con∅(S1)[matchesA∅]︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u

∈ Con∅(S1)[matches∃R∅.C]︷ ︸︸ ︷
∃has Origin.Genetic Origin︸ ︷︷ ︸
∈ Con∅(S1)[matchesC u C∅]

(8)

It is easy to show that syntactic locality can be checked in polynomial time with respect
to the size of the input ontology and input signature.

Note that semantic locality does not imply syntactic locality. For example, the axiom
α = (A v AtB) is local w.r.t. everyS since it is a tautology, but it is not syntactically
local w.r.t.S = {A, B} since it involves symbols inS only.
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Ir←∗
A←∗(S) r,A 6∈ S : rJ AJ

Ir←∅
A←∅(S) ∅ ∅
Ir←∆×∆
A←∅ (S) ∆J ×∆J ∅
Ir←id
A←∅ (S) {〈x, x〉 | x ∈ ∆J } ∅

Ir←∗
A←∗(S) r,A 6∈ S : rJ AJ

Ir←∅
A←∆(S) ∅ ∆J

Ir←∆×∆
A←∆ (S) ∆J ×∆J ∆J

Ir←id
A←∆ (S) {〈x, x〉 | x ∈ ∆J } ∆J

α Axiom ?α ∈ Ax r←∅
A←∅

r←∆×∆
A←∅

r←id
A←∅

r←∅
A←∆

r←∆×∆
A←∆

r←id
A←∆

P4∃has Focus.> v Project ✓ ✗ ✗ ✓ ✓ ✓

P5
BioMedical Project ≡ Projectu
u ∃has Focus.Bio Medicine

✓ ✓ ✓ ✗ ✗ ✗

P6Project u Bio Medicine v ⊥ ✓ ✓ ✓ ✗ ✗ ✗

P7Funct(has Focus) ✓ ✗ ✓ ✓ ✗ ✓

P8HumanGenome:Project ✗ ✗ ✗ ✓ ✓ ✓

P9has Focus(HumanGenome,Gene) ✗ ✓ ✗ ✗ ✓ ✗

E2
∀has focus.Cystic Fibrosis v
v ∃has Focus.Cystic Fibrosis

✗ ✗ ✗ ✗ ✗ ✗

Table 1: Examples for and Comparison Between Different Local Classes of Interpretations

The locality condition in Example 1 is just a particular example of a locality class.
Other classes of local interpretations can be constructed in a similar way, by fixing the
interpretations of the symbols not inS to different values. In Table 1 we provide several
such classes of local interpretations by fixing the interpretation of atomic roles outside
S to either the empty set∅, the universal relation∆×∆, or the identity relationid on
∆, and the interpretation of atomic concepts outsideS to either the empty set∅ or the
set∆ of all domain elements. Each class of local interpretations in Table 1 defines a
corresponding class of local ontologies. In Table 1 we have listed all of these classes
together with examples of typical types of axioms used in ontologies. Table 1 shows
that different types of locality conditions are appropriate for different types of axioms.
Note that E2 is not local for any of our locality conditions, since E2 is not safe forS.

One could design algorithms for testing locality for the classes of interpretations
in Table 1 similar to the one presented in Proposition 2. E.g., locality for the class
Ir←∅A←∆(S) can be tested as in Proposition 2, where the case(a) of the definition for
τ(C,S) is replaced with: “τ(A,S) = > if A /∈ S and otherwise= A”. For the remain-
ing classes of interpretations, that is forIr←∆×∆A←∗ (S) andIr←id

A←∗ (S), checking locality is
not straightforward, since it is not clear how to eliminate the universal roles and identity
roles from the axioms and preserve validity in the respective classes of interpretations.
Still, it is easy to design tractable syntactic approximations for all these locality condi-
tions by modifying Definition 6 accordingly. In Figure 3 we give recursive definitions
for syntactically local axiomsÃxr←∗A←∗(S) that correspond to the classes of interpreta-
tionsIr←∗A←∗(S) from Table 1, where some cases in the recursive definitions are present
only for the indicated classes of interpretations.

In order to check safety in practice, one may try to apply different sufficient tests
and check if any of them succeeds. For such a purpose, one could combine two dif-
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Con∅(S) ::= (¬C∆) | (C u C∅)
| (∃R.C∅) | (>nR.C∅)

Ir←∗
A←∅(·) : | A∅
Ir←∅
A←∗(·) : | (∃R∅.C) | (>nR∅.C)

Ir←id
A←∗ (·) : | (>mRid.C), m ≥ 2 .

Con∆(S) ::= (¬C∅) | (C∆
1 u C∆

2 )

Ir←∗
A←∆(·) : | A∆

Ir←∆×∆
A←∗ (·) : | (∃R∆×∆.C∆) | (>nR∆×∆.C∆)

Ir←id
A←∗ (·) : | (∃Rid.C∆) | (> 1Rid.C∆) .

Ãxr←∗
A←∗(S) ::= C∅ v C | C v C∆ | a :C∆

Ir←∅
A←∗(·) : | R∅ v R | Trans(r∅) | Funct(R∅)

Ir←∆×∆
A←∗ (·) : | R v R∆×∆ | Trans(r∆×∆) | r∆×∆(a, b)

Ir←id
A←∗ (·) : | Trans(rid) | Funct(Rid)

Where:

A∅, A∆, r∅, r∆×∆, rid 6∈ S;
R∅, R∆×∆, Rid 6∈ RolS;
C∅ ∈ Con∅(S), C∆

(i) ∈ Con∆(S);
C is any concept,R is any role

Fig. 3: Syntactic Approximations to the Locality Classes

ferent safety classes and obtain a more powerful one by checking whether an ontology
satisfies either the first or the second condition. The combination can be achieved by
forming a union of safety classes: given two safety classesO1(·) andO2(·), their union
(O1∪O2)(·) defined by(O1∪O2)(S) = O1(S)∪O2(S), also gives a safety class. It
is easy to demonstrate that if both safety classesO1(·) andO2(·) are anti-monotonic or
subset-closed then their union is also anti-monotonic or subset-closed. Unfortunately
the union-closure property for safety classes is not preserved under union of safety
classes. For example, the union(Or←∅

A←∅ ∪ Or←∆×∆
A←∆ )(·) of the classesOr←∅

A←∅(·) and
Or←∆×∆
A←∆ (·) is not union-closed since it captures, for example, the ontologyO1 con-

sisting of axioms P4–P7 from Table 1, which satisfies the fist locality condition, the
ontologyO2 consisting of axioms P8–P9 satisfies the second locality condition, but
their unionO1 ∪ O2 is not even safe forS.

It can be shown that the classesOr←∅
A←∅(·) and Or←∅

A←∆(·) of local ontologies are
maximal union-closed safety classes forSHIQ—that is, there is no union-closed class
that strictly extends them.

We have verified empirically that syntactic locality provides a powerful sufficient
test for safety which works for many real-world ontologies. We have implemented a
(syntactic) locality checker and run it over ontologies from a library of 300 ontologies
of various sizes and complexity some of which import each other [6].1For all ontologies
P that import an ontologyQ, we check syntactic locality ofP for S = Sig(P)∩Sig(Q).

It turned out that from 96 ontologies that import other ontologies, all but 11 are
syntactically local w.r.t. the given interface signature. From the 11 non local ontologies,
7 are written in the OWL-Full species of OWL to which our framework does not yet
apply. The remaining 4 non-localities are due to the presence of so-calledmapping
axiomsof the formA ≡ B′, whereA /∈ S andB′ ∈ S. Note that these axioms simply
indicate that the concept namesA,B′ in the two ontologies under consideration are
synonyms. Indeed, we were able to easily fix these non-localities as follows: we replace
every occurrence ofA in P with B′ and then remove this axiom from the ontology.
After this transformation, all 4 non-local ontologies turned out to be local.

1 The library is available athttp://www.cs.man.ac.uk/ ∼horrocks/testing/
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4 Outlook

This paper extends the framework for modular reuse of ontologies presented in [3]. We
have formalized the notion of safe reuse of ontologies. We have shown that checking
safety of an ontology w.r.t. a signature is undecidable forALCO. We have provided
a general notion of a sufficient condition for checking safety—a safety class—and ex-
amples of safety classes based on semantic and syntactic restrictions. The former can
be checked using a reasoner and the latter can be checked syntactically in polynomial
time. It turns out that these sufficient conditions for safety work surprisingly well for
many real-world ontologies. In a recent paper [2], we have also demonstrated how to
use safety classes for extracting modules from ontologies.
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1 Introduction

It is well known that a correspondence theory for description logics (DLs), propo-
sitional modal logics (MLs) and propositional dynamic logics (PDLs) was given
in [Sch91] and that an axiomatic system for a description logic with inverse roles
was presented in the same paper. Schild’s paper covers what is to be discussed
in this paper although his paper did not mention nominals1 as well as expressive
roles explicitly. On the other hand, reductions to eliminate converse programs
(inverse roles in DLs) are known even for full PDL (ALCIreg); the original re-
duction from converse PDL to PDL was in [Gia96]. Moreover, a direct tableaux
method for converse PDL and further discussions on the elimination of converse
programs were given in [GM00]. Besides graded modalities, it was pointed out in
[Gia96] that the previous reduction technique is also applicable to nominals.

This paper shares some viewpoints well made in [Gia96]. The proposed
mapping process here is based on the simple idea to capture possible back-
propagation caused by the use of inverse roles2. This process consists of three
steps, tagging, recording, polarisation, which are introduced below. Concept ex-
pressions/formulae are assumed to be in negation norm form (NNF). For sim-
plicity, existential restrictions and universal restrictions are called modal con-
straints somewhere. We refer to [BCM+03] for usual background knowledge on
description logics (DLs).

2 Concept Satisfiability with General Concept Inclusions

Concept expressions/formulae are in NNF. For simplicity, we consider a GCI
(general concept inclusion) of the form > v C, where C is in NNF. The following
shows how to use three simple steps (tagging, recording and polarisation) to
convert a concept formula (in NNF) of a source logic with inverse roles to a
target logic without inverse roles. Terminological knowledge bases with general
concept inclusions (GCIs) are also considered.

1 Such viewpoint can be found in the early literature on hybrid logics, which are logics
extending the propositional modal logic with nominals (a.k.a. named states).

2 The proposed mapping technique also relies on the model properties of the descrip-
tion logics concerned in the paper.
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Definition 1. (Tagging-1) The tagging technique introduces new concept names
for modal constraints of concept expressions and axioms. The function tag(.) on
a concept formula x is defined as:
(1) if x is C uD, then tag(x) = tag(C) u tag(D);
(2) if x is C tD, then tag(x) = tag(C) t tag(D);
(3) if x is ∃R.C, then tag(x) = ∃R.(tag(C));
(4) if x is ∀R.C, then tag(x) = Q(x)⊕ ∀R.(tag(C));
(5) if x is > v C, then tag(x) = > v tag(C);
(6) otherwise tag(x) = x.
where Q(x) is a fresh name unique for each x; C,D are subformulae; the symbol
⊕ represents the conjunction operator in exactly the same way as u.

U(R) denotes tagged universal constraints of the form Q(x)⊕ ∀R.(tag(C)),
where R is a role and U are sets indexed by roles. E0/E1 denotes the formulae
before and after tagging; K0/K1 denotes the GCI before and after tagging. Let
∀R.C be a subformula before tagging, we have after tagging:
(?) for x = ∀R.C, there is Q(x)⊕ ∀R.tag(C) ∈ U(R);

Definition 2. (Recording-1) Initialize Ka = ∅. For each set U(R) indexed by
each role R, and for each element (Q(x) ⊕ ∀R.(tag(C))) ∈ U(R), perform the
operation: Ka = Ka ∪ {> v tag(C) t ∀R−.¬Q(x)}.
Definition 3. (Polarisation-1) Pol(x) is performed on the tagged input for-
mula E1 to get a polarized E2, and on K1 ∪ Ka to get the polarized K2:
(1) if x is C uD, then Pol(x) = Pol(C) u Pol(D);
(2) if x is C tD, then Pol(x) = Pol(C) t Pol(D);
(3) if x is ∃R.C, then Pol(x) = ∃Ra.Pol(C);
(4) if x is ∀R.C, then Pol(x) = ∀Ra.Pol(C);
(5) if x is ∃R−.C, then Pol(x) = ∃Rb.Pol(C);
(6) if x is ∀R−.C, then Pol(x) = ∀Rb.Pol(C);
(7) if x is > v C, then Pol(x) = > v Pol(C);
(8) otherwise, Pol(x) = x.
where Ra (Rb) is a fresh role name unique for R (R−).

3 Concept Satisfiability/Abox Consistency with Tbox

The Tbox (a.k.a. terminological box) is a set of unfoldable axioms. The notion
of Tbox is related some fundamental notions such as name unfolding and GCI
absorption [BCM+03]. By descriptive semantics, equality axioms like A ≡ C are
expressed in two inclusion axioms A v C and ¬A v ¬C. The right-hand-sides
of the axioms are in NNF. An acyclic Tbox of only such inclusion axioms is called
simplified [Lut99]. In the following, we show how to use the three simple steps
(i.e., tagging, recording, polarisation) for Tboxes.

Definition 4. (Acyclic Ordering) The ordering relation3 is as following:
3 Due to acyclicity, ord(A) � ord(A) is not induced.
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(1) for each axiom A v C, there is ord(A) � ord(C);
(2) ord(C uD) � ord(C) and ord(C uD) � ord(D);
(3) ord(C tD) � ord(C) and ord(C tD) � ord(D);
(4) ord(∃R.C) � ord(C);
(5) ord(∀R.C) � ord(C);

An Abox consists of concept assertions and role assertions. If an Abox has
several unconnected components, each of them can be treated alike separately.
We assume one individual has at most one label because d : C and d : D can
be replaced by d : C uD. W.l.o.g. we consider a single-component Abox A0 and
each individual has at most one label. We denote the label for di as L(di).

Definition 5. (Tagging-2) The function tag(x) is:
(1) if x is A v C, then tag(x) = A v tag(C);
(2) if x is ∃R.C, then tag(x) = P (x)⊕ ∃R.(tag(C));
(3) if x is individual di with L(di), then tag(x) = di : P (x)⊕ tag(L(di));
(4) if x is an individual di of no label, then tag(x) = di : P (x);
(5) otherwise, call Tagging-1 for x.
where P (x) is a unique name for each x, and the sign ⊕ stands for u.

The original Abox/Tbox are denoted as A0/T0, their tagged counterparts
are denoted as A1/T1. Notice we do not tag any role assertions. We also write
P (di) instead of P (x) if the tag is for an individual di. The set of tags for all
individuals of the Abox is D = {P (di)|di ∈ A0}. Let C denote any (sub)formula:
(?) for x = ∃R.C, there is P (x)⊕ ∃R.tag(C) ∈ E(R);
(?) for y = ∀R.C, there is P (y)⊕ ∀R.tag(C) ∈ U(R);
(?) for z = di, there is P (di) ∈ D;

We additionally stipulates ord(P (di)) � ord(tag(L(dj))) for any individual
di and dj . This forces P (di) to get a higher order than tag(L(dj)) (and higher
than subformulae of tag(L(dj)) but does not introduce cycles4.

Definition 6. (Recording-2) For two tuples β ∈ U(∗) and α ∈ (E(∗) ⋃U(∗) ⋃D)
where ∗ denotes any role name, if the following conditions are met:
(1) ord(α) � ord(β); and
(2) α = P (x)⊕ ∀R1.tag(C) or

α = P (x)⊕ ∃R1.tag(C) or
α = P (x) and x is some Abox individual di; and

(3) β = P (y)⊕ ∀R2.tag(D);
then perform the operation: Ta = Ta ∪ {P (x) v ∀R−2 .¬P (y) t tag(D)}.
Definition 7. (Polarisation-2) Pol(x) is performed on the tagged Abox A1 to
get A2, and on the augmented Tbox T1 ∪ Ta to get T2:
(1) if x is A v C, then Pol(x) = A v Pol(C);
4 Please notice � is transitive. The extra requirement forces ord(P (di)⊕tag(L(di))) �
ord(P (di)) � ord(tag(L(di))). For i 6= j, we have: (1) ord(tag(L(di))) and
ord(tag(L(dj))) are incomparable; (2) ord(P (di)) and ord(P (dj)) are incompara-
ble; (3) ord(P (di)) � ord(tag(L(dj))).
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(2) if x is (c, d) : R ∈ A1, then A2 = A2 ∪ {(c, d) : Ra, (d, c) : Rb};
(3) if x is (c, d) : R− ∈ A1, then A2 = A2 ∪ {(d, c) : Ra, (c, d) : Rb};
(4) if x is di : P (di)⊕ L(di) ∈ A1, then A2 = A2 ∪ {di : P (di)⊕ Pol(L(di))};
(5) otherwise, call Polarisation-1.
where Ra (Rb ) is a fresh role name unique for R (R−).

Though in the above only acyclic Tboxes are emphasized, the exact mapping
method also applies to cyclic Tboxes by simply dropping the acyclic ordering
condition prescribed at the recording step.

4 Experiments

We have implemented the mapping as presented in Section 1 to evaluate its
practicality. All satisfiability tests were performed with RacerPro 1.9.0 on a
Pentium PC with 3.5 GB memory. The tested ontologies were also converted on
the same machine. Note that the expressivity of the original ontologies is ALCI.

KB Name
Coherence Check
(original Tbox)

Conversion
Coherence Check
(converted Tbox)

galen-ir1-alci-new1 9.141 50.657 84.625

galen-ir2-alci-new1 9.549 52.547 76.156

uml-no-max-min-new4 timeout after 1 hour 1.156 0.110

revised-9-alci (partial) timeout after 20 mins 17.016 3.297

Table 1. Experimental results (all times are given in seconds)

KB Name
Num. of Axioms
(original/converted)

Classes/Properties
(original Tbox)

Classes/Properties
(converted Tbox)

galen-ir1-alci-new1 4645/5495 3107/234 3597/228

galen-ir2-alci-new1 4666/5508 3107/234 3597/228

uml-no-max-min-new4 524/739 233/213 448/213

revised-9-alci (partial) 3077/3099 2427/56 2449/37

Table 2. KBs before and after conversion (number of axioms, classes and properties)

Table 1 shows some empirical results (coherence check only), where the time
indicated is the average of 5 independent runs of the conversion system. It can
been seen that although more time is spent for testing Tbox coherence for the
converted versions of the first two KBs, the performance is still acceptable since
the KB sizes after conversion are nearly five times of the original ones. Evidently,
for the UML ontology the runtime after conversion is quite impressive. Besides,
we have also divided the UML ontology into two sub-ontologies, both of which,
if converted, require less time to compute the satisfiability of all the concepts.
Dramatic increase of performance is shown in the last case, where the ontology
contains one major class extracted from ontology “revised-9-alci”.
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5 Discussions

The question about whether a decision procedure that has to work both “for-
ward” and “backward” could be implemented to run efficiently was raised long
ago in the literature, among them we mention [Gia96]. Nonetheless, the highly
optimized tableau-based reasoning systems (the 3rd generation [BCM+03]) are
convincingly found “to behave quite well” in practice for many realistic prob-
lems. As description logics are widely used in diverse application domains, dif-
ferent “application patterns” produce a lot of realistic problems that might not
be quite “tractable” as previous ones in terms of “problem size” and “problem
structure”. Several application domains are known to easily give “practically
intractable problems”, e.g., the model checking field, probably due to their in-
distinct narrative styles, i.e., extensive use of tightly constrained constraints.
Recently, it was even found that some small-size ontologies are “hard” enough
to kill some best tableau-based DL systems currently available. The existence
of latest “intractable realistic problems” is more baffling than any indistinct
narrative style that people have seen before.

Schild has provided an axiomatic system [Sch91] for ALCI, the DL extending
the basic description logic ALC with inverse roles. A correspondence theory for
description logics, propositional modal logics and propositional dynamic logics
was also given in [Sch91]. In [Gia95] and [CGR98], the “converse elimination
technique” was presented for the CPDL and ALCIreg. Their technique is more
general than what is presented in this paper and was extended in various aspects.
Important literature on “converse elimination” and a direct tableaux approach
include [Gia96] and [GM00]. Their transformation leads to target problems in
the ExpTime class. Their technique could possibly lead to good implementations
in practice. However, it is not very clear if there was any empirical result about
their elimination of converse for the so-called “realistic problems”.

A worst-case optimal tableau procedure for testing concept satisfiability w.r.t.
general Tbox was given in [DM00] for ALC in details. Their technique of caching
intermediate results and nogoods has deep influence on tableau-based DL sys-
tems. The belief that description logics without inverse roles lend themselves
better to optimisations (e.g. the caching technique) originates from [DM00] and
is well supported from practice. Lutz discussed the complexity cliff phenomenon
for the problem of concept satisfiability test w.r.t. an acyclic Tbox in several
logics in [Lut99]. One of the results showed is a tableaux procedure that takes
a polynomial space for concept satisfiability test w.r.t. an acyclic Tbox in ALC.
The pre-completion technique was proposed in [DLNS94] [Hol94] for reducing
the Abox consistency problem to a number5 of concept satisfiability tests to be
carried out independently. For a pre-completion technique for SH Abox (which
strictly contains the logic ALC) w.r.t. Tbox, see [TG99].

The proposed mapping in this paper allows tableau-based decision procedures
to safely use the global sub-tableaux caching technique. This gives a hope that the
run-time performance should not be much worse than using the dynamic block-

5 It is the exact number of Abox individuals.
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ing and the pseudo-model merging techniques, two best optimisations currently
available [BCM+03] to tableau-based decision procedures for DLs with inverse
roles. This conjecture is supported by our first-hand experiments. Further, the
pseudo-model merging technique coexists with the global sub-tableaux caching
technique. Also, the new axioms introduced in the recording step can be “selec-
tively” used to simulate the well-known tableau expansion rules in such a way
that if the well-known tableau algorithm (that allows bi-directional propagation
of constraints) constructs a pre-model for the source problem, then this construc-
tion process can be repeated to construct a pre-model for the target problem at
an equal cost. The only possible disadvantage of the proposed mapping is that
it introduces extra concept names and extra axioms (with one disjunction per
axiom). However it should be noted that these extra names and axioms are for
“simulating” the well-known tableau expansion rules that rely on the dynamic
blocking technique. Moreover, the newly recorded axioms are not necessarily GCIs
but can always be unfoldable axioms (as shown in Section 3).

We require each role has a unique inverse role. For a role R, for example,
we consider R− as the only inverse role. This takes a linear cost. The presented
transformation is equisatisfiability preserving, and is fine-grained in the sense that
the target problems stay in the same complexity class as the source problems.
The recording operation descends from the C-rule (the Ramsey-Rule) which
states an equivalence of ∃R.C v D and C v ∀R−.D [Ram31]. This equivalence
was rediscovered in DLs and was lately used for new absorption techniques, for
example [HW06] and [SGP06].

This paper largely follows and extends our previous work in [DH05]. In
[DH05], we proposed three different ways to deal with ALCI. The first was a dy-
namic caching technique that extends the dynamic blocking technique to work on
different traces and thus allows anywhere blocking. The second was a reachability
analysis to guarantee the soundness of the global sub-tableaux caching technique
through a pre-compilation of a Tbox. The third was about the equivalence men-
tioned above. In this paper, rather than to enrich the absorption technique as
previously perceived, we used the equivalence in a different and novel way. Here
we have presented two versions of a mapping technique to deal with GCIs and
(acyclic) Tboxes6. It also works for nominals and expressive roles. Moreover, the
mapping without polarisation is quite interesting in itself for it brings a back-
propagation don’t-care property for the target problems (now in DLs with inverse
roles). Here is a summary conclusion of the proposed mapping technique:

– every knowledge base in fragments of SHOI that contain SHI (or ALCOI)
can be converted to a unfoldable Tbox in the corresponding fragments con-
taining SH (or ALCO);

– every (acyclic) unfoldable Tbox in ALCHI (or its fragments) can be con-
verted to an (acyclic) unfoldable Tbox in ALCH (or corres. fragments);

– the mapping is fine-grained in the sense that the target problems stay in the
same complexity class as the source problems.

6 The transformation is presented for the Abox consistency check problem w.r.t.
(acyclic) Tboxes.
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It is observed in our current experiments that some (not all) very hard on-
tologies the coherence of which could not even be tested are able to be classified
in reasonable time. For optimisations of the classification, they are beyond the
satisfiability test based (tableau-based) decision procedures. It is well known
that classification could even be done without resorting to any satisfiability test
at all, for example [BHN+92] [TH05]. Right now, we are preparing an opti-
mized and extended implementation. An in-depth empirical analysis is under
way. For a parallel work on a worst-case ExpTime (binary coding of numbers)
tableau-based decision procedure forALCQI, a description logic containing both
qualified number restrictions and inverse roles, see [DH07].
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A One Working Example

Give a concept E0 = ∃s−.C2, and a Tbox K0 of the following nine general axioms
in logic ALCI:

(a1)> v ¬C1 t ∃q.C2 (a2)> v ¬C2 t ∀s.C4

(a3)> v ¬C4 t ∃p.C3 (a4)> v ¬C3 t ∃s−.C2

(a5)> v ¬C2 t ∀s.C5 (a6)> v ¬C5 t ∀p−.C6

(a7)> v ¬C6 t ∀p−.C7 (a8)> v ¬C7 t ∀s−.C8

(a9)> v ¬C8 t ∀q−.C9

Source Problem: the satisfiability of E0 w.r.t. K0 in ALCI.
Step-1: perform tagging. For each ai, there is a′i = tag(ai).

(a′1)> v ¬C1 t ∃q.C2 (no change from a1)
(a′2)> v ¬C2 t (A1 ⊕ ∀s.C4)
(a′3)> v ¬C4 t ∃p.C3 (no change from a3)
(a′4)> v ¬C3 t ∃s−.C2 (no change from a4)
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(a′5)> v ¬C2 t (A2 ⊕ ∀s.C5)
(a′6)> v ¬C5 t (A3 ⊕ ∀p−.C6)
(a′7)> v ¬C6 t (A4 ⊕ ∀p−.C7)
(a′8)> v ¬C7 t (A5 ⊕ ∀s−.C8)
(a′9)> v ¬C8 t (A6 ⊕ ∀q−.C9)
The tagging operation changes nothing for axioms a1, a3 and a4. Aj are newly

introduced tags for occurrences of universal constraints. Now, K1 = {a′i}; the
tagged concept is E1 = tag(E0) = ∃s−.C2.
Step-2: perform recording. Each Aj has an axiom rj .

(r1)> v ∀s−.¬A1 t C4 (r2)> v ∀s−.¬A2 t C5

(r3)> v ∀p.¬A3 t C6 (r4)> v ∀p.¬A4 t C7

(r5)> v ∀s.¬A5 t C8 (r6)> v ∀q.¬A6 t C9

Now, Ka = {rj}.
Step-3: perform polarisation. Notice K2 = Poly(K1∪Ka). Accordingly, we have
ci = Poly(a′i) and dj = Poly(rj) as following.

(c1)> v ¬C1 t ∃qa.C2

(c2)> v ¬C2 t (A1 ⊕ ∀sa.C4)
(c3)> v ¬C4 t ∃pa.C3

(c4)> v ¬C3 t ∃sb.C2

(c5)> v ¬C2 t (A2 ⊕ ∀sa.C5)
(c6)> v ¬C5 t (A3 ⊕ ∀pb.C6)
(c7)> v ¬C6 t (A4 ⊕ ∃pb.C7)
(c8)> v ¬C7 t (A5 ⊕ ∀sb.C8)
(c9)> v ¬C8 t (A6 ⊕ ∀qa.C9)
(d1)> v ∀sb.¬A1 t C4 (d2)> v ∀sb.¬A2 t C5

(d3)> v ∀pa.¬A3 t C6 (d4)> v ∀pa.¬A4 t C7

(d5)> v ∀sa.¬A5 t C8 (d6)> v ∀qa.¬A6 t C9

We get E2 = Poly(E1) = Poly(∃s−.C2) = ∃sb.C2; and K2 = {ci} ∪ {dj} as
listed above. The newly introduced roles {sa, pa, qa, sb, pb, qb} replace the old
roles {s, p, q, s−, p−, q−}. Replace ⊕ with u and we get the problem in ALC.
Target problem: the satisfiability of E2 w.r.t. K2 in ALC.

B Proofs

Definition 8. (Fischer-Ladner Closure) The Fischer-Ladner closure[FL79]
FL(H) of a set of formulae H is the least set of formulae which is inductively
generated as follows:
(1) H is a subset of FL(H); (2) if C ∈ FL(H), then so is ¬C;
(3) if C uD ∈ FL(H), then so are C and D;
(4) if C tD ∈ FL(H), then so are C and D;
(5) if ∃R.C ∈ FL(H), then so is C; (6) if ∀R.C ∈ FL(H), then so is C.

To denote a modal constraint, we use ∃∀R.tag(C). The tag(.) operation (re-
cursively) converts one modal constraint to a conjunction having two conjuncts.
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In each tagged constraint we stipulate that the tag is on the left and the modal
constraint is on the right. This excludes cases like ∃∀R.tag(C) uQ(x).

Definition 9. Let Q(x)u ∃∀R.tag(C) be a tagged constraint in the Tbox KT and
the formula E. Consider the Fischer-Ladner closure FL(KT ∪{E}), a generating
formula for ∃∀R.tag(C) is a formulae α such that FL({α}) ⊃ FL({∃∀R.tag(C)}),
and α /∈ {∃∀R.tag(C),¬(∃∀R.tag(C))}.

Definition 10. The generating formula α for ∃∀R.tag(C) is least if there exists
no other generating formula β s.t. FL({β}) ⊂ FL({α}).

A few comments are necessary: (1) Each tag Q(x) is unique and occurs only
as a conjunct; its negation ¬Q(x) occurs only as a disjunct; (2) Q(x)u ∃∀R.tag(C)
and ¬(Q(x) u ∃∀R.tag(C)) are two least generating formulae for ∃∀R.tag(C). We
call the former positive and the latter negative; (3) The formulae have already
been converted into NNF before performing the mapping; (4) The tagging op-
eration assigns a set of unique tags for one modal constraint and that a least
generating formula for the tag Qi(x) will also be a least generating formula
for the tagged modal constraint; (5) Only positive generating formulae need to
be considered[BCM+03] when building a model7. These lead to the notion8 of
p-model.

Definition 11. Given E and KT that are tagged formula and Tbox. Let Q1(x)u
∃
∀R.tag(C), ..., Qm(x) u ∃∀R.tag(C) be tagged constraints. A p-model for E and
KT is a model (∆I , .I) such that for any n ∈ ∆I there are
(1) if n ∈ (Qi(x))I then n ∈ (∃∀R.tag(C))I ; and
(2) if n ∈ (∃∀R.tag(C))I , then there is Qi(x) for ∃∀R.tag(C) s.t. n ∈ (Qi(x))I .

Lemma 1. Given E and KT as the tagged formula and the tagged Tbox. Let
Qi(x) u ∃∀R.tag(C) be tagged constraints in E and KT , where i = 1, ...,m. E
and KT is satisfiable only if it is satisfiable in a p-model.

Proof. Only proof outline. Let M1 = (∆I1 , .I1) be any model for E and KT .
We use the well-known sub-model generating technique9 to get a p-model

from M1. To guide the extraction process, it is only necessary to consider the
positive generating formulae. To be precise, for any n ∈ ∆I1 , the extraction
process ignores assertions like n ∈ (¬(Qi u ∃∀R.tag(C)))I1 , where ∃∀R.tag(C) is
a tagged constraints with a unique set of tags {Q1, Q2, ..., Qm}.

Starting from a (root) node with L(n) ⊇ {E} ∪ KT , a guided extraction
process (focusing on positive least generating formulae) generates a sub-model
7 This is true forALCI and expressive logics without the qualified number restrictions.
8 Consider a multi-valued function from modal constraints to tags f(∃∀R.tag(C)) =
{Q1, ..., Qm} s.t. f(x) ∩ f(y) = ∅ for x 6= y. The model of interest is such a model
(∆J , .J ) that ∀n ∈ ∆J : (i) for all 1 ≤ i ≤ m, (Qi)

J ⊆ (∃∀R.tag(C))J ; and (ii) if
n ∈ (∃∀R.tag(C))J , then n ∈ QJi for some 1 ≤ i ≤ m.

9 It has also been extensively used in the literature in the completeness proof of certain
tableau-calculus for DLs with inverse roles.
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from M1. It is verifiably a model by routinely showing/checking it is saturated
and clash-free, and it meets p-model definition. So, there is a p-model (∆I2 , .I2)
provided that (∆I1 , .I1) be a model (which is saturated and has no clash). ut
Lemma 2. Given a concept formula E′ and a Tbox KT ′. Let the tagged formula
and Tbox be E and KT . E′ is satisfiable w.r.t. KT ′ iff E is satisfiable w.r.t. KT .

Proof. The proof uses the same sub-model generating technique as above and a
mapping from the ∃∀R.tag(C) to Qi u ∃∀R.tag(C) and vice versa.

From the p-model (out of the above sub-model generating) for E and KT ,
taking away (negated) tags leads to a model for E′ and KT ′ (having no tags).

In the other direction, for any model of E′ and KT ′, a mapping reflecting
the tag operation (from the ∃∀R.tag(C) to Qiu ∃∀R.tag(C) for some Qi) will lead
to a model (interpreting tags) for E and KT . Since a p-model is a model, this
concludes that the tagging operation preserves satisfiability. ut

B.1 Concept Satisfiability Test with General Concept Inclusions
Lemma 3. if E1 and K1 has a p-model, then Ka is satisfiable in that model.
Proof. This follows from the definition of p-model Q(x)I ⊆ (∀R.tag(C))I . ut
Lemma 4. E1 is satisfiable w.r.t. K1 ∪ Ka iff E1 is satisfiable w.r.t. K1.
Proof. (Only If Direction) It is trivial.

(If Direction) Let M2 a p-model for E1 and K1. According to the lemma
above, Ka is always satisfied in the p-model for both E1 and K1. It follows that
M2 is a model for E1 and K1 ∪ Ka. ut
Lemma 5. E1 is satisfiable w.r.t. K1 ∪ Ka iff E2 is satisfiable w.r.t. K2.

Proof. Note E2 = Pol(E1) and K2 = Pol(K1 ∪ Ka).
(If Direction) Let M2 = (∆I2 , .I2) be a p-model (possibly non-tree) for E2

and K2. For m′, n′ ∈ ∆I2 , consider a mapping to m,n ∈ ∆I1 such that
(1) if (m′, n′) ∈ (Ra)I2 , then (m,n) ∈ RI1 ;
(2) if (m′, n′) ∈ (Sb)I2 , then (m,n) ∈ (S−)I1 ;
(3) if m′, n′ ∈ Poly(C)I2 , then m,n ∈ CI1 .
(Only If Direction) Let M1 = (∆I1 , .I1) be a p-model (possibly non-tree) for

E1 and K1. For m,n ∈ ∆I1 , consider a mapping that maps them to m′, n′ ∈ ∆I2
(1) if (m,n) ∈ RI1 , then (m′, n′) ∈ (Ra)I2 and (n′,m′) ∈ (Rb)I2 ;
(2) if (m,n) ∈ (S−)I1 , then (m′, n′) ∈ (Sb)I2 and (n′,m′) ∈ (Sa)I2 ;
(3) if m,n ∈ CI1 then m′, n′ ∈ Poly(C)I2 .
R, S− are roles in ALCI; Ra, Rb, Sa, Sb are roles in ALC.
Note the definition of p-models and the special axioms acquired by the record-

ing operation. In both directions, at each element of the target interpretation, all
constraints are satisfied both locally and w.r.t. its neighbor elements provided
the given (∆Ik , .Ik) be a p-model. This concludes that the polarisation operation
preserves equisatisfiability (for a tagged and recorded problem). ut
Lemma 6. ‖E2‖+ ‖K2‖ is of O(n2) where n = ‖E0‖+ ‖K0‖.
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Theorem 1. (1) E0 is satisfiable w.r.t. K0 iff E2 is satisfiable w.r.t. K2. (2)The
satisfiability of E0 w.r.t. K0 in ALCI can be decided by a test of E2 w.r.t. K2

in ALC. (3) The concept satisfiability w.r.t. GCIs in ALCI can be decided in
exponential time by the tableaux procedure in ALC [DM00].

B.2 Concept Satisfiability/Abox Consistency with (Acyclic) Tbox

Regarding to acyclic Tboxes in DLs without inverse roles, we refer to [Lut99] and
[Tes01] for their results. We list supporting theorems and lemmas. The proofs
are similar to the ones previously done for general axioms.

Theorem 2. (Acyclic ALC Tbox[Lut99]) The concept satisfiability w.r.t.
an acyclic Tbox in ALC is decidable in PSPACE by a tableau-based procedure.

Lemma 7. For an input concept E0 and an acyclic Tbox T0 in ALCI, by
tagging-recording-polarisation the concept E2 and the acyclic Tbox T2 in ALC
is of size O(n3), where n = ||E0||+ ||T0||.
Proof. (outline only) By a similar step-by-step proof10 (as in the case of gen-
eral axioms), it is able to show E2 and T2 is equisatisfiable to E0 and T0. The
acyclicity of T2 is easy to verify. The number of combinations (formulae α, β s.t.
ord(α) � ord(β)) is at most n2 and each new axiom is of size at most n. ut
Lemma 8. The concept satisfiability problem w.r.t. an acyclic Tbox in ALCI
can be decided in PSPACE by tableau procedures as given in [Lut99].

Lemma 9. For Abox Consistency, T2 is acyclic. The conversion (a streamlined
tagging, recording and polarisation operations) takes a polynomial space.

Lemma 10. The consistency of an Abox w.r.t. an acyclic Tbox in ALCI can
be decided by the consistency check of an Abox w.r.t. an acyclic Tbox in ALC.
Theorem 3. (Precompletion[Tes01]) A precompletion of an Abox w.r.t. a
Tbox can be nondeterministically computed in a polynomial space; the size of
each precompletion is polynomial bounded.

Theorem 4. The consistency of an Abox w.r.t. an acyclic Tbox in ALCI can
be decided in PSPACE by tableau-based decision procedures.

Proof. (1) Perform the conversion to get the target problem, which is of a poly-
nomial size to the source problem. The conversion itself takes a polynomial
space; (2) Nondeterministically compute one precompletion. Then individuals
of the target Abox are subject to satisfiability tests by the PSPACE procedure
in [Lut99] w.r.t. the target Tbox independently. If each individual of the target
Abox is satisfiable, the source problem is consistent. The Abox consistency prob-
lem w.r.t. an acyclic Tbox is decidable in a nondeterministic polynomial space.
Consider Savitch’s theorem[Sav70]. This ends the proof11. ut
10 Proofs of equisatisfiability do not use acyclicity or properties of Aboxes in our case.

These properties are however needed in proofs of particular decision procedures that
are PSPACE and they are taken into account by previous work [Lut99] [Tes01]. We
cite those results as theorems.

11 Similar arguments were extensively used for PSPACE tableaux in the literature.
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Conjunctive Query Entailment for SHOQ
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Abstract. An important reasoning task, in addition to the standard
DL reasoning services, is conjunctive query answering. In this paper,
we present a decision procedure for conjunctive query entailment in the
expressive Description Logic SHOQ. This is, to the best of our knowl-
edge, the first decision procedure for conjunctive query entailment in a
logic that allows for nominals. We achieve this by combining the tech-
niques used in the conjunctive query entailment procedure for SHIQ
with the techniques proposed for a restricted class of conjunctive queries
in SHOQ.

1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve known instances of concepts and roles. There are,
however, still many open questions regarding the development of algorithms
that decide conjunctive query (CQ) entailment in expressive Description Log-
ics. For example, proposed techniques for deciding CQ entailment in expressive
DLs mostly require that all roles that occur in the query are simple, i.e., nei-
ther transitive nor have transitive subroles. Furthermore, none of the existing
conjunctive query answering techniques [10, 8, 2, 7, 9] is able to handle nominals.
In this paper, we address both these issues and present a decision procedure for
entailment of arbitrary CQs in the very expressive DL SHOQ, i.e., we allow
for both non-simple roles in the query and nominals. We also do not impose
any restrictions on the structure of the queries as it is the case for a previously
proposed query entailment technique for SHOQ [5].

Our algorithm combines ideas from the CQ entailment decision procedure
for SHIQ [3, 4] with the technique for deciding entailment of a restricted class
of CQs in SHOQ [5] (i.e., the algorithm does not accept arbitrary CQs as input,
but only queries of a particular shape). We first rewrite a query into a set of
queries that have a kind of forest shape. By applying the rolling-up or tuple-graph
technique [2, 10], we build concepts that capture the rewritten queries. We then
show that we can use the obtained concepts to reduce the task of deciding query
entailment to the task of testing the consistency of extended knowledge bases.
? This work was supported by an EPSRC studentship.
1 For example, FaCT++ http://owl.man.ac.uk/factplusplus, KAON2 http://

kaon2.semanticweb.org, Pellet http://pellet.owldl.com, or Racer Pro http:

//www.racer-systems.com

Proceeding of DL2007 - Long Papers 65



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 66 — #76 i
i

i
i

i
i

2 Preliminaries

We assume readers to be familiar with the syntax and semantics of the DL
SHOQ (for details see [1]). Since, in the presence of nominals, the ABox can be
internalised, we assume that a SHOQ knowledge base K is a pair (T ,R) over a
signature S = (NC , NR), where T is a TBox, R is a role hierarchy, and NC and
NR are countable, infinite, and pairwise disjoint sets of concept names and role
names respectively. We assume that the set NC contains a subset NI of nominal
names and the set NR contains a subset NtR of transitive role names. We say
that a role name r is simple if there is no s ∈ NtR such that s v*Rr, where v*R
is the reflexive transitive closure of v over R.

Definition 1. Let S = (NC , NR) be a signature and NV a countably infinite
set of variable names disjoint from NC and NR. Let C be a SHOQ-concept over
S, r ∈ NR a role name, and x, y ∈ NV . An atom is an expression C(x) or
r(x, y), and we refer to these types of atoms as concept atoms and role atoms
respectively. A Boolean conjunctive query q is a non-empty set of atoms. We
use Vars(q) to denote the set of all variables occurring in q and ](q) for the
cardinality of q. A sub-query of q is simply a subset of q (including q itself).

Let I = (∆I ,·I) be an interpretation. For a total function π: Vars(q) → ∆I,
we write

– I |=π C(x) if π(x) ∈ CI ;
– I |=π r(x, y) if (π(x), π(y)) ∈ rI .

If I |=π at for all atoms at ∈ q, we write I |=π q. We say that I satisfies q and
write I |= q if there exists a mapping π such that I |=π q. We call such a π a
match for q in I. For a SHOQ knowledge base K, we say that K entails q and
write K |= q if I |= K implies I |= q.

The query entailment problem is defined as follows: given a knowledge base
K and a query q, decide whether K |= q. Please note that we do not allow
for constants (individual names) in the query. In the presence of nominals this
is clearly without loss of generality. Query entailment is the decision problem
corresponding to query answering, which is a computation problem. For query
answering, let the variables of a conjunctive query be typed: each variable can
either be existentially quantified (also called non-distinguished) or free (also
called distinguished or answer variables). Let q be a query in n variables (i.e.,
](Vars(q)) = n), of which v1, . . . , vm (m 6 n) are answer variables, K a SHOQ
knowledge base, and nom(K) the set of nominals that occur in K. The answers
of K to q are those m-tuples (o1, . . . , om) ∈ nom(K) such that, for all models I
of K, I |=π q for some π that satisfies π(vi) ∈ {oi

I} for all i with 1 6 i 6 m.
It is not hard to see that the answers of K to q can be computed by testing, for
each (o1, . . . , om) ∈ nom(K)m, whether the query q′ obtained from q by adding,
for each vi with 1 ≤ i ≤ m, an atom ({oi})(vi), is entailed by K.2 The answer
2 Please note that, in the presence of constants, it is more common to replace the

distinguished variables v1, . . . , vm with the constants o1, . . . , om instead of adding
constant atoms.
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to q is then the set of all m-tuples (o1, . . . , om) for which K |= q[v1,...,vm/o1,...,om].
Let k = ](nom(K)) be the number of nominals used in the K. Since K is finite,
clearly k is finite. Hence, deciding which tuples belong to the set of answers can
be checked with at most km entailment tests. This is clearly not very efficient, but
optimisations can be used, e.g., to identify a (hopefully small) set of candidate
tuples.

In the remainder of this paper, we concentrate on query entailment. In the
following, we use K for a SHOQ knowledge base and q for a Boolean CQ over
a common signature S. We use nom(K) for the set of nominals that occur in K
and we assume that nom(K) is non-empty without further notice. This is w.l.o.g.
since otherwise we can always add an axiom {o} v > to the TBox for a new
nominal o ∈ NI .

As for the CQ entailment algorithm for SHIQ, we first show that we can
restrict our attention to the canonical models of K. Canonical models have a
kind of forest shape, i.e., the elements in the model can be seen as a collection
of trees such that each nominal builds the root of a tree. Additionally, there can
be arbitrary relational structures between the nominals and relations between
an element from within a tree back to some nominal. In order to emphasise
the forest shape of the canonical models, we also define forest bases, where we
omit the shortcuts induced by transitive roles. The role of canonical models
in our decision procedure is roughly speaking the following: for deciding query
entailment, we first rewrite a given query into a set of forest-shaped queries
such that the rewritten queries can be expressed as concepts. We use the forest
structure of the canonical models in order to show that the disjunction of the
obtained concepts is indeed enough for deciding query entailment.

Definition 2. A tree T is a prefix-closed subset of IN∗. For w, w′ ∈ T , we call w′

a successor of w if w′ = w · c for some c ∈ IN, where “·” denotes concatenation.
The empty word ε is the root of the tree. Given a set of roots R = {r1, . . . , rn}, a
forest F w.r.t. R is a subset of R× IN∗ such that, for each ri ∈ R, f(ri) = (ri, ε)
and the set {w | (ri, w) ∈ F} is a tree.

A forest base for K is an interpretation J = (∆J ,·J ) that interprets transi-
tive roles in an unrestricted (i.e., not necessarily transitive) way and, addition-
ally, satisfies the following conditions:

T1 ∆J is a forest w.r.t. nom(K), and
T2 if ((o, w), (o′, w′)) ∈ rJ , then either w′ = ε or o = o′ and w′ is a successor

of w.

An interpretation I is canonical for K, if there exists a forest base J for K such
that I is identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ )+

In this case, we say that J is a forest base for I and, if I |= K, we say that I
is a canonical model for K.
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Lemma 1. K 6|= q iff there is some canonical model I of K such that I 6|= q.

Proof Sketch: The if direction is trivial. For the only if direction, the proof is
similar to the one for SHIQ. Let I be such that I |= K and I 6|= q. Intuitively,
we first unravel I into a model I ′ of K and then construct a forest base from
the unravelled model. Finally, we obtain a canonical model from the forest base
by transitively closing all roles r ∈ NtR. Since in the unravelling process we
only “break” cycles, the query is still not satisfied in the constructed canonical
model.

3 Reducing Query Entailment to Concept Unsatisfiability

In this section, we introduce the basic ideas that have been used in the develop-
ment of algorithms for CQ entailment. In the following section, we show more
formally how the techniques presented here can be combined in order to obtain
a decision procedure for SHOQ.

The initial ideas used in this paper were first introduced by Calvanese et
al. [2] for deciding CQ containment and hence CQ entailment for DLRreg . The
authors show how a query q can be expressed as a concept Cq, such that q is
entailed by a knowledge base iff adding > v ¬Cq makes the KB inconsistent.
In order to obtain the concept Cq, the query q is represented as a directed,
labelled graph. This graph, called a tuple graph or a query graph, is traversed
in a depth-first manner and, during the traversal, nodes and edges are replaced
with appropriate concept expressions, leading to the concept Cq after completing
the traversal.

The nodes in a query graph correspond to the variables in the query and are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. E.g., let q1 =
{C(x), s(x, y), D(y)} and q2 = {C(x), r(x, y), r(x, y′), s(y, z), s(y′, z), D(z)}. The
query graphs for q1 and q2 are depicted in Figure 1 and Figure 2 respectively.
We call q2 a cyclic query since its underlying undirected query graph is cyclic.
For acyclic queries such as q1, we can build the concept that represents q1 as
follows: start at x and traverse the graph to y. Since y is a leaf node, remove y
and its incoming edge and conjoin ∃s.D to the label C of x, resulting in Cu∃s.D
for Cq1 . A given KB K entails q1 iff K∪{> v ¬Cq1} is inconsistent. Please note
that in the absence of inverse roles in the logic, this process requires that the
query graph has the form of a directed tree.

This reduction is not directly extendable to cyclic queries since, due to the
tree model property of most DLs, a concept cannot capture cyclic relationships.
For simpler logics, only ABox assertions can enforce cyclic relational structures
in every model. One could argue, therefore, that we can replace variables in a
cycle with individual names from the ABox. By identifying variables with each
other, however, some cyclic queries become acyclic. For example, identifying y
and y′ in q2 leads to an acyclic query that can be expressed as C u ∃r.(∃s.D).
Hence, K |= q2 if K ∪ {> v ¬(C u ∃r.(∃s.D))} is inconsistent.
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y:Dx:C
s

Fig. 1: The (acyclic) query
graph for q1.

y′
r

x:C z:D
s

s
y

r

Fig. 2: A query graph for the
cyclic query q2.

Last year, we presented a decision procedure for entailment of a restricted
class of CQs in SHOQ [5]. Due to the absence of inverse roles in SHOQ, the
algorithm handles only queries where the tree parts of the query form a di-
rected tree and all cyclic subgraphs build a directed cycle. For example, the
query {r(x, y), r(z, y)} is not accepted as an input for the algorithm. The tech-
nique introduces, however, ideas for dealing with cycles that can arise when
nominals and non-simple roles are present in the knowledge base. For exam-
ple, Figure 3 represents a model for the knowledge base K containing the ax-
iom {o} v ¬C u ¬D u ∃s.(C u ∃r.(D u ∃s.{o})) with s ∈ NtR. The query
q3 = {C(x), D(y), r(x, y), s(y, x)} (see Figure 4) would clearly be satisfied in each
model of K, although in the relevant matches neither x nor y can be mapped
to the nominal oI and without using the nominal o in the query concept, we
cannot enforce the coreference for closing the cycle.

{o,¬C,¬D} {C} {D}

s

rs
s

Fig. 3: The dashed line indicates the rela-
tionship added due to s being transitive.
Therefore, there is a cycle not directly con-
taining the nominal o.

rx:C y:D

s

Fig. 4: The query graph
for q3.

In canonical models for a SHOQ knowledge base, such a directed cycle among
non-nominals can only occur due to a transitive role that provides a shortcut for
“skipping” the nominal. Hence, a nominal is always at least indirectly involved,
e.g., o in the current example. The proposed algorithm allows, therefore, the
replacement of the role atom s(y, x) with two role atoms s(y, v), s(v, x) for a
new variable v. We can then guess that v corresponds to the nominal o and
express the query as a concept in which we use {o} to close the cycle.

In the decision procedure for CQ entailment in SHIQ [3, 4], the rewriting
steps also allow for eliminating shortcuts induced by transitive roles that do not
involve nominals (ABox individuals in the case of SHIQ). Let K4 = (T ,R,A)
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be a SHIQ knowledge base with T = ∅,R = {r v t},A = {(∃s.∃r.∃r.∃r.>)(a)},
and t ∈ NtR (see Figure 5). The cyclic query q4 = {r(x1, x2), r(x2, x3), r(x3, x4),
t(x1, x4)} (see Figure 6) is clearly entailed by K4.

s r, t r, t

{a}
t t

t

r, t

Fig. 5: A representation of a canonical model I for K4. Transitive “shortcuts”
are again indicated by dashed lines.

r r r

t

Fig. 6: The query graph for the query q4.

In order to obtain a tree-shaped query that matches in such a canonical
model, the rewriting steps for SHIQ allow, for each role atom s(x, x′) in a
query such that there is a role s′ ∈ NtR with s′ v*Rs, to replace s(x, x′) with up
to ](q) role atoms s′(x1, x2), . . . , s′(x`−1, x`) such that x1 = x and x` = x′. In the
above example, we can replace t(x1, x4) with t(x1, x2), t(x2, x3), t(x3, x4) and ob-
tain the query q′4 = {r(x1, x2), r(x2, x3), r(x3, x4), t(x1, x2), t(x2, x3), t(x3, x4)}.
Using role conjunctions, we can now build the query concept Cq′4 = ∃(rut).(∃(ru
t).(∃(r u t).>)). We can now use the concept Cq′4 as described above and reduce
the query entailment problem for a SHIQ knowledge base to a knowledge base
consistency problem for SHIQu, i.e., SHIQ with role conjunctions.

Usually, there is not just one query concept for a given query. In the rewrit-
ing process, we build query concepts for all tree-shaped queries obtained by
identifying variables and by replacing role atoms as described above. We then
check whether K entails the disjunction of the obtained concepts, which can be
reduced to checking the consistency of K extended with all axioms > v ¬Cq

such that Cq is one of the obtained query concepts.
We now define the different rewriting steps more formally and show how the

different rewriting steps can be combined into a decision procedure for general
CQs in SHOQ.

4 Conjunctive Query Entailment for SHOQ
For deciding whether a given Boolean CQ is entailed by a SHOQ knowledge
base, we transform the query in a four stage process into a set of SHOQu
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concepts, i.e., SHOQ with role conjunctions. We can then reduce the task of
deciding CQ entailment to the task of deciding SHOQu knowledge base consis-
tency.

In the first step, called collapsing, we can identify variables. In the second
step, we can replace role atoms of the form r(x, x′) for which r is non-simple with
up to ](q) role atoms. This allows for explicating all shortcuts due to transitive
roles in the query. In the third step, we “guess” which variables correspond to
nominals and filter out those queries that can still not be expressed as a SHOQu

concept. Those queries are trivially false since the structure specified by the query
cannot be enforced by a SHOQ concept and hence cannot be mapped to the
canonical models of the knowledge base. Finally, we express the resulting queries
as concepts and use these concepts for deciding entailment of the original query.

Definition 3. A collapsing of q is obtained as follows:

1. Build a partition P of Vars(q),
2. choose, for each P ∈ P, one variable name x ∈ P , and
3. replace each occurrence of x′ ∈ P with x.

We use co(q) to denote the set of all queries that are a collapsing of q.
A transitivity rewriting of q is obtained by fixing a set V ⊆ NV of variables

not occurring in q such that ](V ) 6 ](Vars(q)) and by choosing, for each role
atom r(x, x′) ∈ q such that there is an s ∈ NtR with s v*Rr, to replace r(x, x′)
with 1 ≤ ` ≤ ](q) role atoms s(x1, x2), . . . , s(x`−1, x`), where x1 = x, x` = x′,
and x2, . . . , x` ∈ Vars(q) ∪ V . We use trK(q) to denote the set of all queries that
are a transitivity rewriting of a query qco ∈ co(q).

We assume that trK(q) contains no isomorphic queries, i.e., differences in
(newly introduced) variable names only are neglected.

We now show how we can filter out those queries that are trivially false
since they have a structure that cannot occur in canonical models. For this, we
use forest structures that are similar to canonical models. We first guess which
variables of the query correspond to nominals. Between those variables, the role
atoms of the query can induce arbitrary relational structures. All other variables
are mapped to trees such that for a role atom r(x, y) either the image of y is a
successor of the image of x in the tree or y corresponds to a nominal and r(x, y)
corresponds to an edge back to some nominal.

Definition 4. A tree mapping w.r.t. q is a total and bijective function f from
Vars(q) to a tree T such that r(x, x′) ∈ q implies that f(x′) is a successor of
f(x). A query q is tree-shaped if there exists a tree mapping w.r.t. q.

A root choice is a subset of Vars(q). A forest mapping w.r.t. q and a root
choice R is a total function f from Vars(q) to a forest F w.r.t. R such that if
r(x, x′) ∈ q, then either x′ ∈ R or there is some xr ∈ R such that f(x) = (xr, w)
and f(x′) = (xr, w · c). We say that q is forest-shaped w.r.t. R if either R = ∅
and q is tree-shaped or R 6= ∅ and there exists a forest mapping w.r.t. q and R.

We use frK(q) to denote the set of all pairs (qtr , R) such that qtr ∈ trK(q), R
is a root choice w.r.t. qtr, and qtr is forest-shaped w.r.t. R.
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Similarly to forest-shaped queries, we define tree- and forest-shaped matches
on canonical models.

Definition 5. Let I = (∆I ,·I) be a canonical model for K such that I |=π q.
A match π induces a root choice R = {x | π(x) = (o, ε) for some o ∈ nom(K)}.
We call π a tree match if R = ∅ and there exists a bijective function f from
ran(π) to a tree T such that r(x, x′) ∈ q implies that f(π(x′)) is a successor
of f(π(x)). We call π a forest match if either π is a tree match or there is a
total mapping f from ran(π) to a forest F w.r.t. R such that r(x, x′) ∈ q implies
that either f(π(x′)) = (x′, ε) or there is some xr ∈ R such that f(π(x)) =
(xr , w), f(π(x′)) = (xr, w · c).

The following lemma shows that we can indeed omit queries that are not
forest-shaped w.r.t. some subset of variables R.

Lemma 2. Let I = (∆I ,·I) be a model for K.

(1) If I is canonical and I |= q, then there is a pair (qtr, R) ∈ frK(q) and a
forest match π such that I |=π qtr and R is the root choice induced by π .

(2) If (qtr , R) ∈ frK(q) and I |= qtr, then I |= q.

The proof is very similar to the proofs for SHIQ [3, 4]. Intuitively, we use
the canonical model I to guide the rewriting process in the proof of part (1) of
Lemma 2. Part (2) of Lemma 2 mainly follows from the fact that we only use
non-simple roles in the transitivity rewritings.

We now build a query that consists of only concept atoms for each (qtr , R) ∈
frK(q) by replacing the variables from R with nominals from nom(K) and apply-
ing the rolling-up technique.

Definition 6. Let (qtr, R) ∈ frK(q). A grounding for qtr w.r.t. R is a total
function τ : R → nom(K). Let f be a forest mapping w.r.t. q and R. We build
con(qtr , R, τ) as follows:

1. For each r(x, xr) ∈ qtr with xr ∈ R, replace r(x, xr) with (∃r.{τ(xr)})(x).
2. For each xr ∈ R add a concept atom ({τ(xr)})(xr) to qtr.
3. We now inductively assign to each x ∈ Vars(qtr) a concept con(x) as follows:

– if there is no role atom r(x, x′) ∈ qtr, then con(x) :=
d

C(x)∈qtr
C,

– if there are role atoms r(x, x1), . . . , r(x, xk) ∈ qtr, then

con(x) :=
d

C(x)∈qtr
C ud

16i6k ∃
( d

r(x,xi)∈qtr
r
)
.con(xi).

4. Finally, con(qtr, R, τ) = {(con(x))(x) | x ∈ Vars(qtr) and there is no role
atom r(x′, x) ∈ qtr}.

We use conK(q) for the set {con(qtr, R, τ) | (qtr, R) ∈ frK(q) and τ is a grounding
w.r.t. R}.
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Please note that after the first step, the resulting query consists of a set
of unconnected components such that each component is a tree-shaped query
with a distinguished root variable that has no incoming edges. In step 4, we
collect all query concepts for these root variables in the set con(qtr, R, τ). Hence
con(qtr , R, τ) is a conjunctive query of the form {C1(x1), . . . , Cn(xn)} with xi 6=
xj for 1 ≤ i < j ≤ n and each Ci is a SHOQu-concept.

Lemma 3. Let I be a model of K.

(1) If I is canonical and I |= q, then there is some con(qtr, R, τ) ∈ conK(q) such
that I |= con(qtr , R, τ).

(2) If I |= con(qtr, R, τ) for some con(qtr , R, τ) ∈ conK(q), then I |= q.

Informally, the use of nominals in the constructed concepts still enforces the
same structures that are required by the query.

We now show that the union of the queries in conK(q) can be used to decide
entailment of q. Since we now use unions of conjunctive queries, we introduce
their semantics more formally:

Definition 7. A union of Boolean conjunctive queries is a formula q1∨ . . .∨qn,
where each disjunct qi is a Boolean conjunctive query. A knowledge base K entails
a union of Boolean conjunctive queries q1∨ . . .∨qn, written as K |= q1∨ . . .∨qn,
if, for each interpretation I such that I |= K, there is some i with 1 ≤ i ≤ n
such that I |= qi.

W.l.o.g. we assume that the variable names in each disjunct are different
from the variable names in the other disjuncts. This can always be achieved by
naming variables apart.

Putting everything together, we get the following theorem, which shows that
the queries in conK(q) are indeed enough to decide whether K |= q.

Theorem 1. Let {q1, . . . , q`} = conK(q). Then K |= q iff K |= q1 ∨ . . . ∨ q`.

Please note that each disjunct qi is a set of concept atoms of the form
{Ci

1(xi
1), . . . , Ci

ni
(xi

ni
)}, i.e., each qi contains ni unconnected components. In the

following, we assume for convenience that conjunctive queries are written as a
conjunction of atoms instead of in the set notation, e.g., we now write each of the
disjuncts {Ci

1(xi
1), . . . , Ci

ni
(xi

ni
)} as Ci

1(xi
1)∧ . . .∧Ci

ni
(xi

ni
). By transforming the

disjunction of queries in conK(q) into conjunctive normal form (cf. [10, 7.3.2]), we
can reduce the problem of deciding whether K |= q1∨ . . .∨q` to deciding whether
K entails each union of connected conjunctive queries {at1} ∨ . . . ∨ {at`} such
that ati a concept atom from qi. Let conK(q) = {q1, . . . , q`}. We use cnf(conK(q))
for the conjunctive normal form of q1 ∨ . . . ∨ q`. We now show how we can de-
cide entailment of unions of conjunctive queries, where each conjunct consists of
one concept atom only. This suffices to decide conjunctive query entailment for
SHOQ.
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Definition 8. Let K = (T , R) be a SHOQ knowledge base, q a Boolean con-
junctive query, and {C1(x1) ∨ . . . ∨ C`(x`)} a conjunct from cnf(conK(q)). An
extended knowledge base w.r.t. K and q is a pair (T ∪ Tq,R)) such that Tq

contains an axiom > v ¬Ci for each i with 1 ≤ i ≤ `.

We can now use the extended knowledge bases in order to decide conjunctive
query entailment as follows:

Theorem 2. K |= q iff each extended knowledge base Kq w.r.t. K and q is
inconsistent.

Please note that the extended knowledge bases are in SHOQu. It is, however,
not hard to see how the Tableaux algorithm for SHOQ [6] can be extended to
handle such extended KBs, which then provides a decision procedure for CQ
entailment in SHOQ.

5 Conclusions

In the previous section, we have presented a decision procedure for CQ entail-
ment in SHOQ. This is, to the best of our knowledge, the first CQ entailment
decision procedure that can handle nominals. In addition, we allow for non-
simple roles in the query as well, which is a feature that is known to be tricky.
Since the set of rewritten queries can potentially be large, the algorithm is more
suitable for showing decidability of the problem rather than building the foun-
dation of implementable algorithms. By analysing the role hierarchy one can,
however, avoid several rewritings. Going back to the example knowledge base
K4 and query q4 (see Figure 5 and 6) in Section 3, it is not hard to see that
with the given role hierarchy the atom t(x1, x4) is redundant. Every match for
the remaining role atoms implies the existence of a suitable t-edge. Since after
removing this redundant role atom the query is acyclic, no rewriting is necessary
in order to decide entailment. It will be part of our future work to investigate
whether such an analysis of query and role hierarchy can be used instead of
the transitivity rewriting step. Furthermore, we will try to find tight complexity
bounds for the conjunctive query entailment problem in SHOQ and we will try
to show decidability of conjunctive query entailment in SHOIQ.
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Abstract. We develop a formal framework for modular ontologies by
analysing four notions of conservative extensions and their applications in
refining, re-using, merging, and segmenting ontologies. For two members
of the DL-Lite family of description logics, we prove important meta-
properties of these notions such as robustness under joins, vocabulary
extensions, and iterated import of ontologies. The computational com-
plexity of the corresponding reasoning tasks is investigated.

1 Introduction

In computer science and related areas, ontologies are used to define the meaning
of vocabularies designed to speak about some domains of interest. In ontology
languages based on description logics (DLs), such an ontology typically consists
of a TBox stating which inclusions hold between complex concepts built over the
vocabulary. An increasingly important application of ontologies is management
of large amounts of data, where the ontology is used to provide flexible and
efficient access to repositories consisting of data sets of instances of concepts
and relations of the vocabulary. In DLs, such repositories are typically modelled
as ABoxes.

Developing ontologies for this and other purposes is a difficult task. When
dealing with DLs, the ontology designer is supported by efficient reasoning tools
for classification, instance checking and some other reasoning problems. However,
it is generally recognised that this support is not sufficient when ontologies are
not developed as ‘monolithic entities’ but rather result from importing, merging,
combining, re-using, refining and extending existing ontologies. In all those cases,
reasoning support for analysing the impact of the respective operation on the
ontology would be highly desirable. Typical reasoning tasks in this case may
include the following:

– If we add some new concepts, relations and axioms to our ontology, can
new assertions over the vocabulary of the original TBox be derived from the
extended TBox?

– When importing an ontology, do we change the meaning of its vocabulary?
– When looking for a definition of some concepts, what part of the existing

ontology defining them should be used?
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Recently, the notion of conservative extension has been identified as fundamental
for dealing with problems of this kind [1–5]. Parameterising this notion by a lan-
guage L, we say that a TBox T is a conservative extension of a TBox T ′ w.r.t. L
if T |= α implies T ′ |= α, for every α from L which only uses the vocabulary of
T ′. In these papers, the main emphasis has been on languages L consisting of
TBox axioms over some description logic (such as ALC) and the much stronger
notion of model conservativity which corresponds to the assumption that α can
be taken from any language with standard Tarski semantics (e.g., second-order
logic). Considering TBox axioms is motivated by the fact that ontologies are
developed and represented via such axioms. They are the syntactic objects an
ontology designer is working with, and a possibility to derive some new axioms
appears therefore to be a good indicator as to whether the meaning of symbols
has changed in any relevant sense. The notion of model conservativity is moti-
vated by its flexibility: whatever language L is chosen, no new consequences in
L will be derivable [5, 4]. A third option (which lies between the two above as
far as expressivity is concerned) is as follows: if the main application of the on-
tologies T and T ′ is to provide a vocabulary and its meaning for posing queries
to ABoxes, then it appears to be of interest to regard T as a conservative ex-
tension of T ′ if, for every ABox A and every (say, positive existential) query q
in the vocabulary of T ′, any answer to q given by (T ,A) is given by (T ′,A)
as well. It can thus be seen that there is a variety of notions of conservativity
which can be used to formally define modularity in ontologies. The choice of the
appropriate one depends on what the ontologies are supposed to be used for, the
computational complexity of the corresponding reasoning tasks, and the relevant
meta-properties and ‘robustness’ of the notion of conservativity.

Here we investigate these and related notions of conservative extensions for
the DL-Lite family of description logics [6–8]. DL-Lite and its variants are weak
descriptions logics that have been designed in order to facilitate efficient query-
answering over large data sets. We introduce four different notions of conservativ-
ity for two languages within this family, motivate their relevance for modularity
and re-use of ontologies, study their meta-properties, and determine the compu-
tational complexity of the corresponding reasoning tasks. All the proofs can be
found in the Appendix available at http://www.csc.liv.ac.uk/~frank.

2 The DL-Lite Family

The DL-Lite family of DLs has been introduced and investigated in [6–8] with
the aim of establishing maximal subsets of DL constructors for which the data
complexity of query answering stays within LogSpace. The ‘covering’ DL of
the DL-Lite family is known as DL-Litebool [8]. As DL-Litebool itself contains
classical propositional logic, query answering in it is coNP-hard, but by taking
the Horn-fragment DL-Litehorn of DL-Litebool, one obtains a language for which
query answering is within LogSpace [8] (precise formulations of these results
are given below).

Proceeding of DL2007 - Long Papers 77



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 78 — #88 i
i

i
i

i
i

The language of DL-Litebool has object names a1, a2, . . . , concept names
A1, A2, . . . , and role names P1, P2, . . . . Complex roles R and DL-Litebool con-
cepts C are defined as follows:

R ::= Pi | P−i ,
B ::= ⊥ | > | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. The concepts of the form B above are called basic. A DL-Litebool
concept inclusion is of the form C1 v C2, where C1 and C2 are DL-Litebool
concepts. A DL-Litebool TBox is a finite set of DL-Litebool concept inclusions.
(Other concept constructs like ∃R, ≤ q R and C1 t C2 will be used as standard
abbreviations.)

As mentioned above, we also consider the Horn fragment DL-Litehorn of
DL-Litebool: a DL-Litehorn concept inclusion is of the forml

k

Bk v B,

where B and the Bk are basic concepts. In this context, basic concepts will also
be called DL-Litehorn concepts. Note that the axioms

d
k Bk v ⊥ and > v B are

legal in DL-Litehorn. A DL-Litehorn TBox is a finite set of DL-Litehorn concept
inclusions. For other fragments of DL-Litebool we refer the reader to [6–8]. It is
worth noting that in DL-Litehorn we can express both global functionality of a
role and local functionality (i.e., functionality restricted to a (basic) concept B)
by means of the axioms ≥ 2R v ⊥ and B u ≥ 2R v ⊥, respectively.

Let L be either DL-Litebool or DL-Litehorn. An L-ABox is a set of assertions
of the form C(ai), R(ai, aj), where each C is an L-concept, R a role, and ai, aj
are object names. An L knowledge base (L-KB) is a pair (T ,A) consisting of an
L-TBox T and an L-ABox A.

An interpretation I is a structure of the form (∆I , AI1 , . . . , P
I
1 , . . . a

I
1 , . . .),

where ∆I is non-empty, AIi ⊆ ∆I , P Ii ⊆ ∆I × ∆I and aIi ∈ ∆I such that
aIi 6= aIj , for ai 6= aj (i.e., we adopt the unique name assumption). The extension
CI ⊆ ∆I of a concept C is defined as usual. A concept inclusion C1 v C2 is
satisfied in I if CI1 ⊆ CI2 ; in this case we write I |= C1 v C2. I is a model for a
TBox T if all concept inclusions from T are satisfied in I. A concept inclusions
C1 v C2 follows from T , T |= C1 v C2 in symbols, if every model for T satisfies
C1 v C2. A concept C is T -satisfiable if there exists a model I for T with
CI 6= ∅. We say that I is a model for an L-KB (T ,A) if I is a model for T and
every assertion of A is satisfied in I.

An (essentially positive existential) L-query q(x1, . . . , xn) is a formula

∃y1 · · · ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of the form C(t) and
P (t1, t2), with C being an L-concept, P a role, and ti being either a variable from
the list x1, . . . , xn, y1, . . . , ym or an object name. Given an L-KB (T ,A) and an
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L-query q(x), with x = x1, . . . , xn, we say that an n-tuple a of object names
is an answer to q(x) w.r.t. (T ,A) and write (T ,A) |= q(a) if, for every model
I for (T ,A), we have I |= q(a). The data complexity of the query answering
problem for DL-Litehorn knowledge bases is in LogSpace, while for DL-Litebool
it is coNP-complete [8].

3 Types of Conservativity and Modularity

In this section, we introduce four different notions of conservative extension for
DL-Litebool and DL-Litehorn, discuss their applications, investigate their meta-
properties, and determine the computational complexity of the corresponding
reasoning tasks. By a signature we understand here a finite set Σ of concept
names and role names.3 Given a concept, role, TBox, ABox, or query E, we
denote by sig(E) the signature of E, that is, the set of concept and role names
that occur in E. It is worth noting that the symbols ⊥ and > are regarded as
logical symbols. Thus, sig(⊥) = sig(>) = ∅. A concept (role, TBox, ABox, query)
E is called a Σ-concept (role, TBox, ABox, query, respectively) if sig(E) ⊆ Σ.
Thus, P− is a Σ-role iff P ∈ Σ. As before, we will use L as a generic name for
DL-Litebool and DL-Litehorn.

Definition 1 (deductive conservative extension). Let T1 and T2 be L-TBoxes and
Σ a signature. We call T1 ∪ T2 a (deductive) conservative extension of T1 in L
w.r.t. Σ if, for every L-concept inclusion C1 v C2 with sig(C1 v C2) ⊆ Σ, we
have T1 |= C1 v C2 whenever T1 ∪ T2 |= C1 v C2.

This notion of deductive conservative extension is appropriate in the following
situations; see also [2]. (i) Suppose that T1 is a TBox which does not cover
part of its domain in sufficient detail. An ontology engineer, say Eve, decides
to expand it by axioms T2, but wants to be sure that by doing this she does
not interfere with the derivable inclusions between Σ-concepts. Then she should
check whether T1 ∪ T2 is a conservative extension of T1 in L w.r.t. to Σ. (ii) If
the designer of an ontology T2 imports an ontology T1 and wants to ensure that
no extra inclusions between sig(T1)-concepts are derivable after importing the
ontology, then again she should check whether T1∪T2 is a conservative extension
of T1 in L w.r.t. sig(T1). Observe that in DL-Litebool, T1 ∪ T2 is a deductive
conservative extension of T1 iff every T1-satisfiable DL-Litebool concept C with
sig(C) ⊆ Σ is also T1 ∪ T2-satisfiable.

Theorem 1. For any DL-Litehorn TBoxes T1, T2 and any signature Σ, the
following two conditions are equivalent:

– T1 ∪ T2 is a conservative extension of T1 in DL-Litebool w.r.t Σ;
– T1 ∪ T2 is a conservative extension of T1 in DL-Litehorn w.r.t. Σ.

3 In the languages we consider, object names do not occur in TBoxes. Therefore, in this
paper, we assume that signatures do not contain object names. When considering
languages with nominals one would have to allow for object names in signatures.
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For DL-Litehorn TBoxes, the problem of deciding whether T1 ∪T2 is a conserva-
tive extension of T1 in DL-Litehorn w.r.t Σ is coNP-complete. For DL-Litebool
TBoxes, this problem is Πp

2 -complete.

Observe that the complexity lower bounds follow immediately from the same
lower bounds for the corresponding reasoning problems in classical proposi-
tional (Horn) logic. The upper bounds are proved in the Appendix. We remind
the reader that conservativity is much harder for most DLs: it is ExpTime-
complete for EL [9], 2ExpTime-complete for ALC and ALCQI, and undecidable
for ALCQIO [2, 4]. To explain, at a very high level, the reason for these results
we consider the notion of a conservative extension in DL-Litebool: let T1 and T2
be TBoxes and Σ a signature with Σ ⊆ sig(T1). T1 ∪T2 is not a conservative ex-
tension of T1 in DL-Litebool w.r.t. Σ if, and only if, there exists a concept C with
sig(C) ⊆ Σ such that C is satisfiable relative to T1 but not relative to T1 ∪ T2.
We call such a concept C a witness-concept. Thus, a decision procedure for con-
servativity can be regarded as a systematic search for such a witness-concept. In
standard description logics such as DL-Litebool, EL, ALC, etc. the space of all
possible witnesses is infinite. (This observation implies that from the decidability
of the problem whether a concept is satisfiable w.r.t. a TBox it does not neces-
sarily follow that conservativity is decidable.) Now, we prove in the Appendix
that for DL-Litebool the existence of some witness concept implies the existence
of a witness concept of size polynomial in the size of T1 and T2 and which uses
only the numeral parameters which occur in number restrictions from T1 ∪ T2.
In contrast, in EL one can construct examples in which minimal witnesses for
non-conservativity are of double exponential size in the size of T1 and T2 [9].
In ALC, one can even enforce minimal witness concepts of triple exponential
size [2]. The reason for this difference is the availability of qualified quantifica-
tion in those language, and its absence in DL-Litebool. The result on the size of
witness concepts for DL-Litebool is easily converted into a decision procedure for
non-conservativity which is in Πp

2 : just (non-deterministically) guess a concept
C of polynomial size in the size of T1 and T2 and with sig(C) ⊆ Σ and check, by
calling an NP-oracle, whether (i) C is satisfiable w.r.t. T1 and (ii) not satisfiable
w.r.t. T1∪T2. Because of the larger size of minimal witnesses, no such procedure
exists for EL or ALC.

Consider now the situation when the ontology designer is not only interested
in preserving derivable concept inclusions, but also in preserving answers to
queries, for both DL-Litebool and DL-Litehorn TBoxes.

Definition 2 (query conservative extension). Let T1, T2 be L-TBoxes and Σ a
signature. We call T1 ∪ T2 a query conservative extension of T1 in L w.r.t. Σ
if, for every L-ABox A with sig(A) ⊆ Σ, every L-query q with sig(q) ⊆ Σ,
and every tuple a of object names from A, we have (T1,A) |= q(a) whenever
(T1 ∪ T2,A) |= q(a).

It is easy to see that query conservativity implies deductive conservativity
for both logics DL-Litebool and DL-Litehorn. Indeed, let L be one of DL-Litebool
and DL-Litehorn. Suppose that we have T1 6|= C1 v C2 but T1 ∪ T2 |= C1 v C2,
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for some L-concept inclusion C1 v C2 with sig(C1 v C2) ⊆ Σ. Consider the
ABox A = {C1(a)} and the query q = C2(a). Then clearly (T1 ∪ T2,A) |= q,
while (T1,A) 6|= q. Note that in DL-Litehorn, C1 = B1 u · · · u Bk and C2 = B,
where B,B1, . . . , Bk are basic concepts.

The following example shows, in particular, that the converse implication
does not hold.

Example 1. (1) To see that there are deductive conservative extensions which are
not query conservative, take T1 = ∅, T2 = {A v ∃P,∃P− v B} and Σ = {A,B}.
Then T2 is a deductive conservative extension of T1 (in both DL-Litebool and
DL-Litehorn) w.r.t. Σ. However, it is not a query conservative extension: let
A = {A(a)} and q = ∃y B(y); then (T1,A) 6|= q but (T2,A) |= q.

(2) Note also that query conservativity in DL-Litehorn does not imply query
conservativity in DL-Litebool. Indeed, let T1 = ∅, T2 = {A v ∃P,A u ∃P− v ⊥}
and Σ = {A}. Then T2 is not a query conservative extension of T1 in DL-Litebool
w.r.t. Σ: just take A as before and q = ∃y ¬A(y). But it is a query conservative
extension in DL-Litehorn.

In the definition of essentially positive existential queries for DL-Litebool
above, we have allowed negated concepts in queries and ABoxes. An alternative
approach would be to allow only positive concepts. These two types of queries
give rise to different notions of query conservativity: under the second definition,
the TBox T2 from Example 1 (2) is a query conservative extension of T1 = ∅
w.r.t. {A}, even in DL-Litebool. We argue, however, that it is the essentially pos-
itive queries that should be considered in the context of this investigation. The
reason is that, with positive queries, the addition of the definition B ≡ ¬A to T2
and B to Σ would result in a TBox which is not a query conservative extension
in DL-Litebool of T1 any longer. This kind of non-robust behaviour of the notion
of conservativity is clearly undesirable. Obviously, the definitions we gave are
robust under the addition of such definitions. Moreover, two extra robustness
conditions hold true.

Definition 3 (robustness). Let Σ be a signature and consΣ a ‘conservativity’
relation between TBoxes w.r.t.Σ. (For example, consΣ(T1, T1∪T2) can be defined
as ‘T1 ∪ T2 is a deductive conservative extension of T1 in DL-Litebool w.r.t. Σ’).

– We say that consΣ is robust under joins if (T0, T0 ∪T1), (T0, T0 ∪T2) ∈ consΣ
and sig(T1) ∩ sig(T2) ⊆ Σ imply (T0, T0 ∪ T1 ∪ T2) ∈ consΣ ;

– consΣ is robust under vocabulary extensions if (T1, T1 ∪ T2) ∈ consΣ implies
(T1, T1 ∪ T2) ∈ consΣ′ , for all signatures Σ′ with sig(T1 ∪ T2) ∩Σ′ ⊆ Σ.

Roughly speaking, robustness under joins means that an ontology can be safely
imported into joins of independent ontologies if each of them safely imports the
ontology: if the shared symbols of T1 and T2 are from Σ, and both T1 ∪ T0 and
T2 ∪ T0 are conservative extensions of T0 w.r.t. Σ, then the join T1 ∪ T2 ∪ T0
is a conservative extension of T0 w.r.t. Σ. In practice, this property supports
collaborative ontology development in the following sense: it implies that if two
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(or more) ontology developers extend a given ontology T0 independently and do
not use common symbols with the exception of those in a certain signature Σ
then they can safely form the union of T0 and all their additional axioms provided
that their individual extensions are safe for Σ (in the sense of deductive or,
respectively, query conservativity). This property is closely related to the well-
known Robinson consistency lemma and interpolation (see e.g., [10]) and has
been investigated in the context of modular software specification [11] as well.
We refer the reader to the Appendix for a more detailed discussion.

Robustness under vocabulary extensions is even closer to interpolation: it
states that once we know conservativity w.r.t. Σ, we also know conservativity
with respect to any signature with extra fresh symbols. The practical relevance of
this property is as follows: when specifying the signature Σ for which an ontology
developer wants to check conservativity, the developer only has to decide which
symbols from T1 and T2 she wants to include into Σ. The answer to the query
does not depend on whether Σ contains fresh symbols or not.

Theorem 2. Both deductive and query conservativity in both DL-Litebool and
DL-Litehorn are robust under joins and vocabulary extensions.

Actually, in DL-Litehorn and DL-Litebool we even have a much stronger form
of interpolation which is known as the uniform interpolation property [12, 13].
Let T be a TBox and Σ a signature. A TBox T ′ is called a uniform interpolant
for T w.r.t. Σ in L if T ′ is an L-TBox, sig(T ′) ⊆ Σ, T |= T ′, and for all L-
concept inclusions C1 v C2 with T |= C1 v C2 and sig(C1, C2)∩ sig(T ) ⊆ Σ, we
have T ′ |= C1 v C2.

Intuitively, a uniform interpolant for T w.r.t. Σ contains exactly the same
information about Σ in terms of concept inclusions as T without using additional
symbols. For most DLs, such as ALC, uniform interpolants do not necessarily
exist [2].

Theorem 3. Let L be DL-Litehorn or DL-Litebool. Then for every L-TBox T
and every signature Σ there exists a uniform interpolant for T w.r.t. Σ in L.

We note that one has to be very careful when interpreting the meaning of
uniform interpolants. Consider, for instance, T = {A v ∃P, Au ∃P− v ⊥} and
Σ = {A}. The TBox T ′ = ∅ is a uniform interpolant of T w.r.t. Σ in DL-Litebool.
However, as we saw in Example 1, the TBoxes T and T ′ behave differently with
respect to queries in Σ: (T , {A(a)}) |= ∃x¬A(x) but (T ′, {A(a)}) 6|= ∃x¬A(x).

As sketched above, one application of deductive and query conservativity is to
ensure that, when importing an ontology T , one does not change the meaning
of its vocabulary (in terms of concept inclusions or answers to queries). We
now consider the situation where the ontology T to be imported is not known
because, for example, it is still under development or because different ontologies
can be chosen. In this case, T should be regarded as a ‘black box’ which supplies
information about a signature Σ. To ensure that the meaning of the symbols in
Σ as defined by this black box is not changed by importing it into T1, one has
to check the following condition:
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Definition 4 (safety). Let Σ be a signature and T1 an L-TBox. We say that T1
is safe for Σ w.r.t. deductive (or query) conservativity in L if, for all L-TBoxes T
with sig(T )∩sig(T1) ⊆ Σ, T1∪T is a deductive (respectively, query) conservative
extension of T in L w.r.t. Σ.

This notion has been introduced in [3] where the reader can find further dis-
cussion. A natural generalisation of safety, considered in [5], is the following
property:

Definition 5 (strong deductive/query conservative extension). Let T1 and T2 be
L-TBoxes and Σ a signature. We call T1 ∪T2 a strong deductive (query) conser-
vative extension of T1 in L w.r.t. Σ if T1 ∪ T2 ∪ T is a deductive (respectively,
query) conservative extension of T1 ∪ T in L w.r.t. Σ, for every L-TBox T with
sig(T ) ∩ sig(T1 ∪ T2) ⊆ Σ.

Observe that safety is indeed a special case of strong conservativity: it covers
exactly the case where the TBox T1 in the definition of strong conservativity is
empty. A typical application of strong conservativity for ontology re-use is as
follows (see [5]). Suppose that there is a large ontology O and a subset Σ of
its signature. Assume also that the ontology designer wants to use what O says
about Σ in her own ontology T she is developing at the moment. Then instead
of importing O as a whole, it would be preferable to find a small subset T1 of O,
which says precisely the same about Σ as O does, and import only this small T1
rather than the large O. But then what are the conditions we should impose on
T1? An obvious minimal requirement is that by importing T1 into T we obtain
the same consequences for subsumptions/queries over Σ as by importing O into
T . Depending on whether concept inclusions or answers to queries are of interest,
one therefore wants O = T1 ∪ T2 to be a strong deductive or query conservative
extension of T1 w.r.t Σ. We refer the reader to [5] for further discussion and
algorithms for extracting such TBoxes from a given TBox.

Example 2. (1) Let us see first that strong deductive conservativity is indeed a
stronger notion than deductive conservativity, for DL-Litebool and DL-Litehorn.
Consider again the TBoxes T1 = ∅, T2 = {A v ∃R, A u ∃R− v ⊥}, and
Σ = {A}. Then T1 ∪ T2 is a deductive conservative extension of T1 w.r.t. Σ.
However, T1∪T2 is not a strong deductive conservative extension of T1 w.r.t. Σ.
Let T = {> v A}. Then we have T1 ∪ T2 ∪ T |= > v ⊥ but T1 ∪ T 6|= > v ⊥.

(2) We show now that an analogue of Theorem 1 does not hold for strong
deductive conservativity. Let T1 and T2 be the following DL-Litehorn TBoxes

T1 =
{
A uB v ⊥, > v ∃P1, > v ∃P2, ∃P−1 v A, ∃P−2 v B

}
,

T2 =
{> v ∃R, A u ∃R− v ⊥, B u ∃R− v ⊥}

,

and let Σ = {A,B, P1, P2}. T2 says that > 6v A t B. Now, in DL-Litebool,
T1 ∪T2 is not a strong deductive conservative extension of T1 w.r.t. Σ: just take
T = {> v AtB}. However, T1∪T2 is a strong deductive conservative extension
of T1 in DL-Litehorn.
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Obviously, the robustness conditions introduced above are of importance for the
strong versions of conservativity as well.

Theorem 4. Both strong deductive and strong query conservativity are robust
under joins and vocabulary extensions for DL-Litebool and DL-Litehorn.

In addition to these types of robustness, the following condition, which is
dual to robustness under joins, is of crucial importance for iterated applications
of the notion of safety for a signature. Suppose that T is safe for Σ1 ∪ Σ2

under some notion of conservativity and Σ1 ∩ Σ2 = ∅. Then, for any T1 with
sig(T1)∩ (sig(T )∪Σ2) ⊆ Σ1, the TBox T ∪T1 should be safe for Σ2 for the same
notion of conservativity. Without this property, one might have the situation
that a TBox is safe for a signature Σ1 ∪Σ2, but after importing a TBox for Σ1

the resulting TBox is not safe for Σ2 any longer, which is clearly undesirable.

Theorem 5 (robustness under joins of signatures). Let L be either DL-Litebool
or DL-Litehorn. If an L-TBox T is safe for a signature Σ1 ∪ Σ2 w.r.t. deduc-
tive/query conservativity in L, Σ1 ∩Σ2 = ∅ and T1 is a satisfiable L-TBox with
sig(T1) ∩ (sig(T ) ∪Σ2) ⊆ Σ1, then T ∪ T1 is safe for Σ2 w.r.t. deductive/query-
conservativity in L.

This result follows immediately from the fact that any two satisfiable L-
TBoxes in disjoint signatures are strong query conservative extensions of each
other. This property fails for a number of stronger notions of conservativity, for
example, model conservativity.

The next theorem shows that in all those cases where we have not provided
counterexamples the introduced notions of conservativity are equivalent:

DL-Litehorn deductive � query � strong deductive ≡ strong query

DL-Litebool deductive � query ≡ strong deductive ≡ strong query

It also establishes the complexity of the corresponding decision problems.

Theorem 6. Let L be either DL-Litebool or DL-Litehorn, T1 and T2 L-TBoxes,
and Σ a signature.

For L = DL-Litebool, the following conditions are equivalent:

(1) T1 ∪ T2 is a query conservative extension of T1 in L w.r.t. Σ;
(2) T1 ∪ T2 is a strong deductive conservative extension of T1 in L w.r.t. Σ;
(3) T1 ∪ T2 is a strong query conservative extension of T1 in L w.r.t. Σ.

For L = DL-Litehorn, conditions (2) and (3) are equivalent, while (1) is strictly
weaker than each of them.

For DL-Litehorn, the decision problems corresponding to conditions (1)–(3)
are all coNP-complete. For DL-Litebool, these problems are Πp

2 -complete.

We believe that the equivalences stated in Theorem 6 are somewhat surpris-
ing. For example, it can be easily seen that for ALC none of those equivalences
holds true.
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4 Model-Theoretic Characterisations of Conservativity

All the results discussed above are proved with the help of the model-theoretic
characterisations of our notions of conservativity formulated below.

Let Σ be a signature and Q a set of positive natural numbers containing 1. By
a ΣQ-concept we mean any concept of the form ⊥, >, Ai, ≥ q R, or its negation
for some Ai ∈ Σ, Σ-role R and q ∈ Q. A ΣQ-type is a set t of ΣQ-concepts
containing > such that the following conditions hold:

– for every ΣQ-concept C, either C ∈ t or ¬C ∈ t,
– if q < q′ are both in Q and ≥ q′R ∈ t then ≥ q R ∈ t,
– if q < q′ are both in Q and ¬(≥ q R) ∈ t then ¬(≥ q′R) ∈ t.

It should be clear that, for each ΣQ-type t with ⊥ /∈ t, there is an interpretation
I and a point x in it such that, for every C ∈ t, we have x ∈ CI . In this case
we say that t is realised at x in I, or that t is the ΣQ-type of x in I.

Definition 6. A set Ξ of ΣQ-types is said to be T -realisable if there is a model
for T realising all types from Ξ. We also say that Ξ is precisely T -realisable if
there is a model I for T such that I realises all types in Ξ and every ΣQ-type
realised in I is in Ξ.

Given a signature Σ, we say that interpretations I and J are Σ-isomorphic
and write I ∼Σ J if there is a bijection f : ∆I → ∆J such that f(aI) = aJ ,
for every object name a, x ∈ AI iff f(x) ∈ AJ , for every concept name A ∈ Σ,
and (x, y) ∈ P I iff (f(x), f(y)) ∈ PJ , for every role name P ∈ Σ. Clearly,
Σ-isomorphic interpretations cannot be distinguished by TBoxes, ABoxes, or
queries over Σ.

Given a set Ii, i ∈ I, of interpretations with 1 ∈ I, define the interpretation
(the disjoint union of the Ii) J =

⊕
i∈I Ii, where ∆J = {(i, w) | i ∈ I, w ∈ ∆i},

aJ = (1, aI1), for every object name a, AJ = {(i, w) | w ∈ AIi}, for every
concept name A, and PJ = {((i, w1), (i, w2)) | (w1, w2) ∈ P Ii}, for every role
name P . Given an interpretation I, we set Iω =

⊕
i∈ω Ii, where Ii = I for i ∈ ω.

Again, it should be clear that TBoxes, ABoxes or queries (over any signature)
cannot distinguish between I and Iω.

The following lemma provides an important model-theoretic property of
DL-Litebool which is used to establish model-theoretic characterisations of vari-
ous notions of conservativity.

Lemma 1. Let J be an (at most countable) model for T1 and Σ a signature
with Σ ⊆ sig(T1). Suppose that there is a model for T1∪T2 realising precisely the
same ΣQT1∪T2-types as J , where QT1∪T2 is the set of all numerical parameters
occurring in T1 ∪ T2 together with 1. Then there is a model I∗ for T1 ∪ T2 such
that I∗ ∼Σ J ω.

In particular, I∗ |= A iff J |= A, for all ABoxes A over Σ, I∗ |= T iff
J |= T , for all TBoxes T over Σ, and I∗ |= q(a) iff J |= q(a), for all queries
q(a) over Σ.
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In the case of DL-Litehorn we need some extra definitions. By a ΣQh-concept
we mean any concept of the form ⊥, Ai or ≥ q R, for some Ai ∈ Σ, Σ-role R
and q ∈ Q. Given a ΣQ-type t, let t+ = {B ∈ t | B a ΣQh-concept}. Say that a
ΣQ-type t1 is h-contained in a ΣQ-type t2 if t+1 ⊆ t+2 . The following two notions
characterise conservativity for DL-Litehorn:

Definition 7. A set Ξ of ΣQ-types is said to be sub-precisely T -realisable if
there is a model I for T such that I realises all types from Ξ, and every ΣQ-type
realised in I is h-contained in some type from Ξ. We also say that Ξ is join-
precisely T -realisable if there is a model I for T such that, for every ΣQ-type t
realised in I, Ξt = {ti ∈ Ξ | t+ ⊆ t+i } 6= ∅ and t+ =

⋂
ti∈Ξt

t+i . (It follows that
t+ ⊆ t+i , for all ti ∈ Ξt, and thus, Ξ is sub-precisely T -realisable.)

The table below gives characterisations of our four notions of conservativ-
ity in the following form: let Σ be a signature and L be either DL-Litebool or
DL-Litehorn; then T1 ∪ T2 is an α conservative extension of T1 w.r.t. Σ in L iff
every precisely T1-realisable set Ξ of ΣQT1∪T2 types is ‘. . . T1 ∪ T2-realisable’
(QT1∪T2 is the set of numerical parameters occurring in T1∪T2 together with 1).

language L
conservativity α DL-Litebool DL-Litehorn

deductive T1 ∪ T2-realisable T1 ∪ T2-realisable

query sub-precisely
T1 ∪ T2-realisable

strong deductive
precisely

T1 ∪ T2-realisable join-precisely
T1 ∪ T2-realisablestrong query

These characterisations are proved in the Appendix, where it is also shown that
in each case it suffices to consider only those sets Ξ the size of which is bounded
by a polynomial function in the size of the TBoxes. Then, for DL-Litebool TBoxes
T1 and T2, one can decide whether T1 ∪ T2 is a not a strong deductive con-
servative extension by (non-deterministically) guessing a polynomial set Ξ of
ΣQT1∪T2-types and checking that it is precisely T1-realisable and not precisely
T1 ∪ T -realisable. The Appendix provides a polynomial non-deterministic algo-
rithm deciding whether a given set of ΣQ-types is precisely T -realisable, which
yields a Πp

2 upper bound for strong deductive conservativity in DL-Litebool.
Similarly, for DL-Litehorn TBoxes T1 and T2, one can decide whether T1 ∪ T2 is
a query (or strong deductive) conservative extension of T1 by guessing Ξ and
checking that it is precisely T1-realisable and not sub-precisely (respectively, join-
precisely) T1 ∪ T2-realisable. The Appendix provides polynomial deterministic
algorithms deciding whether a given set of ΣQ-types is precisely, sub-precisely
and join-precisely T -realisable, for a DL-Litehorn TBox T , which give coNP
upper bounds for query and strong deductive conservativity. The lower bounds
follow immediately from the corresponding lower bounds for propositional logic.
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5 Conclusion

We have analysed the relation between different notions of conservative exten-
sion in description logics DL-Litebool and DL-Litehorn, and proved that the corre-
sponding reasoning problems are not harder than the same problems in propo-
sitional logic. Moreover, we have also shown that important meta-properties
for modular ontology engineering, such as robustness under joins, vocabulary
extensions, and iterated import of ontologies, hold true for these notions of con-
servativity.
Acknowledgements. This work was partially supported by U.K. EPSRC grant
GR/S63175.

References

1. Antoniou, G., Kehagias, A.: A note on the refinement of ontologies. Int. J. of
Intelligent Systems 15(7) (2000) 623–632

2. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logic. In: Proc. of KR 2006, AAAI Press (2006)
187–197

3. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Proc. of IJCAI 2007. (2007) 298–303

4. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI 2007. (2007) 453–458

5. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: Extract-
ing modules from ontologies. In: Proc. of the 16th International World Wide Web
Conference (WWW-2007). (2007)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI 2005. (2005) 602–607

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR 2006. (2006)
260–270

8. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light
of first-order logic. In: Proc. of AAAI 2007. (2007)

9. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. To appear in the Proceedings of 21st Conference on Automated Deduction
(CADE-21) (2007)

10. Chang, C., Keisler, H.: Model Theory. Elsevier (1990)
11. Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In

Huet, G., Plotkin, G., eds.: Logical Environments, Cambridge University Press,
New York (1993) 83–130

12. Pitts, A.: On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic 57(1) (1992) 33–52

13. Visser, A.: Uniform interpolation and layered bisimulation. In Hájek, P., ed.:
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1 Introduction

In recent years, lightweight description logics (DLs) have experienced increased in-
terest because they admit highly efficient reasoning on large-scale ontologies. Most
prominently, this is witnessed by the ongoing research on the DL-Lite and EL families
of DLs, but see also [11, 14] for other examples. The main application of EL and its
relatives is as an ontology language [5, 1, 3]. In particular, the DL EL++ proposed in
[1] admits tractable reasoning while still providing sufficient expressive power to rep-
resent, for example, life-science ontologies. In contrast, the DL-Lite family of DLs is
specifically tailored towards data intensive applications [8, 6, 7]. In such applications,
instance checking and conjunctive query answering are the most relevant reasoning
tasks and should thus be computationally cheap, preferably tractable. When determin-
ing the computational complexity of these task for a given DL, it is often realistic to
consider data complexity, where the size of the input is measured only in terms of the
ABox (which represents the data and tends to be large), but not in terms of the TBox
and the query concept (which tend to be comparatively small). This is in contrast to
combined complexity, where also the size of the TBox and query concept are taken into
account.

The aim of this paper is to analyse the suitability of the EL family of DLs for data in-
tensive applications. In particular, we analyse the data complexity of instance checking
and conjunctive query answering in extensions of EL. For the DL-Lite family, such an
investigation has been carried out in [7], with complexities ranging from LOGSPACE-
complete to coNP-complete. It follows from the results in [7] that, at least w.r.t. general
TBoxes, we cannot expect the data complexity to be below PTIME for members of the
EL family. The reason is that, in a crucial aspect, DL-Lite is even more lightweight
than EL: in contrast to the latter, the former does not allow for qualified existential (nor
universal) restrictions and thus the interaction between different domain elements is
very limited. When analyzing the data complexity of instance checking and conjunctive
query answering in EL and its extensions, we therefore concentrate on mapping out the
boundary of tractability.

We consider a wide range of extensions of EL, and analyze the data complexity
of the mentioned tasks with acyclic TBoxes and with general TBoxes. When select-
ing extensions of EL, we focus on DLs for which instance checking has been proved
intractable regarding combined complexity in [1]. We show that, in most of these ex-
tensions, instance checking is also intractable regarding data complexity. The notable
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exceptions are EL extended with globally functional roles and EL extended with inverse
roles. It is shown in [2] that instance checking in these DLs is EXPTIME-complete re-
garding combined complexity. On the other hand, it follows from results in [11] that
instance checking is tractable regarding data complexity in ELIf , the extension of EL
with both globally functional and inverse roles. In this paper, we extend this result to
conjunctive query answering in ELIf is still tractable regarding data complexity.

We recommend to the reader the papers [15, 16], which also analyze the complexity
of conjunctive query answering in extensions of EL. The results in these papers have
been obtained independently of and in parallel to the results in the current paper.

2 Preliminaries

We use standard notation for the syntax and semantics of EL and its extensions, see [4].
The additional constructors we consider are atomic negation ¬A, disjunction C t D,
sink restrictions ∀r.⊥, value restrictions ∀r.C, at-most restrictions (≤ n r), at-least
restrictions (≥ n r), inverse roles ∃r−.C, role negation ∃¬r.C, role union ∃r ∪ s.C,
and transitive closure of roles ∃r+.C. We denote extensions of EL in a canonical way,
writing e.g. EL∀r.⊥ for EL extended with sink restrictions and ELCtD for EL extended
with disjunction. Since we perform a very fine grained analysis, EL(≤nr) means the
extension of EL with (≤ n r) for some fixed n (but not for some fixed r). We will also
consider EL extended with global at-most restrictions: ELkf denotes the version of EL
obtained by reserving a set of k-functional roles that satisfy |{e | (d, e) ∈ rI}| ≤ k
for all interpretations I and all d ∈ ∆I . Instead of 1-functional roles, we will speak of
functional roles as usual.

We will consider acyclic TBoxes which are defined in the usual way, and general
TBoxes which are finite sets of concept inclusions C v D. As usual when analyzing
data complexity, we do not admit complex concepts in the ABox. Thus, ABoxes are
sets of assertions A(a) and r(a, b), where A is a concept name. Most of our results do
not depend on the unique name assumption (UNA), which states that aI 6= bI for all
distinct individual names a, b. Whenever they do, we will state explicitly whether the
UNA is adopted or not. We write A, T |= C(a) to denote that a is an instance of C
w.r.t. A and T (defined in the usual way). Also, we use Ind(A) to denote the set of
individual names occurring in A.

Since conjunctive query answering is not a decision problem, we will study con-
junctive query entailment instead. For us, a conjunctive query is a set q of atoms A(v)
and r(u, v), where A is a concept name, r a role name or an inverse role, and u, v are
variables. We use Var(q) to denote the variables used in q. If I is an interpretation and
π is a mapping from Var(q) to ∆I , we write I |=π A(v) if π(v) ∈ AI , I |=π r(u, v)
if (π(u), π(v)) ∈ rI , and I |=π q if I |=π α for all α ∈ q. If π is not important, we
simply write I |= q. Finally, A, T |= q means that for all models I of the ABox A and
the TBox T , we have I |= q. Now, conjunctive query entailment is to decide given A,
T , and q, whether A, T |= q. It is not hard to see that instance checking is a special
case of conjunctive query entailment. Note that we do not allow individual names in
conjunctive queries in place of variables. It is well-known that conjunctive query entail-

Proceeding of DL2007 - Long Papers 89



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 90 — #100 i
i

i
i

i
i

ment in which individual names are allowed in the query can be polynomially reduced
to conjunctive query entailment as introduced here, see for example [9].

3 Lower Bounds

In [17], Schaerf proves that instance checking in EL¬A w.r.t. empty TBoxes is co-NP-
hard regarding data complexity. He uses a reduction from a variant of SAT that he
calls 2+2-SAT. Our lower bounds for extensions of EL are obtained by variations of
Schaerf’s reduction. They all apply to the case of acyclic TBoxes.

Before we start, a note on TBoxes is in order. We will usually not consider the case
where there is no TBox at all because, then, ABoxes that are restricted to concept names
are extremely inexpressive. Actually, it is not hard to show that, without TBoxes, con-
junctive query containment is tractable regarding data complexity for all extensions of
EL considered in this paper with the exception of ELkf , for which it is coNP-complete
(which is proved below).

3.1 Basic Cases

A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is
a propositional letter or a truth constant 1, 0. A 2+2 formula is a finite conjunction of
2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula
is satisfiable. It is shown in [17] that 2+2-SAT is NP-complete. To get started with our
lower bound proofs, we repeat Schaerf’s proof showing that instance checking in EL
extended with primitive negation is co-NP-hard regarding data complexity.

Let ϕ = c0 ∧ · · · ∧ cn−1 be a 2+2-formula in m propositional letters q0, . . . , qm−1.
Let ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i < n. We use f , the propositional letters
q0, . . . , qm−1, the truth constants 1, 0, and the clauses c0, . . . , cn−1 as individual names.
Define the TBox T as {A .= ¬A} and the ABox Aϕ as follows, where c, p1, p2, n1,
and n2 are role names:

Aϕ := {A(1), A(0), c(f, c0), . . . , c(f, cn−1)}
∪ ⋃

i<n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}
Models of Aϕ and T represent truth assignments for ϕ by way of setting qi to true iff
qi ∈ AI . Set C := ∃c.(∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A). Intuitively, C expresses
that ϕ is not satisfied, i.e., there is a clause in which the two positive literals and the
two negative literals are all false. It is not hard to show that Aϕ, T 6|= C(f) iff ϕ

is satisfiable. Thus, instance checking in EL¬A w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity.

This reduction can easily be adapted to EL∀r.⊥. In all interpretations I, ∃r.> and
∀r.⊥ partition the domain ∆I and can thus be used to simulate the concept name A and
its negation ¬A in the original reduction. We can thus simply replace the TBox T with
T ′ := {A .= ∃r.>, A

.= ∀r.⊥}.
In some extensions of EL, we only find concepts that cover the domain, but not

necessarily partition it. An example is EL(≤kr), k ≥ 1, in which ∃r.> and (≤ k r)
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provide a covering (for k = 0, observe that (≤ k r) is equivalent to ∀r.⊥). Interestingly,
this does not pose a problem for the reduction. In the case of EL(≤kr), we use the TBox
T := {A .= ∃r.>, A

.= (≤ k r)}, and the ABox Aϕ as well as the query concept C
remain unchanged. Let us show that Aϕ, T 6|= C(f) iff ϕ is satisfiable. For the “if”
direction, it is straightfoward to convert a truth assignment satisfying ϕ into a model I
of Aϕ and T such that f /∈ CI . For the “only if” direction, let I be a model of Aϕ and
T such that f /∈ CI . Define a truth assignment t by choosing for each propositional
letter qi, a truth value t(qi) such that t(qi) = 1 implies qIi ∈ A and t(qi) = 0 implies
qIi ∈ A. Such a truth assignment exists since A and A cover the domain. However, it
is not necessarily unique since A and A need not be disjoint. To show that t satisfies
ϕ, assume that it does not. Then there is a clause ci = (pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2)
that is not satisfied by t. By definition of t and Aϕ, it is not hard to show that cIi ∈
(∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A)I and thus f ∈ CI , which is a contradiction.

The cases EL∀r.C and EL∃¬r.C can be treated similarly because a covering of the
domain can be achieved by choosing the concepts ∃r.> and ∀r.X in the case of EL∀r.C ,
and ∃r.> and ∃¬r.> in the case of EL∃¬r.C . In the case, ELCtD, we use a TBox
T ′ := {V .= X t Y }. In all models of T ′, the extension of V is covered by the
concepts X and Y . Thus, we can use the above ABox Aϕ, add V (qi) for all i < m, and
use the TBox T := T ′ ∪ {A .= X,A

.= Y } and the same query concept C as above.
The case EL∃r+.C is quite similar. In all models of the TBox T ′ := {V .= ∃r+.C}, the
extension of V is covered by the concepts ∃r.C and ∃r.∃r+.C. Thus, we can use the
same ABox and query concept as for ELCtD, together with the TBox T := T ′∪{A .=
∃r.C,A

.= ∃r.∃r+.C}.

Theorem 1. For the following, instance checking w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity: EL¬A, EL∀r.⊥, EL∀r.C , EL∃¬r.C , ELCtD, EL∃r+.C , and
EL(≤kr) for all k ≥ 0.

3.2 Cases that depend on the UNA

The results in the previous subsection are independent of whether or not the UNA is
adopted. In the following, we consider some cases that depend on the (non-)UNA, start-
ing with EL(≥k r).

In EL(≥k r), k ≥ 2, it does not seem possible to find two concepts that a priori cover
the domain and can be used to represent truth values in truth assignments. However, if
we add slightly more structure to the ABox, such concepts can be found. We treat only
the case k = 3 explicitly, but it easily generalizes to other values of k. Consider the
ABox

A = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), r(b2, b3), r(b1, b3)}.
Without the UNA, there are two cases for models of A: either two of b1, b2, b3 identify
the same domain element or they do not. In the first case, a satisfies ∃r4.>, where ∃r4

denotes the four-fold nesting of ∃r. In the second case, a satisfies (≥ 3 r). It follows
that we can reduce satisfiability of 2+2 formulas using a reduction very similar to the
one for EL(¬A). The main differences are that (i) a copy of A is plugged in for each qi,
with a replaced by qi and (ii) we use the TBox T := {A .= ∃r4.>, A

.= (≥ 3 r)}.
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Unlike the previous results, this lower bound clearly depends on the fact that the
UNA is not adopted. We leave it as an open problem whether instance checking in
EL(≥k r) w.r.t. acyclic TBoxes is tractable if the UNA is adopted. In the following, we
show that instance checking becomes coNP-hard under the UNA if we admit general
TBoxes. Again, we only treat the case k = 3 explicitly. Define a TBox

T := { V v ∃r.X u ∃r.Y u ∃r.Z
(≥ 3 r) v A

∃r.(X u Y ) v A ∃r.(X u Z) v A ∃r.(Y u Z) v A }.

In models of T , the extension of V is covered by A and A. Therefore, we can adapt the
reduction by using the reduction ABox defined for ELCtD.

Theorem 2. For EL(≥k r) with k ≥ 2, instance checking is co-NP-hard in the follow-
ing cases: (i) w.r.t. acyclic TBoxes and without UNA and (ii) w.r.t. general TBoxes and
with (or without) UNA.

Another case that depends on the (non-)UNA is ELkf with k ≥ 2. We can prove coNP-
hardness provided that the UNA is not adopted. For the case EL1f , we will prove in
Section 4 that instance checking (and even conjunctive query entailment) is tractable
regarding data complexity, with or without the UNA. For simplicity, we only treat the
case EL2f explicitly. It is easy to generalize our argument to larger values of k. Like in
EL(≥3r), in EL2f it does not seem possible to find two concepts that cover the domain
without providing additional structure via an ABox. Set

A′ = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), A(b1), A(b2), B(b3)}}.

where r is 2-functional and thus at least two of b1, b2, b3 have to identify the same
domain element. We can distinguish two cases: either b3 is identified with b1 or b2, then
a satisfies ∃r.(A u B). Or b1 and b2 are identified, then a satisfies ∃r3.>, where ∃r3

denotes the three-fold nesting of ∃r. It follows that we can reduce satisfiability of 2+2
formulas using a reduction very similar to that for EL(≥3r) above. Interestingly, we
do not need a TBox at all to make this work. We take the original ABox Aϕ defined
for EL¬A, add a copy of A′ for each qi with a replaced by qi, and replace A(1) with
{r(1, e), A(e), B(e)} and A(0) with {r(⊥, e0), r(e0, e1), r(e1, e2)}. Thus, 1 satisfies
∃r.(A u B) (representing true) and 0 satisfies ∃r3.> (representing false). It remains to
modify the query concept to C ′ := ∃c.(∃p1.∃r3.> u ∃p2.∃r3.> u ∃n1.∃r.(A u B) u
∃n2.∃r.(A uB)).

With the UNA and without TBoxes, instance checking in ELkf , k ≥ 2 is tractable
regarding data complexity. The same holds for conjunctive query answering. In a nut-
shell, a polytime algorithm is obtained by considering the input ABox as a (complete)
description of an interpretation and then checking all possible matches of the conjunc-
tive query. A special case that has to be taken into account are inconsistent ABoxes such
as those containing {r(a, b1), r(a, b2), r(a, b3)} for a 2-functional role r and with the
bi mutually distinct. Such inconsistencies are easily detected. If found, the algorithm
returns “yes” because an inconsistent ABox entails every consequence.
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If we add TBoxes, instance checking in ELkf , k ≥ 2 becomes co-NP-hard also
with the UNA. We only treat the case k = 3, but our arguments generalize. As in the
case of EL2f without UNA, we have to give additional structure to the ABox. Consider
the TBox T ′ = {V .= ∃r.B} and the ABox

A = {V (a), r(a, b1), r(a, b2), r(a, b3), s(a, b1), s′(a, b2), s′(a, b3)}.

with r a 3-functional role. Then a satisfies ∃r.B in all models I of A and T . Because
of the UNA, we can distinguish two cases: either b1 satisfies B or one of b2, b3 does.
In the first case, a satisfies ∃s.A and in the second case, it satisfies ∃s′.A. We can
now continue the reduction as in the previous cases. Start with the ABox Aϕ from the
reduction for EL¬A and add V (qi) for all i < m. Then use the TBox T = T ′ ∪ {A .=
∃s.A,A

.= ∃s′.A} and the original query concept C.

Theorem 3. For ELkf with k ≥ 2, instance checking is

– tractable w.r.t. the empty TBox and with UNA;
– co-NP-hard in the following cases: (i) w.r.t. the empty TBox and without UNA, and

(ii) w.r.t. acyclic TBoxes and with UNA.

4 Upper Bound

We consider the extension ELIf of EL with inverse roles and globally functional roles.
If any of these two is added to EL, instance checking w.r.t. general TBoxes becomes
EXPTIME-complete regarding combined complexity [1]. However, it follows from the
results on Horn-SHIQ in [11] that instance checking in ELIf w.r.t. general TBoxes is
tractable regarding data complexity. A direct proof can be found in [12]. Here, we show
that even conjunctive query answering in ELIf is tractable regarding data complexity.

In ELIf , roles and also their inverses can be declared functional using statements
> v (≤ 1 r) in the TBox. For conveniently dealing with inverse roles, we use the
following convention: if r = s− (with s a role name), then r− denotes s.

As a preliminary, we assume that TBoxes and ABoxes are in a certain normal form,
which we introduce next. For TBoxes, we assume that all concept inclusions are of one
of the following forms, where A, A1, A2, and B are concept names or > and r is a role
name or an inverse role:

A v B, A v ∃r.B, > v (≤ 1 r)
A1 uA2 v B, ∃r.A v B

The normal form for ABoxes simply requires that r(a, b) ∈ A iff r−(b, a) ∈ A, for all
role names r and individual names a, b.

Let A be an ABox and T a TBox. T can be converted into normal form T ′ in
polytime, by introducing additional concept names. See [1] for more details. Converting
A into normal form A′ can obviously also be done in polytime. Moreover, it is not too
difficult to see that for every conjunctive query q not using any of the concept names
that occur in T ′ but not in T , we have A, T |= q iff A′, T ′ |= q.

Proceeding of DL2007 - Long Papers 93



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 94 — #104 i
i

i
i

i
i

Another (standard) assumption that we make w.l.o.g. is that conjunctive queries are
connected, i.e., for all u, v ∈ Var(q), there are atoms r(u0, u1), . . . , r(un−1, un) ∈ q,
n ≥ 0, such that u = u0 and v = un. Entailment of non-connected queries is easily
(and polynomially) reduced to entailment of connected queries, see e.g. [9].

Our algorithm for conjunctive query answering in ELIf is based on canonical mod-
els. To introduce canonical models, we need some preliminaries. Let T be a TBox and
Γ a finite set of concept names. We use

subT (Γ ) := {A ∈ NT
C | u

A′∈Γ
A′ vT A}

to denote the closure of Γ under subsuming concept names w.r.t. T . For the next def-
inition, the reader should intuitively assume that we want to make all elements of Γ
(jointly) true at a domain element in a model of T . If A ∈ Γ and A v ∃r.B ∈ T , then
we say that Γ has ∃r.B-obligation O, where

O = subT
( {B} ∪ {B′ ∈ NTC | ∃A′ ∈ Γ : ∃r−.A′ v B′ ∈ T } ∪O′ ),

and O′ = ∅ if > v (≤ 1 r) /∈ T and O′ = {B′ ∈ NTC | ∃A′ ∈ Γ : A′ v ∃r.B′ ∈ T }
otherwise.

Let T be a TBox andA an ABox, both in normal form, for which we want to decide
conjunctive query entailment (for a yet unspecified query q). To define a canonical
model for A and T , we have to require that A is admissible w.r.t. T . What admissibility
means depends on whether or not we make the UNA: A is admissible w.r.t. T if (i) the
UNA is made and A is consistent w.r.t. T or (ii) the UNA is not made and (> v (≤
1 r)) ∈ T implies that there are no a, b, c ∈ Ind(A) with r(a, b), r(a, c) ∈ A and b 6= c.

We define a sequence of interpretations I0, I1, . . . , and the canonical model for A
and T will then be the limit of this sequence. To facilitate the construction, it is helpful
to use domain elements that have an internal structure. An existential for T is a concept
∃r.A that occurs on the right-hand side of some inclusion in T . A path p for T is a
finite (possibly empty) sequence of existentials for T . We use ex(T ) to denote the set
of all existentials for T , ex(T )∗ to denote the set of all paths for T , and ε to denote the
empty path. All interpretations Ii in the above sequence will satisfy

∆Ii := {〈a, p〉 | a ∈ Ind(A) and p ∈ ex∗(T )}
For convenience, we use a slightly non-standard representation of interpretations when
defining the sequence I0, I1, . . . and canonical interpretations: the function ·I maps
every element d ∈ ∆I to a set of concept names dI instead of every concept name A to
a set of elements AI . It is obvious how to translate back and force between the standard
representation and this one, and we will switch freely in what follows.

To start to construction of the sequence I0, I1, . . . , define I0 as follows:

∆I0 := {〈a, ε〉 | a ∈ Ind(A)}
rI0 := {(〈a, ε〉, 〈b, ε〉) | r(a, b) ∈ A}

〈a, ε〉I0 := {A ∈ NC | A, T |= A(a)}
aI0 := 〈a, ε〉
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Now assume that Ii has already been defined. We want to construct Ii+1. An element
〈a, p〉 ∈ ∆Ii is a leaf in Ii if there is no α ∈ ex(T ) such that 〈a, pα〉 ∈ ∆Ii . If existant,
select a leaf 〈a, p〉 and an α = ∃r.A ∈ ex(T ) such that 〈a, p〉Ii has α-obligation O and
(i) (> v (≤ 1 r)) /∈ T or (ii) there is no 〈b, q〉 ∈ ∆Ii with (〈a, pt〉, 〈b, q〉) ∈ rIi . Then
do the following:

– add 〈a, pα〉 to ∆Ii ;
– if r is a role name, add (〈a, p〉, 〈a, pα〉) to rIi ;
– if r = s−, add (〈a, pα〉, 〈a, p〉) to sIi ;
– set 〈a, pα〉Ii := O.

The resulting interpretation is Ii+1 (and Ii+1 = Ii if there are no 〈a, p〉 and α to be
selected). We assume that the selected leaf 〈a, p〉 is such that the length of p is minimal,
and thus all obligations are eventually satisfied.

Finally, the canonical model I for A and T is defined by setting ∆I :=
⋃

i ∆Ii ,
AI :=

⋃
i AIi , rI :=

⋃
i rIi , and aI := aI0 . A proof of the following result can be

found in the full version [13].

Lemma 1. The canonical model I for T and A is a model of T and of A.

Our aim is to prove that we can verify whether A and T entail a conjunctive query q by
checking whether the canonical model I forA and T matches q. Key to this result is the
observation that the canonical model of A and T can be homomorphically embedded
into any model of A and T . We first define homomorphisms and then state the relevant
lemma.

Let I and J be interpretations. A function h : ∆I → ∆J is a homomorphism from
I to J if the following holds:

1. for all individual names a, h(aI) = aJ ;
2. for all concept names A and all d ∈ ∆I , d ∈ AI implies h(d) ∈ AJ ;
3. for all d, e ∈ ∆I with (d, e) ∈ rI , r a (possibly inverse) role, (h(d), h(e)) ∈ rJ .

Lemma 2. Let I be the canonical model for A and T , and J a model of A and T .
Then there is a homomorphism h from I to J .

Proof. Let I and J be as in the lemma. For each interpretation Ii in the sequence
I0, I1, . . . used to construct I, we define a homomorphism hi from Ii to J . The limit
of the sequence h0, h1, . . . is then the desired homomorphism h from I to J . To start,
define h0 by setting h0(〈a, ε〉) := aJ for all individual names a. Clearly, h0 is a homo-
morphism:

– Condition 1 is satisfied by construction.
– For Condition 2, let 〈a, ε〉 ∈ AI0 . Then A, T |= A(a). Since J is a model of A and
T , h0(〈a, ε〉) = aJ ∈ AJ .

– For Condition 3, let (〈a, ε〉, 〈b, ε〉) ∈ rI0 . Then r(a, b) ∈ A and since J is a model
of A and by definition of h0, we have (h0(〈a, ε〉), h0(〈b, ε〉)) ∈ rJ .

Proceeding of DL2007 - Long Papers 95



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 96 — #106 i
i

i
i

i
i

Now assume that hi has already been defined. If Ii+1 = Ii, then hi+1 = hi. Otherwise,
there is a unique 〈a, p〉 ∈ ∆Ii+1 \ ∆Ii . Let p = qα. Then 〈a, q〉 ∈ ∆Ii , and there
is an α = ∃r.B-obligation O of 〈a, q〉Ii such that 〈a, p〉Ii+1 = subT (O). Let A ∈
〈a, q〉Ii such that A v ∃r.B ∈ T . By Condition 2 of homomorphisms, we have d =
hi(〈a, q〉) ∈ AJ . Since A v ∃r.B ∈ T , there is an e ∈ BJ with (d, e) ∈ rJ . Define
hi+1 as the extension of hi with hi+1(〈a, p〉) := e. We prove that the three conditions
of homomorphisms are preserved:

– Condition 1 is untouched by the extension.
– For Condition 2, let 〈a, p〉 ∈ A′Ii+1 . By definition of obligations, we have that
∃r−.uB′∈〈a,q〉I0 B′ vT subT (O). Since hi(〈a, q〉) = d and by Condition 2 of
homomorphisms, d ∈ (uB′∈〈a,q〉I0 B′)J . Since (d, e) ∈ rJ , we thus have e ∈
(uB′∈subT (O)B

′)J and it remains to remind that A′ ∈ 〈a, p〉Ii+1 = subT (O).
– Condition 3 was satisfied by Ii and is preserved by the extension to Ii+1. o

Lemma 3. Let I be the canonical model for A and T , and q a conjunctive query. Then
A, T |= q iff I |= q.

Proof. Let I and q be as in the lemma. If I 6|= q, then A, T 6|= q since, by Lemma 1,
I is a model of A and T . Now assume I |=π q, and let J be a model of A and T .
By Lemma 2, there is a homomorphism h from I to J . Define π′ : Var(q) → ∆J by
setting pi′(v) := h(π(v)). It is easily seen that J |=π′

q. o

Thus, we can decide query entailment by looking only at the canonical model. At this
point, we are faced with the problem that we cannot simply construct the canonical
model I and check whether I |= q since I is infinite. However, we can show that if
I |= q, then I |=π q for some match π that maps all variables to elements that can be
reached by travelling only a bounded number of role edges from some ABox individual.
Thus, it suffices to construct a sufficiently large “initial part” of I and check whether it
matches q.

To make this formal, let n be the size of A, m the size of T , and k the size of q. In
the following, we use |p| to denote the length of a path p. The initial canonical model
I ′ for A and T is obtained from the canonical model I for A and T by setting

∆I′ := {〈a, p〉 | |p| ≤ 2m + k}
AI′ := AI ∩∆I′

rI
′
:= rI ∩ (∆I′ ×∆I′)

aI
′
:= aI

Lemma 4. Let I be the canonical model for A and T , I ′ the initial canonical model,
and q a conjunctive query. Then I |= q iff I ′ |= q.

Proof. Let I, I’, and q be as in the lemma. It is obvious that I ′ |= q implies I |= q.
For the converse direction, let I |=π q. If π(v) = 〈a, p〉 with |p| ≤ 2m + k for all
v ∈ Var(q), then I ′ |=π q. Otherwise, since queries are connected, there is a v ∈ Var(q)
with π(q) = 〈a, p0〉, |p0| > 2m, and such that for all u ∈ Var(q) with π(u) = 〈b, q〉,
we have a = b and p0 is a prefix of q.
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Since |p0| > 2m, we can split p0 into p1p2p3 such that 〈a, p1〉I = 〈a, p1p2〉I , and
p2 6= ε. Now, let π′ : Var(q) → ∆I be obtained by setting π′(v) := 〈a, p1p3q〉 if
π(v) = 〈a, p1p2p3q〉. We show the following: for all v ∈ Var(q),

1. π(v)I = π′(v)I ;
2. I |=π′

q.

For Point 1, let π(v) = 〈a, p1p2p3q〉. Then π(v′) = 〈a, p1p3q〉. We prove by in-
duction on the length of p that for all prefixes p of p3q, 〈a, p1p〉I = 〈a, p1p2p〉I .
For p = ε, this is true by choice of p1 and p2. Now assume that the claim has al-
ready been shown for p, and let α ∈ ex(T ) such that pα is a prefix of p3q. Since
〈ap1p〉I = 〈a, p1p2p〉I , 〈ap1pα〉I is the α-obligation of 〈ap1p〉I , and 〈ap1p2pα〉I is
the α-obligation of 〈ap1p2p〉I , it is readily checked that 〈ap1pα〉I = 〈a, p1p2pα〉I .
This finishes the proof of Point 1

For Point 2, let A(v) ∈ q. By Point 1, I |=π A(v) implies I |=π′
A(v). Now let

r(u, v) ∈ q. Then (π(u), π(v)) ∈ rI . By construction of I, this implies that one of the
following holds:

1. π(u) = 〈a, p1p2p3q〉 and π(v) = 〈a, p1p2p3qα〉 for some α = ∃r.B ∈ ex(T );
2. π(u) = 〈a, p1p2p3qα〉 and π(v) = 〈a, p1p2p3q〉 for some α = ∃r−.B ∈ ex(T ).

In Case 1, we have π′(u) = 〈a, p1p3q〉 and π(v) = 〈a, p1p3qα〉. Again by construction
of I, this means (π′(u), π′(v)) ∈ rI . Case 2 is analogous.

When applying this construction exhaustively, we eventually obtain a π∗ such that
π∗(v) = 〈a, p〉 with |p| ≤ 2m + k for all v ∈ Var(q) o

The initial canonical model I ′ for A and T can be constructed in time polynomial
in the size of A. In particular, (i) I0 can be constructed in polytime since, due to the
results of [11, 12], instance checking in ELIf is tractable regarding data complexity;
(ii) obligations can be computed in polytime since subsumption in ELIf w.r.t. general
TBoxes is decidable and the required checks are independent of the size of A; (iii) the
number of elements in the initial canonical model is bounded by ` := n ·m2m+k and is
thus independent of the size of A.

Our algorithm for deciding entailment of a conjunctive query q by a TBox T and
ABoxA in normal form is as follows. If the UNA is made, we first check consistency of
A w.r.t. T using one of the polytime algorithms from [11, 12]. If A is inconsistent w.r.t.
T , we answer “yes”. If the UNA is not made, then we convert A into an ABox A′ that
is admissible w.r.t. T , and continue working with A′. Obviously, the conversion can be
done in time polynomial in the size of A simply by identifying ABox individuals. Both
with and without UNA, at this point we have an ABox that is admissible w.r.t. T . The
next step is to construct the initial canonical structure I ′ for T and A, and then check
matches of q against this structure. The latter can be done in time polynomial in the size
of A: there are at most `k (and thus polynomially many) mappings τ : Var(q) → ∆I′ ,
and each of them can be checked for being a match in polynomial time.

Theorem 4. In ELIf , conjunctive query w.r.t. general TBoxes is in P regarding data
complexity.

A matching lower bound can be taken from [7] (which relies on the presence of general
TBoxes and already applies to the instance problem), and thus we obtain P-completeness.
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Extensions of EL w.r.t. acyclic TBoxes w.r.t. general TBoxes

EL¬A coNP-complete [17] coNP-complete [17]

ELCtD coNP-complete coNP-complete

EL∀r.⊥, EL∀r.C coNP-complete coNP-complete

EL(≤kr), r ≥ 0 coNP-complete coNP-complete

ELkf , k ≥ 2 w/o UNA coNP-complete coNP-complete
(even w/o TBox)

ELkf , k ≥ 2 with UNA coNP-complete coNP-complete
(in P w/o TBox)

EL(≥kr), k ≥ 2 w/o UNA coNP-complete coNP-complete

EL(≥kr), k ≥ 2 with UNA in coNP coNP-complete

EL∃¬r.C coNP-hard coNP-hard

EL∃r∪s.C coNP-hard coNP-hard

EL∃r+.C coNP-hard coNP-hard

ELIf in P P-complete

Table 1. Complexity of instance checking and conjunctive query entailment

5 Summary

The results of our investigation are summarized in Table 1, and in all cases they apply
both to instance checking and conjunctive query entailment. The coNP upper bounds
are a consequence of the results in [9]. When the UNA is not explicitly mentioned,
the results hold both with and without UNA. We point out two interesting issues. First,
for all of the considered extensions we were able to show tractability regarding data
complexity if and only if the logic is convex regarding instances, i.e., A, T |= C(a)
with C = D0 t · · · t Dn−1 implies A, T |= Di(a) for some i < n. It would be
interesting to capture this phenomenon in a general result. And second, it is interesting
to point out that subtle differences such as the UNA or local versus global functionality
(for the latter, see EL(≤1r) vs. ELIf ) can have an impact on tractability.

As future work, it would be interesting extend our upper bound by including more
operators from the tractable description logic EL++ as proposed in [1]. For a start, it
is not hard to show that conjunctive query entailment in full EL++ is undecidable due
to the presence of role inclusions r1 ◦ r2 v s. In the following, we briefly sketch the
proof, which is by reduction of the problem of deciding whether the intersection of two
languages defined by given context-free grammars Gi = (Ni, T, Pi, Si), i ∈ {1, 2}, is
empty. We assume w.l.o.g. that the set of non-terminals N1 and N2 are disjoint. Then
define a TBox

T := {> v ∃ra.> | a ∈ T} ∪ {rA1 ◦ · · · ◦ rAn
v rA | A → A1 · · ·An ∈ P1 ∪ P2}.

It is not too difficult to see that L(G1)∩L(G2) 6= ∅ iff the conjunctive query S1(u, v)∧
S2(u, v) is matched by the ABox {>(a)} and TBox T .
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Inverse Roles Make Conjunctive Queries Hard
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Abstract. Conjunctive query answering is an important DL reasoning task. Al-
though this task is by now quite well-understood, tight complexity bounds for
conjunctive query answering in expressive DLs have never been obtained: all
known algorithms run in deterministic double exponential time, but the existing
lower bound is only an EXPTIME one. In this paper, we prove that conjunctive
query answering in ALCI is 2-EXPTIME-hard (and thus complete), and that it
becomes NEXPTIME-complete under some reasonable assumptions.

1 Introduction

When description logic (DL) knowledge bases are used in applications with a large
amount of instance data, ABox querying is the most important reasoning problem. The
most basic query mechanism for ABoxes is instance retrieval, i.e., returning all the indi-
viduals from an ABox that are known to be instances of a given query concept. Instance
retrieval can be viewed as a well-behaved generalization of subsumption and satisfia-
bility, which are the standard reasoning problems on TBoxes. In particular, algorithms
for the latter can typically be adapted to instance retrieval in a straightforward way, and
the computational complexity coincides in almost all cases (see [13] for an exception).
In 1998, Calvanese et al. introduced conjunctive query answering as a more powerful
query mechanism for DL ABoxes. Since then, conjunctive queries have received con-
siderable interest in the DL community, see for example the papers [2, 3, 5–8, 12]. In a
nutshell, conjunctive query answering generalizes instance retrieval by admitting also
queries whose relational structure is not tree-shaped. This generalization is both natural
and useful because the relational structure of ABoxes is usually not tree-shaped as well.

In contrast to the case of instance retrieval, developing algorithms for conjunctive
query answering is not merely a matter of extending algorithms for satisfiability, but
requires developing new techniques. In particular, all hitherto known algorithms for
DLs that include ALC as a fragment run in deterministic double exponential runtime,
in contrast to algorithms for deciding subsumption and satisfiability which require only
exponential time even for DLs much more expressive than ALC. Since the introduction
of conjunctive query answering as a reasoning problem for DLs, it has remained an open
question whether or not this increase in runtime can be avoided. In other words, it has
not been clear whether generalizing instance retrieval to the more powerful conjunctive
query answering is penalized by higher computational complexity. In this paper, we
answer this question by showing that conjunctive query answering is computationally
more expensive than instance retrieval when inverse roles are present. More precisely,
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we prove the following two results about ALCI, the extension of ALC with inverse
roles:
(1) Rooted conjunctive query answering in ALCI is co-NEXPTIME-complete, where
rooted means that conjunctive queries are required to be connected and contain at least
one answer variable. The phrase “rooted” derives from the fact that every match of
such a query is rooted in at least one ABox individual. The lower bound even holds for
ABoxes of the form {C(a)} and w.r.t. empty TBoxes.
(2) Conjunctive query answering in ALCI is 2-EXPTIME-complete. The lower bound
even holds for ABoxes of the form {C(a)} and when queries do not contain any answer
variables (or when they contain answer variables, but are not connected).
In the conference version of this paper, we will complement these results by showing
that the high computational complexity of conjunctive query answering is indeed due
to inverse roles. We will show that conjunctive query answering in ALC and SHQ, the
fragment of SHIQ without inverse roles, is only EXPTIME-complete. In this abstract,
we concentrate on the lower bounds due to space limitations.

2 Preliminaries

We assume standard notation for the syntax and semantics ofALCI knowledge bases [1].
In particular, a TBox is a set of concept inclusions C v D and a knowledge base (KB) is
a pair (T ,A) consisting of a TBox T and an ABoxA. Let NV be a countably infinite set
of variables. An atom is an expression C(v) or r(v, v′), where C is an ALCI concept,
r is a (possibly inverse) role, and v, v′ ∈ NV. A conjunctive query q is a finite set of
atoms. We use Var(q) to denote the set of variables occurring in the query q. Let A be
an ABox, I a model ofA, q a conjunctive query, and π : Var(q) → ∆I a total function.
We write I |=π C(v) if (π(v)) ∈ CI and I |=π r(v, v′) if (π(v), π(v′)) ∈ rI . If
I |=π at for all at ∈ q, we write I |=π q and call π a match for I and q. We say that I
satisfies q and write I |= q if there is a match π for I and q. If I |= q for all models I
of a KB K, we write K |= q and say that K entails q. The query entailment problem is,
given a knowledge base K and a query q, to decide whether K |= q. This is the decision
problem corresponding to query answering (which is a search problem), see e.g. [6] for
details.

3 Rooted Query Entailment in ALCI is co-NEXPTIME-complete

Let ALCrs be the variation of ALC in which all roles are interpreted as reflexive and
symmetric relations. Our proof of the lower bound stated as (1) above proceeds by
first polynomially reducing rooted query entailment in ALC rs w.r.t. the empty TBox to
rooted query entailment in ALCI w.r.t. the empty TBox. Then, we prove co-NEXP-
TIME-hardness of rooted query entailment in ALC rs.

Regarding the first step, we only sketch the basic idea, which is simply to replace
each symmetric role r with the composition of r− and r. Although r is not interpreted
in a symmetric relation in ALCI, the composition of r− and r is clearly symmetric.
To achieve reflexivity, we ensure that ∃r−.> is satisfied by all relevant individuals and
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for all relevant roles r. Thus, every individual can reach itself by first travelling r− and
then r, which corresponds to a reflexive loop. Since we are working without TBoxes
and thus cannot use statements such as> v ∃r−.>, a careful manipulation of the ABox
and query is needed. Details are given in appendix A.

Before we prove co-NEXPTIME-hardness of rooted query entailment in ALC rs, we
discuss a preliminary. An interpretation I of ALC rs is tree-shaped if there is a bijection
f from ∆I into the set of nodes of a finite undirected tree (V,E) such that (d, e) ∈ sI ,
for some role name s, implies that d = e or {f(d), f(e)} ∈ E. The proof of the
following result is standard, using unravelling of non-tree-shaped models.

Lemma 1. If A is an ALCrs-ABox and q a conjunctive query, then A 6|= q implies that
there is a tree-shaped model I of A such that I 6|= q.

Because A |= q clearly implies that I |= q for all tree-shaped models I of A, this
lemma means that we can concentrate on tree-shaped interpretations when deciding
conjunctive query entailment. We will exploit this fact to give an easier explanation of
the reduction that is to follow.

We now give a reduction from a NEXPTIME-complete variant of the tiling problem
to the complement of rooted query entailment in ALC rs.

Definition 1 (Domino System). A domino system D is a triple (T,H, V ), where T =
{0, 1, . . . , k − 1}, k ≥ 0, is a finite set of tile types and H,V ⊆ T × T repre-
sent the horizontal and vertical matching conditions. Let D be a domino system and
c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A mapping τ :
{0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T is a solution for D and c iff for all
x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):

– if τ(x, y) = t and τ(x⊕2n+1 1, y) = t′, then (t, t′) ∈ H
– if τ(x, y) = t and τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V
– τ(i, 0) = ci for i < n.

For a proof of NEXPTIME-hardness of this version of the domino problem, see e.g.
Corollary 4.15 in [9].

We show how to translate a given domino system D and initial condition c =
c0 · · · cn−1 into an ABox AD,c and query qD,c such that each (tree-shaped) model I
of AD,c that satisfies I 6|= qD,c encodes a solution to D and c, and conversely each so-
lution to D and c gives rise to a (tree-shaped) model ofAD,c with I 6|= qD,c. The ABox
AD,c contains only the assertion CD,c(a), with CD,c a conjunction C1

D,c u · · · u C7
D,c

whose conjuncts we define in the following. For convenience, let m = 2n+2. The pur-
pose of the first conjunct C1

D,1 is to enforce a binary tree of depth m whose leaves are
labelled with the numbers 0, . . . , 2m−1 of a binary counter implemented by the concept
names A0, . . . , Am−1. We use concept names L0, . . . , Lm to distinguish the different
levels of the tree. This is necessary because we work with reflexive and symmetric roles.
In the following ∀si.C denotes the i-fold nesting ∀s. · · · ∀s.C. In particular, ∀s0.C is C.

C1
D,c := L0 uu

i<m
∀si.

(
Li →

(∃s.(Li+1 uAi) u ∃s.(Li+1 u ¬Ai)
)) u

u
i<m

∀si.u
j<i

(
(Li uAj) → ∀s.(Li+1 → Aj) u
(Li u ¬Aj) → ∀s.(Li+1 → ¬Aj)

)
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From now on, leafs in this tree are called Lm-nodes. Intuitively, each Lm-node cor-
responds to a position in the 2n+1 × 2n+1-grid that we have to tile: the counter Ax

realized by the concept names A0, . . . , An binarily encodes the horizontal position, and
the counter Ay realized by An+1, . . . , Am encodes the vertical position. We now ex-
tend the tree with some additional nodes. Every Lm-node gets three successor nodes
labelled with F , and each of these F -nodes has a successor node labelled G. To dis-
tinguish the three different G-nodes below each Lm-node, we additionally label them
with the concept names G1, G2, G3.

C2
D,c := ∀sm.

(
Lm → ( u

1≤i≤3
∃s.(F u ∃s.(G uGi))

))
We want that each G1-node represents the grid position identified by its ancestor Lm-
node, the sibling G2 node represents the horizontal neighbor position in the grid, and
the sibling G3-node represents the vertical neighbor.

C3
D,c := ∀sm.

(
Lm → (u

i≤n

(
(Ai → ∀s2.(G1 tG3 → Ai)) u
(¬Ai → ∀s2.(G1 tG3 → ¬Ai))

) u
u

n<i<m

(
(Ai → ∀s2.(G1 tG2 → Ai)) u

(¬Ai → ∀s2.(G1 tG2 → ¬Ai))
) u

E2 u E3

))
where E2 is an ALC-concept ensuring that the Ax value at each G2-node is obtained
from the Ax-value of its G-node ancestor by incrementing modulo 2n+1; similarly,
E3 expresses that the Ay value at each G3-node is obtained from the Ay-value of its
G-node ancestor by incrementing modulo 2n+1. It is not hard to work out the details
of these concepts, see e.g. [11] for more details. The grid representation that we have
enforced is shown in Figure 1. To represent tiles, we introduce a concept name Di for
each i ∈ T and put

C4
D,c := ∀sm+2.

(
G → (t

i∈T
Di u u

i,j∈T,i6=j
¬(Di uDj)

))
The initial condition is easily guaranteed by

C5
D,c :=u

i<n
∀sm+2.

( ( u
j≤n,bitj(i)=0

¬Aj u u
j≤n,bitj(i)=1

Aj u u
n<j<m

¬Aj

) → Tci

)
,

where bitj(i) denotes the value of the j-th bit in the binary representation of i. To
enforce the matching conditions, we proceed in two steps. First we ensure that they are
satisfied locally, i.e., among the three G-nodes below each Lm-node:

C6
D,c := ∀sm+2.

(
Lm → (u

i∈T

(∃s2.(G1 uDi) → ∀s2.(G2 → t
(i,j)∈H

Dj)
) u

u
i∈T

(∃s2.(G1 uDi) → ∀s2.(G3 → t
(i,j)∈V

Dj)
)))

Second, we enforce the following condition, which together with local satisfaction of
the matching conditions ensures their global satisfaction:
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· · · Lm

L0

L2

L1

.

.

.

FFF

Lm

G1 G2 G3
G G G

represents (i, j)

represents (i + 1, j)

represents (i, j + 1)

Fig. 1. The structure encoding the 2n+1 × 2n+1-grid.

(∗) if the Ax and Ay-values of two G-nodes coincide, then their tile types coincide.

In (∗), a G-node can by any of a G1-, G2-, or G3-node. To enforce (∗), we use the query.
Before we give details, let us finish the definition of the concept CD,c. The last conjunct
C7

D,c enforces two technical conditions that will be explained later: if d is an F -node
and e its G-node successor, then

(T1) d and e are labelled dually regarding Ai, ¬Ai for all i < m, i.e., d satisfies Ai iff
e satisfies ¬Ai;

(T2) d and e are labelled dually regarding D0, . . . , Dk−1, i.e., for all j < k, if d satisfies
Dj , then e satisfies D0, . . . , Dj−1,¬Dj , Dj+1, . . . , Dk−1.

We use the following concept:

C7
D,c := ∀sm+1.

(
F → (u

i<m
(Ai → ∀s.(G → ¬Ai)) u
(¬Ai → ∀s.(G → Ai)) u

u
i∈T

∃s.(G uDi) → (¬Di u u
j<k,j 6=i

Di)
))

We now construct the query qD,c that does not match the grid representation iff (∗) is
satisfied. In other words, qD,c matches the grid representation if there are two G-nodes
that agree on the value of the counters Ax and Ay , but are labelled with different tile
types. Because of Lemma 1, we can concentrate on the grid representation as shown in
Figure 1 while constructing qD,c, and need not worry about models in which domain
elements that are different in Figure 1 are identified.

The construction of qD,c is in several steps, starting with the query qi
D,c on the left-

hand side of Figure 2, where i ∈ {0, . . . ,m − 1}. In the queries qi
D,c, all the edges
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...
...

v′m+1

v′m+2

v′2m+2

vm+1

vm+2

v2m+2

v2m+3

v′

¬Ai

G

Ai

...

vm+1 = v′m

G

¬Ai

Ai

...

G

v2m+2 = v′2m+3Ai

¬Ai

v′ = v′2m+3

v2m+2 = v′2m+1

v2m+3 = v′

...

G
v0 = vAi

¬Ai ...
v1 = v′2

v = v′0
G

v0 = v′1Ai

v1 = v′0...
...

v0

v1

v

Ai

v′1

v′0¬Ai

G

vans

vans = vm+2 = v′m+1

vans = vm+1 = v′m+2

vm+2 = v′m+3

v2m+3 = v′2m+2v′2m+3

¬Ai

Fig. 2. The query qi
D,a (left) and two of its collapsings (middle and right).

represent the role s and vans is the only answer variable. The edges are undirected
because we are working with symmetric roles. Formally,

qi
D,c := { s(vi,0, vi,1), . . . , s(vi,2m+2, vi,2m+3),

s(v′i,0, v
′
i,1), . . . , s(v

′
i,2m+2, v

′
i,2m+3),

s(vi,0, v
′
i,0), s(vi,2m+3, v

′
i,2m+3),

s(v, vi,0), s(v, v′i,0),
s(v′, vi,2m+3), s(v′, v′i,2m+3),
s(vans, vi,m+1), s(vans, vi,m+2), s(vans, v

′
i,m+1), s(vans, v

′
i,m+2),

G(v), G(v′), Ai(vi,0),¬Ai(v′i,0),¬Ai(vi,2m+3), Ai(v′i,2m+3) }
Observe that we dropped the index “i” to variables in Figure 2. Also observe that all the
queries qi

D,c, i < m, share the variables v, v′, and vans.

The purpose of the query qi
D,a is to relate any two G-nodes that agree on the value

of the concept name Ai. To explain how this works, we need a few preliminaries. First,
a cycle in a query is a sequence of distinct nodes v0, . . . , vn−1 such that n ≥ 2, and
s(vi, vi+1) ∈ q or s(vi+1, vi) ∈ q for all i < n, where vn := v0. A query q′ is a
collapsing of a query q if q′ is obtained from q by identifying variables. Each match
of qi

D,c in our tree-structured grid representation gives rise to a collapsing of qi
D,c that

does not comprise any cycles. To explain how qi
D,c works, it is helpful to analyze its

cycle-free collapsings. We start with the two cycles v, v0, v
′
0 and v′, v2m+3, v

′
2m+3. For

eliminating each of these, we have two options:

– to remove the upper cycle, we can identify v with v0 or v′0;
– to remove the lower cycle, we can identify v′ with v2m+3 or v′2m+3.

Observe that if we identify v0 and v′0 (or v2m+3 and v′2m+3) to collapse the cycle, there
will be no matches of the query in any model.
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Together, this gives four options for removing the two mentioned length-three cy-
cles. However, two of these options are ruled out because the resulting collapsings have
no match in the grid representation. The first such case is when we identify v with v0

and v′ with v2m+3. Then v0 and v2m+3 have to satisfy G. To continue our argument,
we make a case distinction on the two options that we have for eliminating the cycle
{vans, vm+1, vm+2}.

Case (1). If we identify vans and vm+1, the path from the G-variable v0 to vans is only of
length m+1. In our grid representation, all paths from a G-node to an ABox individual
(i.e., the root) are of length m + 2, so there can be no match of this collapsing.

Case (2). If we identify vans and vm+2, the path from vans to the G-variable v2m+3 is
only of length m + 1 and again there is no match.

We can argue analogously for the case where we identify v with v′0 and and v′ with
v′2m+3. Therefore, the two remaining collapsings for eliminating the cycles {v, v0, v

′
0}

and {v′, v2m+3, v
′
2m+3} are the following:

(a) identify v with v0 and v′ with v′2m+3;
(b) identify v with v′0 and v′ with v2m+3.

In the first case, we further have to identify vans with vm+2 and v′m+1, for otherwise we
can argue as above that there is no match. In the second case, we have to identify vans

with vm+1 and v′m+2. After this has been done, there is only one way to eliminate the
cycle v = v0, . . . , v2m+3, v

′ = v′2m+3, . . . , v
′
0 such that the result is a chain of length

2m + 4 with the G-variables at both ends and the answer variable exactly in the middle
(any other way to collapse means that there are no matches). The reflexive loops at the
endpoints of the resulting chain and at vans can simply be dropped since we work with
reflexive roles. The resulting cycle-free queries are shown in the middle and right part
of Figure 2.

Note that the middle query has Ai at both ends of the chain, and the right one has
¬Ai at the ends. According to our above argumentation, the original query qi

D,c has
a match in the grid representation iff one of these two collapsings has a match. Thus,
every match π of qi

D,c in the grid representation is such that π(v) and π(v′) are (not
necessarily distinct) instances of G that agree on the value of Ai. Informally, we say
that qi

D,c connects G-nodes that have the same Ai-value.
At this point, a technical remark is in order. Observe that the two relevant collaps-

ings of qi
D,c are such that the nodes next to the outer nodes are labelled dually w.r.t.

Ai compared to the outer nodes. This is an artifact of query construction and cannot be
avoided. It is the reason for introducing the F -nodes into our grid representation, and
for ensuring that they satisfy Property (T1) from above.

Now set qcnt :=
⋃

i<m qi
D,c. It is easy to see that qcnt connects G-nodes that have

the same Ai-value, for all i < m. The query qcnt is almost the desired query qD,c.
Recall that we want to enforce Condition (∗) from above, and thus need to talk about
tile types in the query. The query qtile is given in the left-hand side of Figure 3 for the
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...
w2,m+1

...
w2,m+2

w2,2m+2

w2,2m+3

w2,1

v = w0,0

G

w0,1 = w1,0 = w2,0

...

w0,m+1 = w1,m = w2,m

w0,2m+2 = w1,2m+1 = w2,2m+1

w0,2m+3 = w1,2m+2

...

vans = w0,m+2 = w1,m+1 = w2,m+1

w1,2m+3 = v′

G

D0

D1

D2

= w2,2m+2 = w2,2m+3

D1, D2

D0, D2

w0,1 w1,1...
...

w0,m+1 w1,m+1

vans

w0,m+2 w1,m+2...
...

w0,2m+2

D0 w0,2m+3

D2
w1,2m+3

w1,2m+2

v
G

v′
G

D1

D1

w1,0 w2,0w0,0
D0

Fig. 3. The query qtile (left) and one of its collapsings (right).

case of three tiles, i.e., T = {0, 1, 2}. In general, for T = {1, . . . , k − 1}, we define

qtile :=
⋃
i<k

{s(wi,0, wi,1), . . . , s(wi,2m+2, wi,2m+3),
s(wans, wi,m+1), s(wans, wi,m+2),
s(v, wi,0), s(v′, wi,2m+3),
Di(wi,0), Di(wi,2m+3)}

∪
⋃

i<j<k

{s(wi,0, wj,0), s(wi,2m+3, wj,2m+3)}

∪ {G(v), G(v′)}

Observe that qcnt and qtile share the variables v, v′, and vans. Also observe that qtile is
very similar to the queries qi

D,c, the main difference being the number of vertical chains.
Whereas the queries qi

D,c have two collapsings that are cycle-free and can have matches
in the grid representation, qtile has k·(k−1) such collapsings: for all i, j ∈ T with i 6= j,
there is a collapsing into a linear chain of length 2m+4 whose end nodes are labelled Di

and Dj . An example of such a collapsing is presented on the right-hand side of Figure 3.
The arguments for how to obtain these collapsing and why other collapsings have no
matches in the grid representation are very similar to the line of argumentation used
for qi

D,c. We only give a brief walkthrough. First, the cycle v, w0,0, . . . , wk−1,0 can be
eliminated by identifying v with one of the wi,0. Note that we cannot eliminate the cycle
by identifying all of w0,0, . . . , wk−1,0, because then there would be no match in the grid
representation. Similarly, the cycle v′, w0,2m+3, . . . , wk−1,2m+3 can be eliminated by
identifying v′ with one of the wi,2m+3. We can show that i 6= j by analyzing the two
cases of vans being identified with wi,m+1 or wi,m+2. In the first case, there is no match
in the grid representation because the path from v to wi,m+1 is too short, and in the
second case the same holds for the path from wi,m+2 to v′. Thus, i 6= j is shown. Also
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because of paths lengths, we have to identify vans with vi,m+1 and vj,m+2. Next, we
consider the cycle v = wi,0, . . . , wi,2m+3, v

′ = wj,2m+3, . . . , wj,0. As in the case of
qi
w, there is only one way to eliminate this cycle such that the result is a chain of length

2m+4 with the G-variables at both ends and the answer variable exactly in the middle,
and any other way to collapse means that there are no matches. It remains to eliminate
the cycles v = wi,0, . . . , wi,2m+3, v

′, w`,2m+3, . . . , w`,0 with ` 6= j. What is important
here is that we have to identify wi,1 with w`,0 and wi,2m+3 with w`,2m+3. This is the
case since the alternative (identifying wi,0 with w`,0 or v′ = 2j,2m+2 with w`,2m+3)
leads to a variabe labelled with G, D`, and Di (resp. Dj), and thus there is no match.
Once these two identifications have been done, there is more than one way to identify
the remaining nodes on the mentioned cycle, but the resulting query is always the same.

In summary, it is not hard to see that qtile connects those G-nodes that are labelled
by different tile types. Observe that we need property (T2) for this query to match at
all.

Now, the desired query qD,c is simply the union of qcnt and qtile. From what was
already said about qcnt and qtile, it is easily derived that qD,c does not match the grid
representation iff Property (∗) is satisfied. It is possible to show that there is a solution
for D and c iff (∅,AD,c) 6|= qD,c. We have thus proved that rooted query entailment in
ALCI is co-NEXPTIME-hard. A matching upper bound can be obtained by adapting
the techniques in [6]. More details are given in the full version of this paper.

Theorem 1. Rooted query entailment inALCI is co-NEXPTIME-complete. This holds
even w.r.t. knowledge bases in which the TBox is empty and the ABox is a singleton.

4 Boolean Query Entailment in ALCI is 2-EXPTIME-complete

If we drop the requirement that queries are connected or that they have at least one
answer variable, query entailment in ALCI becomes 2-EXPTIME-complete. An upper
bound can be taken e.g. from [6]. The lower bound can be proved by a reduction of the
word problem of exponentially space bounded alternating Turing machines (ATMs) [4].
Because of space limitations, we can only give a very rough sketch of this result here.
More details can be found in the extended version of this paper [10].

The main idea is to represent each configuration of an ATM by the leafs of a tree
of depth n, very similar to the grid representation in Section 3. The trees representing
configurations are then interconnected to a tree representing the computation. This is
illustrated in Figure 4, where each of the Ti is a tree of depth n that is built using the
role name s. The leafs of each Ti represent a configuration. The tree T1 represents an
existential configuration, and thus has only one successor configuration, which is rep-
resented by T2 and connected via the same role name s also used inside the Ti trees. In
contrast, the tree T2 represents a universal configuration with two successor configura-
tions T2 and T3. The crucial point in the reduction is to relate the content of tape cells
in one configuration to the content of the corresponding cells in the successor config-
urations. In principle, this is achieved using queries that are very similar to the query
qD,c employed in the previous section. A few additional technical tricks are needed to
achieve directedness (i.e., talking only about successor configurations, but not about
predecessor configurations) since we work with symmetric roles.
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Fig. 4. Representing ATM computations.

Theorem 2. Query entailment in ALCI is 2-EXPTIME-complete. This holds even for
queries without answer variables and w.r.t. knowledge bases in which the ABox is a
singleton.

5 Conclusion

We have shown that in the presence of inverse roles, conjunctive query answering is
computationally more costly than instance checking. A Corresponding NEXPTIME up-
per bound for Theorem 1 and containment of conjunctive query entailment in EXPTIME
for ALC will be shown elsewhere. As (almost) remarked by a reviewer, the proof of
Theorem 2 can easily be adapted to rooted query entailment if transitive roles and role
hierarchies are present. Details on this will also be given elsewhere.

Acknowledgement We thanks the anonymous reviewers for valuable remarks on the
submitted version of this paper.
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A From ALCrs to ALCI without TBoxes

We show that rooted query entailment in ALCrs w.r.t. the empty TBox can be polyno-
mially reduced to rooted query entailment in ALCI w.r.t. the empty TBox.

As already explained, the main idea behind the reduction is to replace each sym-
metric role r with the composition of r− and r. Let A be an ALCrs ABox and q a
conjunctive query. We assume w.l.o.g. that all concepts in A are in negation normal
form (NNF), i.e., that negation is applied only to concept names. Let Ind(A) denote
the set of all individual names occurring in A, rol(A) be the set of role names used in
A, and let rol(q) be defined analogously. Fix a fresh concept name R. Intuitively, the
purpose of R is to distinguish “real” domain elements from the auxiliary ones that serve
as intermediate points in the composition of r− and r. Also, define X as an abbrevia-
tion for ur∈rol(A)∪rol(q)∃r−.>. We will enforce that X is satisfied by all relevant real
individuals, thus achieving reflexivity.

We now present the details of the reduction. For each concept C in NNF, let δ(C)
denote the result of replacing

– every subconcept ∃r.C with ∃r−.∃r.(C uR uX), and
– every subconcept ∀r.C with ∀r−.∀r.C;

Now define an ALCI ABox A′ and a query q′ by manipulating A and q as follows:

1. replace every concept assertion C(a) ∈ A with δ(C)(a);
2. for all a ∈ Ind(A), add a concept assertion R uX(a) to A;
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3. replace every role assertion r(a, b) ∈ A with r(c, a) and r(c, b), where c is a fresh
individual name;

4. for every variable v in q, add R(v) to q;
5. replace every role atom r(v, v′) ∈ q with r(v∗, v) and r(v∗, v), where v∗ is a fresh

variable.

The following lemma shows that our reduction is correct.

Lemma 2. A 6|= q iff A′ 6|= q′.

Proof. “⇒”. If A 6|= q, then there is a model I of A such that I 6|= q. Define a model
I ′ as follows:

– ∆I′ = ∆I ∪ {xd,r,e | r ∈ rol(A) ∪ rol(q) and (d, e) ∈ rI};
– rI

′
= {(xd,r,e, d), (xd,r,e, e) | (d, e) ∈ rI}

– AI′ = AI for all concept names A except R;
– RI′ = ∆I ;
– aI

′
= aI for all a ∈ Ind(A);

– if c was introduced into A′ to split the assertion r(a, b) ∈ A, set cI
′
= xaI ,r,bI .

It is readily checked that I ′ is a model of A′. In particular, XI′ = ∆I′ since roles are
interpreted reflexively in I. Furthermore, since I 6|= q, we have I ′ 6|= q′: suppose to the
contrary that I ′ |=π q′ for some match π. Since q′ contains the atom R(v) for every
variable v ∈ Var(q), we have π(v) ∈ ∆I for all v ∈ Var(q). Let π′ be the restriction of
π to the variables in Var(q). It is readily checked that I |=π′

q, which is a contradiction.

“⇐”. If A′ 6|= q′, then there is a model I ′ of A′ such that I ′ 6|= q′. Define a model I as
follows:

– ∆I = (R uX)I
′
;

– rI = {(d, e) | ∃f.(f, d) ∈ rI ∧ (f, e) ∈ rI};
– AI = AI′ ∩∆I ;
– aI = aI

′
for all a ∈ Ind(A).

Observe that rI is reflexive (due to the choice of ∆I as a subset of XI) and symmetric.
Also observe that the interpretation of the individual names is well-defined: since A′

contains R u X(a) for all a ∈ Ind(A), aI
′ ∈ ∆I . Since I ′ 6|= q′ and it is easily seen

that I |= q would imply I ′ |= q′, we have I 6|= q. It remains to show that I is a model
of A. This is a consequence of the following claim, which is easily proved by induction
on the structure of C.

Claim. For all d ∈ ∆I and all C ∈ sub(A), d ∈ δ(C)I
′

implies d ∈ CI .

We only do the two interesting cases.

– Let C = ∀r.D. Then δ(C) = ∀r−.∀r.δ(D). Let (d, e) ∈ rI . We have to show that
e ∈ DI . Since (d, e) ∈ rI , by definition of I we have (d, e) ∈ (r−)I

′ ◦ rI
′
. Since

d ∈ δ(C)I
′
, we have e ∈ DI′ and it remains to apply the induction hypothesis.

– Let C = ∃r.D. Then δ(C) = ∃r−.∃r.(δ(D) uR uX). Since d ∈ δ(C)I
′
, there is

an e ∈ ∆I′ such that (i) (d, e) ∈ (r−)I
′ ◦rI′ and (ii) e ∈ (δ(D)uRuX)I

′
. By (ii),

d ∈ ∆I . By (i) and definition of I, (d, e) ∈ rI . By (ii) and induction hypothesis,
d ∈ DI and we are done.

o
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Planning in Action Formalisms based on DLs:
First Results

Maja Miličić

Institut für Theoretische Informatik
TU Dresden, Germany

maja@tcs.inf.tu-dresden.de

Abstract. In this paper, we continue the recently started work on inte-
grating action formalisms with description logics (DLs), by investigating
planning in the context of DLs. We prove that the plan existence prob-
lem is decidable for actions described in fragments of ALCQIO. More
precisely, we show that its computational complexity coincides with the
one of projection for DLs between ALC and ALCQIO.

1 Introduction

The idea to investigate action formalisms based on description logics was inspired
by the expressivity gap between existing action formalisms: they were either
based on FO logic and undecidable, like the Situation Calculus [12] and the
Fluent Calculus [14], or decidable but only propositional.

First results on integrating DLs with action formalisms from [2] show that
reasoning remains decidable even if an action formalism is based on the expres-
sive DL ALCQIO. In [2], ABox assertions are used for describing the current
state of the world, and the pre- and post-conditions of actions. Domain con-
straints are captured by acyclic TBoxes, and post-conditions may contain only
atomic concept and role assertions. It is shown in [2] that the projection and
executability problem for actions can be reduced to standard DL reasoning prob-
lems. Further papers in this line [11, 10] treat the problem of computing ABox
updates and the ramification problem induced by GCIs.

However, in the mentioned DL-action-framework, planning, an important
reasoning task, has not yet been considered. Intuitively, given an initial state
A, final state Γ and a final set of actions Op, the plan existence problem is the
following: “is there a plan (a sequence of actions from Op) which transforms A
into Γ?”. It is known that, already in the propositional case, planning is a hard
problem. For example, the plan existence problem for propositional STRIPS-
style actions is PSpace-complete [5, 7].

The planning problem in DL action formalisms is not only interesting from
the theoretical point of view. It is well known that web ontology languages for
the Semantic Web are based on description logics; thus actions described in DLs
can be viewed as simple semantic web services. In this context, planning is a
very important reasoning task as it supports, e.g., web service discovery which
is needed for an automatic service execution.
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This paper is, to our best knowledge, the first try to formally define the
planning problem in the context of description logics. It is based on the action
formalism from [2]. We investigate the computational complexity of the plan
existence problem for the description logics “between” ALC and ALCQIO. We
show that, in these logics, the plan existence problem is decidable, and of the
same computational complexity as projection. In the last section we discuss
possible ways of developing practical planning algorithms for DLs.

2 Preliminaries

In this paper we will use a slightly modified version of the action formalism
from [2]. We disallow occlusions, a source of a limited non-determinism in [2].
Moreover, we introduce parameterised actions (operators). The formalism is not
restricted to a particular DL, but for our complexity results we will consider the
DL ALCQIO and its fragments. We refrain from introducing the syntax and
semantics of ALCQIO in full detail, referring instead to [1].

We give only the definition of ABoxes, as it slightly differs from the one from
[1]. An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b) where a, b are
individual names, C is a concept, and r a role name. An ABox is a finite set of
ABox assertions.

The main ingredients of our framework are operators and actions (as defined
below), ABoxes for describing the current knowledge about the state of affairs
in the application domain, and acyclic TBoxes for describing general knowledge
about the application domain similar to state constraints in the SitCalc and
Fluent Calculus.

Definition 1 (Action, operator). Let NX and NI be disjoint and countably
infinite sets of variables and individual names. Moreover, let T be an acyclic
TBox. A primitive literal for T is an ABox assertion

A(a),¬A(a), r(a, b), or ¬r(a, b)

with A a primitive concept name in T , r a role name, and a, b ∈ NI. An atomic
atomic α = (pre, post) for T consists of

– a finite set pre of ABox assertions, the pre-conditions;
– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is

an ABox assertion and ψ is a primitive literal for T .

A composite action for T is a finite sequence α1, . . . , αk of atomic actions
for T .

An operator for T is a parametrised atomic action for T , i.e., an action in
which definition variables from NX may occur in place of individual names.

We call post-conditions of the form >(t)/ψ unconditional and write just ψ
instead.
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Applying an action changes the state of affairs, and thus transforms an inter-
pretation I into an interpretation I ′. Intuitively, the pre-conditions specify under
which conditions the action is applicable. The post-condition ϕ/ψ says that, if
ϕ is true in the original interpretation I, then ψ is true in the interpretation I ′
obtained by applying the action.

Definition 2. Let T be an acyclic TBox, α = (pre, post) an atomic action for
T , and I, I ′ models of T respecting the unique name assumption (UNA) and
sharing the same domain and interpretation of all individual names. We say
that α may transform I to I ′ (I ⇒T

α I ′) iff, for each primitive concept A and
role name r, we have

AI
′
:= (AI ∪ {aI | ϕ/A(a) ∈ post and I |= ϕ})\

{aI | ϕ/¬A(a) ∈ post and I |= ϕ}
rI

′
:= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ post and I |= ϕ})\

{(aI , bI) | ϕ/¬r(a, b) ∈ post and I |= ϕ}.

The composite action α1, . . . , αk may transform I to I ′ (I ⇒T
α1,...,αk

I ′) iff there
are models I0, . . . , Ik of T with I = I0, I ′ = Ik, and Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ k.

Note that this definition does not check whether the action is indeed executable,
i.e., whether the pre-conditions are satisfied. It just says what the result of
applying the action is, irrespective of whether it is executable or not. Since we
use acyclic TBoxes to describe background knowledge, there cannot exist more
than one I ′ such that I ⇒T

α I ′. Thus, actions are deterministic.
Like in [2], we assume that actions α = (pre, post) are consistent with T in

the following sense: for every model I of T , there exists I ′, such that I ⇒T
α I ′.

It is not difficult to see that this is the case iff {ϕ1/ψ, ϕ2/¬ψ} ⊆ post implies
that the ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

Two standard reasoning problems about actions, projection and executability,
are thoroughly investigated in [2] in the context of DLs. Executability is the
problem of whether an action can be applied in a given situation, i.e. if pre-
conditions are satisfied in the states of the world considered possible.

Formally, let T be an acyclic TBox, A an ABox, and let α1, . . . , αn be a
composite action with αi = (prei, posti) atomic actions for T for i = 1, . . . , n.

We say that α1, . . . , αn is executable in A w.r.t. T iff the following conditions
are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′, we
have I ′ |= prei+1.

Projection is the problem of whether applying an action achieves the de-
sired effect, i.e., whether an assertion that we want to make true really holds
after executing the action. Formally,the assertion ϕ is a consequence of applying
α1, . . . , αn in A w.r.t. T iff for all models I of A and T and for all I ′ with
I ⇒T

α1,...,αn
I ′, we have I ′ |= ϕ.
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In [2] it was shown that projection and executability are decidable for the
logics between ALC and ALCQIO. More precisely, projection in L can be re-
duced to (in)consistency of an ABox relative to an acyclic TBox in LO. The
following theorem from [2] states that upper complexity bounds obtained in this
way are optimal:

Theorem 1. ([2]) Projection and executability of composite actions are:

(a) PSpace-complete in ALC,ALCO,ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

Looking carefully at the reduction of projection in L to ABox inconsistency
in LO from [2, 3], we conclude that the upper complexity bounds from Theorem
1 hold even for the “stronger” projection problem, namely the one where the
assertion ϕ is a disjunction of ABox assertions. We will need this strengthened
complexity result in the coming sections.

3 Planning problem

We continue by defining the plan existence problem in our framework. As in
the previous section, we do not fix the DL, but assume it to be a sublogic of
ALCQIO.

First we introduce a bit of notation. If o is an operator (for a TBox T ), we
use var(o) to denote the set of variables in o. A substitution v for o is a mapping
v : var(o) → NI. An action α that is obtained by applying a substitution v to o is
denoted as α := o[v]. Intuitively, the plan existence problem is: given an acyclic
TBox T which describes the background knowledge, ABoxes A and Γ describing
respectively the initial and the goal state, and a set of operators Op, is there a
plan (sequence of actions obtained by instantiating operators from Op) which
”transforms” A into Γ?

In this paper, we assume that operators can be instantiated with individuals
from a finite set Ind ⊂ NI. Moreover, we assume that T , A and Γ contain only
individuals from Ind (we say that they are based on Ind). For an operator o, we
set o[Ind] := {o[v] | v : var(o) → Ind} and for Op a set of operators, we set
Op[Ind] := {o[Ind] | o ∈ Op}. In the following definition, we formally introduce
the notion of a planing task:

Definition 3 (Planning task). A planning task is a tuple Π = (Ind, T ,Op,A, Γ ),
where

– Ind is a finite set of individual names;
– T is an acyclic TBox based on Ind;
– Op is a finite set of atomic operators for T ;
– A (initial state) is an ABox based on Ind;
– Γ (goal) is an ABox based on Ind.
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A plan in Π is a composite action α = α1, . . . , αk, such that αi ∈ Op[Ind],
i = 1..k. A plan α = α1, . . . , αk in Π is a solution to the planning task Π iff:

1. α is executable in A w.r.t. T ; and
2. for all interpretations I and I ′ such that I |= A, T and I ⇒T

α I ′, it holds
that I ′ |= Γ .

Two common planning problems, PLANEX and PLANLEN, c.f. [7], are de-
fined below:

Definition 4 (Planning problems). Plan existence problem (PLANEX): Does
a given planning task Π have a solution?

Bounded plan existence problem (PLANLEN): For a planning task Π and a
natural number n, is there a plan of length at most 2n which is a solution to Π?

4 Complexity of planning

In this section, we will present a decision procedure for the plan existence prob-
lem. It turns out that PLANEX is not more difficult, at least in theory, than
projection in the DLs from Theorem 1.

In what follows, for the sake of simplicity we assume that T = ∅. It is not
difficult to show that the complexity results form this section hold in the case of
non-empty acyclic TBoxes.

Obviously, the plan existence problem is closely related to projection and
executability. First we introduce some notation. Let A be an ABox, α a (possibly
composite) action, and ϕ an ABox assertion or a disjunction of ABox assertions.
We will write Aα |= ϕ iff ϕ is a consequence of applying α in A. For an ABox
B, we write Aα |= B iff Aα |= ϕ for all ϕ ∈ B.

Let Π = (Ind, ∅,Op,A, Γ ) be a planning task. for which we want to decide
if it has a solution. This means that we want to check if there is a sequence
of actions from Op[Ind] which transform the initial state (described by A) into
the goal state (described by Γ ). In the propositional case, planning is based
on step-wise computation of the next state – which corresponds to computing
updated ABoxes. However, in [11], it is shown that an updated ABox may be
exponentially large in the size of the initial ABox and the update, which makes
this approach unsuitable. We base our approach in this paper on the following
observation: possible worlds obtained by applying (composite) actions in the
initial world A can be implicitly described by A together with the list of applied
atomic changes (intuitively, this is an accumulated list of the triggered post-
conditions).

We define the set of possible (negated) atomic changes as:

L := {ψ,¬ψ | ϕ/ψ ∈ α, α ∈ Op[Ind]}

An update for Π is a consistent subset of L. Let U be a set of all updates
for Π. Then U is our search space, the size of which |U| is exponential in the
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size of |L| (and Π). For a U ∈ U, we set ¬U := {¬l | l ∈ U}. Intuitively,
U0 := {l ∈ L | A |= l} represents the initial state, and all updates U ∈ U such
that AU |= Γ represent goals states1.

In the next step, we define the transition relation “ α→A” between updates.
Let U and V be two updates. For α = (pre, post), we say that U α→A V iff:

(i) AU |= pre
(ii) V = (U \ ¬postUα) ∪ postUα , where postUα = {ψ | AU |= ∨

ϕ/ψ∈post

ϕ}

Obviously, the relation “ α→A” is a partial function for every α. In the following
lemma, we show that “ α→A” simulates “⇒α”2 on the level of updates.

Lemma 1. Let A be an ABox, and α = α1, . . . , αk a composite action, with
αi = (prei, posti) ∈ Op[Ind]. Let U0 := {l ∈ L | A |= l}. Then the following holds:

(a) There exist unique U1, . . . ,Uk such that U0
α1→A U1 · · · αk→A Uk iff α1, . . . , αk

is executable in A;
(b) Let Uk be defined as in (a). Then for all interpretations I, I ′ such that I |=

A, we have that I ⇒α1,...,αk
I ′ iff I ⇒Uk

I ′.

Proof. Proof by induction on k. For k = 0, trivially true. Assume that the claim
holds for k = m, and let us prove that it implies the same for k = m + 1.
(a) follows directly from the point (i) of the definition of

αm+1→A . As for (b), let
I |= A and let I ⇒α1,...,αm+1 I ′. The latter holds iff there exists I ′′ such that
I ⇒α1,...,αm

I ′′ and I ′′ ⇒αm+1 I ′. By I.H., we have that for I |= A it holds
that I ⇒α1,...,αm

I ′′ iff I ⇒Um
I ′′. Finally, the point (ii) of the definition of

αm+1→A implies that there exists I ′′ such that I ⇒Um
I ′′ and I ′′ ⇒αm+1 I ′ iff

I ⇒Um
I ′′ and I ′′ ⇒postUm

αm+1
I ′. It is not difficult to see that the latter holds iff

I ⇒Um+1 I ′.

We now present a procedure which decides if a state V ∈ U is reachable
from U ∈ U by executing a sequence of actions from Op[Ind] (an adaption of the
reachability algorithm from [13]). Since the search space U is of size 3

|L|
2 (< 2|L|),

there is no need to check for the existence of longer paths.

reachable(Π,U ,V)
if path(Π,U ,V, |L|)

then return TRUE
return FALSE

path(Π,U ,V, i) checks if V is reachable from U by a path of length at most 2i:

1 Starting from here, we will sometimes write U as short for the action (∅,U). Please
note that AU |= ϕ is only an abbreviation for “ϕ is a consequence of applying (∅,U)
in A”, and does not imply computing the update of the ABox A with U as in [11].

2 ⇒α is short for ⇒∅
α
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path(Π,U ,V, i)
if (i = 0 and (U = V or one step(Π,U ,V)))

then return TRUE
for all (W ∈ U)

if (path(Π,U ,W, i− 1) and path(Π,W,V, i− 1))
then return TRUE

return FALSE

The predicate one step(Π,U ,V) checks if V can be reached from U in exactly
one step by applying an action α ∈ Op[Ind].
one step(Π,U ,V)

for all α ∈ Op[Ind]
if (U α→A V)

then return TRUE;
return FALSE;

Lemma 2. Let Π = (Ind, T ,Op,A, Γ ) be a planning task and let U0 := {l ∈ L |
A |= l}. Then Π has a solution iff there exists an UΓ ∈ U such that AUΓ |= Γ
and reachable(Π,U0,UΓ ) returns TRUE.

Proof. “⇒” Let the plan α1, . . . , αk be a solution to Π such that k < 2|L|.
This means that (i)α1, . . . , αk is executable w.r.t. A and (ii) Aα1,...,αk |= Γ . By
Lemma 1 (a), there exist unique Ui, 1 ≤ i ≤ k, such that U0

α1→A U1 · · · αk→A Uk.
Thus, reachable(Π,U0,Uk) returns TRUE. Let UΓ = Uk. By Lemma 1 (b), we
have that Aα1,...,αk |= Γ implies (AUΓ =)AUk |= Γ .

“⇐” Let UΓ ∈ U be such that AUΓ |= Γ and reachable(Π,U0,UΓ ) returns
TRUE. Then there exists a sequence of actions α1, . . . , αk such that U0

α1→A
U1 · · · αk→A Uk(= UΓ ). By Lemma 1, we have that α1, . . . , αk is executable w.r.t.
A and Aα1,...,αk |= Γ . Thus, α1, . . . , αk is a solution to Π.

The previous lemma tells us that the plan existence problem can be decided
by checking if reachable(U0,UF , Π) returns TRUE for some final state UF ∈
U. If one step could be decided in a constant time, reachable would require
PSpace. However, one step relies on polynomially many projection calls, which
means that both one step and reachable belong to the same complexity class
as projection in DLs from Theorem 1, i.e. they are in PSpace (ExpTime, co-
NExpTime) if projection is in PSpace (ExpTime, co-NExpTime).

(i) If projection is in PSpace, then we can decide the plan existence problem
in PSpace: obviously, guessing a state (update) UF from U, and checking
whether AUF |= Γ and reachable(U0,UF , Π) returns TRUE, can be done
in NPSpace. Finally, we use the result by Savitch [13] that PSpace =
NPSpace.

(ii) If projection is in ExpTime (co-NExpTime), then we can check for all UF
from U, if AUF |= Γ and reachable(U0,UF , Π) returns TRUE. Since U is
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exponentially big in the size ofΠ, plan existence problem can thus be decided
in ExpTime (co-NExpTime).

We obtained the following lemma:

Lemma 3. Let L ∈ {ALC,ALCO,ALCI,ALCQ,ALCIO,ALCQO,ALCQI,
ALCQIO}. The plan existence problem in L has the same upper complexity
bound as projection in L.

We show that the upper complexity bounds established in Lemma 1 are
tight by the following easy reduction of projection to PLANEX. Let A be an
ABox, α an action without pre-conditions and only with unconditional post-
conditions, and ϕ an assertion.We define the planning task ΓA,α,ϕ as ΓA,α,ϕ :=
(∅, ∅, {α},A, {ϕ}). It is not difficult to see that Aα |= ϕ iff ΓA,α,ϕ has a solution.

Since the lower bounds for projection from Theorem 1 hold already in the
case of the empty TBox and an atomic action with no pre-conditions and no
occlusions and only with unconditional post-conditions [2], we conclude that
the complexity bounds from Lemma 1 are optimal, i.e., plan existence problem
is of exactly the same computational complexity as projection. Moreover, the
afore presented reduction implies that the same hardness results hold for the the
bounded plan existence problem.

Theorem 2. The planning problems PLANEX and PLANLEN are:

(a) PSpace-complete in ALC, ALCO, ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

5 Extended Planning

The previous decidability and complexity results are obtained under assumption
that the set of individuals Ind used to instantiate operators is finite and a part
of the input. This assumption is rather natural and in the line with the standard
definitions of planning tasks for STRIPS operators from [5, 7]. Intuitively, Ind is
a set of individuals the planning agent has control over.

Alternatively, one can omit individuals from the input and define a planning
task Π as Π = (T ,Op,A, Γ ). The extended plan existence problem is the one
of whether there is a solution for Π, defining a plan for Π to be a sequence of
actions α1, . . . , αk, where each αi is obtained by instantiating an operator from
Op with individuals from an infinitely countable set NI.

The extended planning raises new interesting questions:

Q1 In order to solve Π, do we have to use infinitely many individuals?
Q2 If the number of needed individuals can be shown to be bounded by f(|Π|),

is f a polynomial (exponential, double-exponential,...) function?

Proceeding of DL2007 - Long Papers 119



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 120 — #130 i
i

i
i

i
i

In the case of the datalog STRIPS, it is shown that the extended plan exis-
tence problem is undecidable [7, 6]. However, this undecidabilty result does not
automatically carry over to the action formalism used in this paper. Indeed, the
undecidability result from [7, 6] relies on the closed world assumption and nega-
tive pre-conditions. By using these two, one can define operators which are appli-
cable only if instantiated with “unused” individuals. Such operators would have
¬Used(x) among its pre-conditions, and Used(x) in the list of post-conditions.
Like this, one can enforce a usage of infinitely many individuals.

In the case of DLs considered in the previous sections, due to the open world
assumption, it is not possible to state that all individuals not appearing in the
initial ABox are instances of the concept ¬Used.

However, in the presence of the universal role U , we can make assertions
over the whole domain. For example, the assertion ∀U.¬Used(a) can ensure that
all element domains are unused in the initial state. We will show that extended
planning in ALCU (extension of ALC with the universal role) is undecidable.
Undecidability us shown by reducing the halting problem of a deterministic
Turing machine to the extended plan existence problem, similar to [6].

Let M = (Q,Σ, δ, q0, qf ) be a deterministic Turing machine, where

– Q = {q0, . . . , qn} a finite set of states;
– Σ = {blank, a1, . . . , am} a finite alphabet;
– δ : Q×Σ → Q×Σ × {L,R} is a transition function;
– q0 is the initial state;
– qf ∈ Q is the final state.

Let a = ai0 , . . . aik ∈ Σ∗ be an input word. We will define a planning task
ΠM,a = (∅,OpM,a,AM,a, ΓM,a) such that a planner for Π simulates moves of
the Turing Machine M .

In the reduction, we use concept names Q0, . . . , Qn, Blank, A1, . . . , Am, Used,
Last, M , Done, and a role name right. We define the initial state AM,a, the goal
ΓM,a, and the set of operators OpM,a as:

AM,a := {(M u ∀U.¬Used)(t0)} ∪ {Ai0(t0), . . . , Aik(tk)}
∪{right(t0, t1), . . . right(tk−1, tk)}

ΓM,a := {Done(t0)}
OpM,a := {start, create succ(x.y), done(x), done to left(x, y)} ∪⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b(x, y)} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b(x, y)}

where the single operators are defined as follows:

start := ({M(t0)}, {Used(t0), ...,Used(tk), Last(tk),¬M(t0), Q0(t0)})
create succ(x.y) := ({Last(x),¬Used(y)},

{right(x, y),¬Last(x), Last(y),Used(y),Blank(y)}
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rightq,a,q′,b(x, y) := ({Q(a), A(x), right(x, y)}, {¬Q(x),¬A(x), B(x), Q′(y)}
leftq,a,q′,b(x, y) := ({Q(a), A(x), right(y, x)}, {¬Q(x),¬A(x), B(x), Q′(y)}

done(x) := ({Qf (x)}, {Done(x)})
done to left(x, y) := ({Done(x), right(y, x)}, {Done(y)})

It is not difficult to show that the following lemma holds:

Lemma 4. The Turing machine M halts for the input a iff there is a solution
to the planning task ΠM,a = (∅,OpM,a,AM,a, ΓM,a).

Thus, we obtained the following theorem:

Theorem 3. The extended plan existence problem is undecidable in ALCU .

To conclude this section, we are leaving questions Q1 and Q2 open for the
description logics between ALC and ALCQIO. We conjecture that, without the
universal role, it is not possible to enforce introduction of an unbounded number
of individuals. It seems to be difficult even to enforce an exponential number of
new individuals.

6 Conclusion and Future Work

In this paper, we have shown that the planning problems PLANEX and PLANLEN
are decidable in action formalisms based on fragments of ALCQIO. More pre-
cisely, both PLANEX and PLANLEN are of the same computational complexity
as projection in the logics between ALC and ALCQIO. It is a not difficult to
show that the same complexity results apply to the unrestricted version of the
action formalism from [2], the one with occlusions. We conjecture that the ex-
tended plan existence problem for DLs without universal role is also decidable,
but a proof is yet to be done.

A future work will include a development and implementation of efficient
planners for description logics. Unfortunately, the complexity results we ob-
tained are quite discouraging. Even in the propositional case, planning is a
very hard combinatorial problem. An advantage in the propositional case is
that, although PLANEX is PSpace-complete [5, 7], if we are only interested in
polynomial-length plans (which is the case in practice), then planning becomes
NP-complete. On the contrary, for DLs between ALC and ALCQIO, looking for
polynomial-length plans is not easier than PLANEX, since the hardness results
from Theorem 2 hold already for the plans of constant length. Thus it looks
reasonable to start with “small” DLs, like EL or EL(¬) and try to adapt one
of the well-known strategies from propositional planning: reduction to SAT [9];
planning based on planning graphs [4]; or a combination of the previous two [8].

There seem to be two possible methods for reducing projection and planning
in EL to SAT. One would require ”pre-computing” relevant consequences C(a)
of the initial ABox, where C(a) is relevant if C is a sub-concept of the goal or
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of the concepts appearing in the pre-conditions, while the other one would use
propositional formulae to describe models of the initial ABox.

Acknowledgements: The author wants to thank Carsten Lutz for inspiring
discussions.
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Abstract. We introduce a description language for specifying partial
ordering relations over concept descriptions in description logics, and
show how the language can be used in combination with binary trees to
efficiently search a database that corresponds to a finite set of concept
descriptions. The language consists of a pair of ordering constructors
that support a form of exogenous indexing in which search criteria is
independent of data, and a form of endogenous indexing in which the
data itself provides search criteria. Our language can be refined in the
same way as a description logic in that greater expressiveness and conse-
quent richer search capability is achieved by adding additional ordering
constructors.

1 Introduction

In earlier work, Stanchev and Weddell have shown how description logics can
play a role in searching among objects in an object-oriented database [1]. In
this paper, we introduce a description language deriving from their notion of an
extended index that can be used to specify what we call ordering descriptions.
Such descriptions correspond to strict partial orders over concept descriptions in
a given description logic, in this paper ALCQ(D). We also show how an ordering
description can be used in combination with binary trees to efficiently query a
database of ALCQ(D) concept descriptions.

To illustrate, consider the case of an online supplier of photography equip-
ment. As part of a web presence, the supplier maintains a binary tree of (descrip-
tions of) items available for purchase, and maintains the tree in such a way that
a traversal of the tree will visit items in a sequence compatible with a partial
order defined by the following ordering description:

ProductCode : SaleItem(DisPrice : Un,RegPrice : Un).

Intuitively, the ordering description specifies a non-descending major sort on
the concrete feature ProductCode. Items having the same value for this feature
then appear in two consecutive groups. The first group consists of items on sale
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that in turn occur in non-descending order of their discount price. The second
group consists of items not on sale that in turn occur in non-descending order
of their regular price. The supplier also maintains a terminology that includes
the following constraints:

SaleItem v (≥ 3 Suppliers >),
SaleItem v (Price = DisPrice),
¬SaleItem v (Price = RegPrice), and

> v (DisPrice < RegPrice).

Now consider a request by an online user for all descriptions of single-sourced
digital cameras, retrieved in non-descending order of their price. This query can
be captured in our formalism by a concept description/ordering description pair
as follows:

〈ProductCode = “digicam” u ¬(≥ 2 Suppliers >), Price : Un〉.

Our results enable a procedure to reason that the tree maintained by the supplier
refines the sort order for the query. To paraphrase, the query can be evaluated
by an in-order search of the tree only, during which items will be returned in
the order requested by the user. However, to avoid sorting, items will need to
satisfy a property called descriptive sufficiency that relates to the above ordering
description for the search tree, e.g., that each item description “supplies” a value
for ProductCode. Note that this property will also make it possible to perform
arbitrary rotations to ensure that the tree is balanced following the insertion of
a new item.

Suppose the supplier decides that being single-sourced is a necessary condi-
tion for an item to not be on sale. Suppose in particular that the supplier adds
the following constraint to the terminology:

¬SaleItem v ¬(≥ 2 Suppliers >).

Our results enable a further procedure to reason that the tree maintained by the
supplier will now support the above query. This means not only that the same
in-order search of the tree will suffice, but also that the number of subsumption
checks in ALCQ(D) will be bounded both by the size of the result and by the
logarithm (base two) of the number of items occurring in the tree.

The example illustrates the use of the two kinds of ordering constructors
that make up our initial version of this ordering language. The separation of
sale and non-sale items is an example of exogenous indexing in which search
criteria is independent of data, while the major sort on ProductCode and minor
independent sorts on DisPrice and RegPrice are examples of endogenous index-
ing in which the data itself provides search criteria. However, the language can
be refined in the same way as a description logic in that greater expressiveness
and consequent richer search capability becomes possible by adding additional
ordering constructors. We suggest examples in our summary comments. Also,
the exogenous constructor imposes no conditions on the selection of a particular
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dialect of description logic, while the endogenous constructor requires only that
the dialect has a linearly ordered concrete domain.

The remainder of the paper is organized as follows. A formal definition of our
ordering language, a refinement relationship among ordering descriptions, and a
study of some of their properties follows in Section 2. We also include a Ref pro-
cedure for reasoning about refinement relationships. Although not known to be
a complete reasoner at this time, Ref is easily able to recognize the above exam-
ple case regarding sort order. In Section 3, we show how ordering descriptions
define pruning criteria during search in a binary tree of concept descriptions.
To ensure efficiency, such criteria will depend on the above-mentioned notion of
descriptive sufficiency for concept descriptions occurring in the tree. Our main
results complete the section in which we characterize supported queries for a
given ordering condition and terminology. A summary and discussion follow in
Section 4.

2 Ordering Descriptions

Our language for specifying partial orders over concept descriptions depends on
the choice of underlying description logic. In this paper, we use ALCQ(D), a
dialect that satisfies our illustrative requirements. However, our results apply to
any choice of description logic that includes a linearly-ordered concrete domain.

Definition 1 (Description Logic ALCQ(D)) Let {C,C1, . . .}, {R,S, . . .},
{f, g, . . .} and {k, k1, . . .} denote sets of primitive concept names, roles, concrete
features, and constants respectively. A concept description is then defined by the
grammar:

D,E ::= f < g | f < k | C | D u E | ¬D | (≥ n R D).

An inclusion dependency is an expression of the form D v E. A terminology T
is a finite set of inclusion dependencies.

An interpretation I is a 3-tuple 〈∆I ,∆C , ·I〉 where ∆I is an arbitrary ab-
stract domain, ∆C a linearly ordered concrete domain, and ·I an interpretation
function that maps each concrete feature f to a total function fI : ∆I → ∆C ,
each role R to a relation RI ⊆ ∆I × ∆I , each primitive concept C to a set
CI ⊆ ∆I , the < symbol to the binary relation for the linear order on ∆C , and
k to a constant in ∆C . The interpretation function is extended to arbitrary con-
cepts in the standard way.

An interpretation I satisfies an inclusion dependency D v E if (D)I ⊆ (E)I .
T |= D v E if (D)I ⊆ (E)I for all interpretations I that satisfy all inclusion
dependencies in T .

For the remainder of the paper, we also use standard abbreviations, e.g., D tE
for ¬(¬D u ¬E), as well as the derived comparisons ≤, >,≥, and = on the
concrete domain.
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Notation 2 We write D∗ to denote a description obtained from D by replacing
all features f by f∗, roles R by R∗, and concepts C by C∗, and extend this no-
tation in the obvious way to apply to inclusion dependencies and terminologies.

A formal definition of our description language for specifying partial orders over
concept descriptions in ALCQ(D) now follows. As our introductory comments
illustrate, we use the language in the next section for two purposes:

1. to define the relative positions of descriptions occurring in a search tree, and
2. as part of a query specifying the order in which such descriptions are to be

presented to a user.

Definition 3 (Ordering Description) Let D be an ALCQ(D) concept de-
scription, and f a concrete feature. An ordering description is defined by the
grammar:

Od ::= Un | f : Od | D(Od,Od).

An instance of the first (resp. second and third) production is called the null
ordering (resp. feature value ordering and description ordering).

For a given terminology T and concept descriptions D and E, D is ordered
before E by ordering description Od with respect to T , denoted (Od)T (D,E),
if T 2 D v ⊥, T 2 E v ⊥, and at least one of the following conditions holds:

– Od = “f : Od1” and (T ∪ T ∗) |= (D u E∗) v (f < f∗),
– Od = “f : Od1”, (Od1)T (D,E) and (T ∪ T ∗) |= (D u E∗) v (f = f∗),
– Od = “D′(Od1, Od2)”, T |= D v D′ and T |= E v ¬D′,
– Od = “D′(Od1, Od2)”, (Od1)T (D,E) and T |= (D t E) v D′, or
– Od = “D′(Od1, Od2)”, (Od2)T (D,E) and T |= (D t E) v ¬D′.

Two descriptions D and E are said to be incomparable with respect to an or-
dering Od and terminology T if ¬(Od)T (D,E) and ¬(Od)T (E,D), or simply
incomparable when Od and T are clear from context.

Note that the null ordering denotes an unspecified or unknown ordering, and is
used to capture circumstances when no (possibly residual) ordering relationship
between descriptions is either sensible or needed.

Important properties of ordering descriptions are given by the following
lemma.

Lemma 4 For any terminology T , ordering description Od, and concept de-
scriptions D1, D2, and D3:

1. If (Od)T (D1, D2), then ¬(Od)T (D2, D1);
2. If (Od)T (D1, D2) and (Od)T (D2, D3), then (Od)T (D1, D3);
3. If (Od)T (D1, D2), then T |= (D1 uD2) v ⊥;
4. If (Od)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥, then (Od)T (D3, D2);

and
5. If (Od)T (D1, D2), T |= D3 v D2 and T 2 D3 v ⊥, then (Od)T (D1, D3).
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Properties 1 and 2 establish the basic requirement that any ordering description
will define a strict (or irreflexive) partial order over descriptions in ALCQ(D).
It turns out that these properties are sufficient conditions for pruning subtrees
during search.

We now introduce the notion of order refinement that can be used, for ex-
ample, to characterize order optimization—to formally define when sorting can
be avoided when evaluating a query. Some properties of order refinement and an
outline of procedures for reasoning about order refinement then follow.

Definition 5 (Order Refinement) Assume a given terminology T , concept
description D and pair of ordering descriptions Od1 and Od2. Then, Od1 re-
fines Od2 with respect to T and D, written Od1 ≺T ,D Od2, if, for all concept
descriptions E1 and E2 such that T |= (E1 t E2) v D:

(Od2)T (E1, E2) implies (Od1)T (E1, E2).

Od1 is equivalent to Od2 with respect to T and D, written Od1 ≈T ,D Od2,
when Od1 ≺T ,D Od2 and Od2 ≺T ,D Od1. In all cases, D is called a parameter
description.

Consider again an application in order optimization. One can, for example, avoid
sorting a query result if the order in which the descriptions are retrieved is the
same as the sort order specified by the query. Our notion of order refinement,
however, is much more general, and the procedures that are outlined below
for reasoning about order refinement can easily handle the case given in our
introductory comments.

To further illustrate some basic capabilities of these procedures, assume that
the order in which descriptions occur in a binary tree are defined by the or-
dering description “f : g : Un”, in particular, that an in-order traversal of the
tree satisfies a major sort on concrete feature f and a minor sort on concrete
feature g. Also assume that a user submits a query with the sort order “f : Un”.
The procedures will deduce an order refinement between these ordering descrip-
tions. Should the query also stipulate that any retrieved description should be
subsumed by the concept description “f = 27”, then the procedures will also
deduce an order refinement between “f : g : Un” and “g : Un”. Further de-
tails on query evaluation will be given in Section 3. Also note that an ability to
reason about order refinement will have may related applications, e.g., in query
optimization [2] and in index selection [1].

The following lemma establishes a number of equivalence properties of or-
dering descriptions that are independent of parameter descriptions.

Lemma 6 For any terminology T , ordering descriptions Od1, Od2, and Od3

and concept descriptions D1 and D2:

1. If T |= D2 v D1, then (D2(Od1, D1(Od2, Od3))) ≈T ,> (D1(D2(Od1, Od2), Od3));
2. If T |= D1 v D2, then (D1(D2(Od1, Od2), Od3)) ≈T ,> (D1(Od1, Od3));
3. If T |= D1 v ¬D2, then (D1(D2(Od1, Od2), Od3)) ≈T ,> (D1(Od2, Od3));
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Ref (Od,Un, T , D) = true .

Ref (Un, g : Od, T , D) = (T |= D v (g = k) for some k, and Ref (Un, Od, T , D)).

Ref (Un, D′(Od1, Od2), T , D) = (T |= D v D′ and Ref (Un, Od1, T , D)) or
(T |= D v ¬D′ and Ref (Un, Od2, T , D)).

Ref (f : Od′, g : Od, T , D) = (T |= D v (f = g) and Ref (Od′, Od, T , D)) or
(T |= D v (f = k) for some k, and Ref (Od′, g : Od, T , D)) or
(T |= D v (g = k) for some k, and Ref (f : Od′, Od, T , D)).

Ref (f : Od,D′(Od1, Od2), T , D) =
(T |= D v (f = k) for some k, and Ref (Od,D′(Od1, Od2), T , D)) or
(T |= D v ¬D′ and Ref (f : Od,Od2, T , D)) or
(T |= D v D′ and Ref (f : Od,Od1, T , D)).

Ref (D′(Od1, Od2), g : Od, T , D) =
(T |= D v (g = k) for some k, and Ref (D′(Od1, Od2), Od, T , D)) or
(T |= D v ¬D′ and Ref (Od2, g : Od, T , D)) or
(T |= D v D′ and Ref (Od1, g : Od, T , D)).

Ref (D1(Od1, Od2), D2(Od3, Od4), T , D) =
(T |= D v D2 and Ref (D1(Od1, Od2), Od3, T , D)) or
(T |= D v ¬D2 and Ref (D1(Od1, Od2), Od4, T , D)) or
(T |= D v D1 and Ref (Od1, D2(Od3, Od4), T , D)) or
(T |= D v ¬D1 and Ref (Od2, D2(Od3, Od4), T , D)) or
(T |= (D uD1) ≡ (D uD2) and

Ref (Od1, Od3, T , D uD1 uD2) and
Ref (Od2, Od4, T , D u ¬D1 u ¬D2)).

Fig. 1. An approximate structural refinement procedure.

4. If T |= D2 v D1, then (D1(Od1, D2(Od2, Od3))) ≈T ,> (D1(Od1, Od3));
5. If T |= ¬D1 v D2, then (D1(Od1, D2(Od2, Od3))) ≈T ,> (D1(Od1, Od2));
6. If T |= D v (f < k) and T |= ¬D v ¬(f < k), for some k ∈ ∆C , then

f : D(Od1, Od2) ≈T ,> D(f : Od1, f : Od2); and
7. If T |= (f = g) and Od3 = “g : Od2”, then f : Od1 ≈T ,> f : Od1[Od3/Od2]

for any occurrence of Od3 in Od1.

Observe that the first is an associativity condition for nested instances of the
description ordering constructor. This allows balancing a large number of oc-
currences of this constructor that might hypothetically comprise a (very large)
ordering description.

It is possible to define a canonical form for ordering descriptions based on
the above properties only, and to devise an effective procedure for computing
this form, say Can(Od, T ), by a careful search for constants k, by orienting the
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equations for the first five properties, and so on. To determine if Od1 ≺T ,D Od2,
we present the sound structural algorithm Ref (Od1, Od2, T , D) in Figure 1.

Lemma 7 For any terminology T , ordering descriptions Od1 and Od2, and
concept description D, it follows that Od1 ≺T ,D Od2 holds if

Ref (Can(Od1, T ),Can(Od2, T ), T , D).

3 Indexing Descriptions

Our goal in this section is to show how ordering descriptions can be used to
efficiently search an index consisting of a finite collection of concept descriptions
in ALCQ(D). We begin with a formal definition of an underlying tree for an
index.

Definition 8 (Description Tree) Let D denote an arbitrary concept descrip-
tion in ALCQ(D). A description tree is an ordered rooted binary tree conforming
to the grammar:

Tr , L,R ::= 〈〉 | 〈D,L,R〉.
An instance of the first production denotes an empty tree, while an instance of
the second production denotes a node at the root of a tree with left subtree L,
right subtree R, and labelled by D. We write 〈D,L,R〉 ∈ Tr if 〈D,L,R〉 is a
node occurring in Tr, and call any tree of the form 〈D, 〈〉, 〈〉〉 a leaf node.

A description tree Tr is well formed for ordering description Od with respect
to terminology T if, for all 〈D,L,R〉 ∈ Tr,

– T 2 D v ⊥,
– ¬(Od)T (D,D′) for all 〈D′, L′, R′〉 ∈ L, and
– ¬(Od)T (D′, D) for all 〈D′, L′, R′〉 ∈ R.

When Od and T are clear from context, we say simply that Tr is well formed.

For a given ordering description Od, the conditions for Tr to be well formed
provide the invariants for insertions of new nodes. For example, when inserting
a new node for description D′ in description tree 〈D,L,R〉, a new leaf node
〈D′, 〈〉, 〈〉〉 must be added in subtree L if (Od)T (D′, D).

Definition 9 (Description Index) Let T be a terminology, Od an ordering
description, and Tr a well formed description tree with respect to Od and T . A
description index is a 3-tuple 〈Tr , Od, T 〉.
We consider queries Q of the form 〈DQ, OdQ〉, where DQ is a concept description
in ALCQ(D) and OdQ is an ordering description. A user presumes that query
Q is evaluated with respect to an index 〈Tr , Od, T 〉 by first finding all concept
descriptions Ei labelling nodes in Tr for which T |= Ei v DQ and then sorting
the descriptions Ei according to OdQ. In concrete terms, the first operation
is accomplished by standard in-order tree traversal algorithms, assuming the
following pruning conditions for a subtree 〈Ei, L,R〉 in Tr :
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〈(f ≥ 2) u (f ≤ 4),jk•
WV________________

���
�

, hi•
UT____

���
�

〉

〈(f > 3) u (f ≤ 5), 〈 〉, 〈 〉〉 〈(f ≥ 1) u (f ≤ 3), 〈 〉, 〈 〉〉

Fig. 2. A well formed description tree with respect to “f : Un”.

1. prune L if (Od)T (Ei, DQ), and
2. prune R if (Od)T (DQ, Ei).

If T |= Ei v DQ then Ei is included in the query result.
The correctness of this procedure is a simple consequence of the following

lemma showing that no query result can exist in a pruned subtree. Note that its
proof is a straightforward consequence of Lemma 4.

Lemma 10 For any description index 〈Tr , Od, T 〉, node 〈D,L,R〉 ∈ Tr, and
concept description E:

1. (Od)T (E,D) implies T 6|= D′ v E for any node 〈D′, L′, R′〉 ∈ R, and
2. (Od)T (D,E) implies T 6|= D′ v E for any node 〈D′, L′, R′〉 ∈ L.

Unfortunately, the conditions for a description tree to be well formed are not
strong enough to prevent a concept description labelling a Tr node to be ordered
by Od prior to a concept description labelling a previous node in an in-order
traversal of Tr . Thus, there is no guarantee that the descriptions returned during
an in-order traversal will satisfy the ordering description for the index. Worse,
rotations to ensure balance in Tr will not in general be possible. The following
example illustrates these problems.

Example 11 Consider the description index 〈Tr , f : Un, ∅〉 in which Tr consists
of the three nodes illustrated in Figure 2. Note that Tr is well formed since each
description is satisfiable and since the root node is incomparable to both of
the child nodes. If one considers a query that retrieves all descriptions, then
descriptions will be retrieved out of order by an in-order traversal since the right
child compares left of the left child with respect to f : Un.

Now consider what happens when a user submits a query Q for which DQ is
the same as the description labelling the right child, and when Tr itself is rotated
right to make the left child the new root node. In this new circumstance, the
above procedure for evaluating a query, in particular the strategy for pruning, is
now incorrect in the sense that the description labelling the rightmost node will
not be returned. This problem is caused by the rotation producing a description
tree that is not well formed.
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One way to overcome these problems is to introduce limitations on the concept
descriptions that can label nodes in a description tree.

Definition 12 (Descriptive Sufficiency) A concept description D is suffi-
ciently descriptive for ordering description Od with respect to terminology T ,
written SDT (D,Od), if at least one of the following conditions hold:

– Od = “Un”,
– Od = “f : Od1”, SDT (D,Od1), and T |= D v (f = k),
– Od = “D′(Od1, Od2)”, SDT (D,Od1), and T |= D v D′, or
– Od = “D′(Od1, Od2)”, SDT (D,Od2), and T |= D v ¬D′,

for some k ∈ ∆C . When Od and T are clear from context, we say simply that
D is sufficiently descriptive.

Again, it is possible to devise an effective procedure for deciding if SDT (D,Od)
holds, primarily by reusing the careful search for constants k presumed by the
Can procedure mentioned at the end of the previous section.

Descriptive sufficiency now enables us to say when rotations can be used to
balance a description tree Tr .

Lemma 13 Let Od be an ordering description and T a terminology. If concept
descriptions D1 and D2 are sufficiently descriptive, then, for any description
trees Tr1, Tr2, and Tr3 that are well formed, 〈D1, 〈D2,Tr1,Tr2〉,Tr3〉 is well
formed if and only if 〈D2,Tr1, 〈D1,Tr2,Tr3〉〉 is well formed.

Lemma 14 that follows defines the additional properties of ordering descriptions
that are needed to ensure the above procedure for searching a description index
will return descriptions in non-descending order of the ordering description for
the index. A proof of this is now a simple consequence of this lemma together
with Lemma 4. As we show in the remainder of this section, it also becomes
possible to ensure that query evaluation can be accomplished very efficiently in
terms of the number of calls to a DL reasoner.

Lemma 14 Let Od be an ordering description and T a terminology. For any
concept description D and pair of concept descriptions E1 and E2 that are in-
comparable and sufficiently descriptive:

1. If (Od)T (D,E1), then (Od)T (D,E2); and
2. If (Od)T (E1, D), then (Od)T (E2, D).

Definition 15 (Order Preserving Description Index) An index 〈Tr , Od, T 〉
is order preserving if any concept description labelling any node in Tr is suffi-
ciently descriptive.

To summarize, adding a new concept description D to an order preserving index
〈Tr , Od, T 〉 is only possible if D is sufficiently descriptive, and is accomplished
by adding 〈D, 〈〉, 〈〉〉 as a new leaf node in Tr and then performing rotations
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to ensure balance. If 〈D′, L,R〉 ∈ Tr , then the new node must be inserted in
L when (Od)T (D,D′) holds, in R if (Od)T (D′, D) holds, and in either L or R
otherwise.

Our main result now follows in which we characterize a number of the stan-
dard cases of queries for which an initial search followed by an index scan (and
without a subsequent sort) will suffice to efficiently evaluate the query.

Definition 16 (Supported Query) A description D is sufficiently selective
for ordering description Od with respect to terminology T , denoted SST (D,Od),
if at least one of the following conditions hold:

– T |= > v D,
– Od = “f : Od1”, SST (E,Od1) and T |= D ≡ ((f = k) u E),
– Od = “f : Od1” and T |= D ≡ (f < k),
– Od = “f : Od1” and T |= D ≡ ¬(f < k),
– Od = “f : Od1” and T |= D ≡ (¬(f < k) u (f < k′)),
– Od = “D′(Od1, Od2)”, SST (E,Od1) and T |= D ≡ (D′ u E),
– Od = “D′(Od1, Od2)”, SST (E,Od2) and T |= D ≡ (¬D′ u E), or
– T |= D ≡ (E t E′), SST (E,Od) and SST (E′, Od),

for some constants k and k′ in ∆C and descriptions E and E′.
A query 〈DQ, OdQ〉 is supported by an order preserving description index

〈Tr , Od′, T 〉 if and only if DQ is sufficiently selective for ordering description
Od′ with respect to T , and Od′ ≺T ,DQ

OdQ.

A procedure for deciding if the concept description of a query is sufficiently selec-
tive is an open problem at this time. However, an approximate procedure easily
capable of recognizing our introductory example is straightforward, e.g., one that
uses the above-mentioned careful search for constants k and k′ to recognize the
range query cases.

Theorem 17 Let 〈Tr , Od, T 〉 be an order preserving description index and Q
a supported query. Then Q can be evaluated in O(log(n) + k) subsumption tests
of ALCQ(D), where n is the number of nodes in Tr and k is the number of
descriptions in the result.

4 Summary and Discussion

We have proposed a language for specifying partial orders over concept descrip-
tions that consists of an initial selection of two ordering constructors. The first
is called feature value ordering, and is the standard notion of ordering supported
by SQL and relational databases. The second is called description ordering, and
can be viewed as a way of capturing indexing based on grid file techniques in
which the focus is on organizing the data space in which data resides [3]. Mul-
tidimensional indices such as quad trees [4] are examples.
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There are also a number of other ordering constructors that one might con-
sider. Two possibilities for additional endogenous indexing are given by the fol-
lowing productions for our ordering language.

Od ::= f desc : Od | v

The first is an obvious extension that would enable (sub)orders satisfying non-
ascending values for concrete features in descriptions, while the second appeals
directly to subsumption checking in a description logic. More formally, the nec-
essary revision to Definition 3 requires adding three conditions:

– Od = “f desc : Od1” and (T ∪ T ∗) |= (D u E∗) v (f∗ < f),
– Od = “f desc : Od1”, (Od1)T (D,E) and (T ∪ T ∗) |= (D uE∗) v (f = f∗),

or
– Od = “ v ” and T |= D v E.

For the first constructor, it is also straightforward to extend proofs for Lemmas 4
and 10, and to extend the definition of description sufficiency in a way that
will preserve Lemmas 13 and 14, which will then allow arbitrary rotations in
a description tree and the possibility of removing a sort operator from a query
plan, respectively. The same is not true, however, for the second constructor. In
this case, Property 5 of Lemma 4 and Property 2 of Lemma 10 will no longer
hold. Thus, pruning during search will only remain possible for right subtrees
in a description index. There is also no obvious way to repair the definition of
descriptive sufficiency in a way that will also preserve Lemmas 13 and 14.

We have demonstrated how our ordering language can support retrieving
descriptions in response to queries. In an algebraic sense, the query language we
have considered is very simple, consisting only of a selection operation for finding
descriptions subsumed by a given “selection” concept, and a sort operation for
ordering the set of descriptions produced by selection. DL systems such as Racer
[5] that implement ABox reasoning already support the first of these operations.
We believe our results provide some guidance on how DL systems can incorporate
better support for sorting, for order optimization in ABox querying, and for
ABox indexing.

There are several open problems and many possible avenues of further re-
search. Finding a complete Ref procedure and either adding further operators
to our query language or a sort capability to existing query languages such as
EQL [6] are respective examples. Finally, an expanded version of this paper con-
taining complete proofs is available as a technical report [7].
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Deciding ALBO with Tableau
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Abstract. This paper presents a tableau approach for deciding descrip-
tion logics outside the scope of OWL DL and current state-of-the-art
tableau-based description logic systems. In particular, we de�ne a sound
and complete tableau calculus for the description logic ALBO and show
that it provides a basis for decision procedures for this logic and nu-
merous other description logics. ALBO is the extension of ALC with
the Boolean role operators, inverse of roles, domain and range restric-
tion operators and it includes full support for objects (nominals). ALBO
is a very expressive description logic which is NExpTime complete and
subsumes Boolean modal logic and the two-variable fragment of �rst-
order logic. An important novelty is the use of a versatile, unrestricted
blocking rule as a replacement for standard loop checking mechanisms
implemented in description logic systems. Our decision procedure is im-
plemented in the MetTeL system.

1 Introduction

The description logic ALBO is an extension of the description logic ALB in-
troduced in [7] with singleton concepts, called nominals in modal logic. ALB is
the extension of ALC, in which concepts and roles form a Boolean algebra, and
additional operators include inverse of roles and a domain restriction operator.
ALBO extends ALC by union of roles, negation of roles, inverse of roles, and
domain as well as range restriction. In addition, it provides full support for ABox
objects and singleton concepts.

None of the current state-of-the-art tableau-based description logic systems
are able to handle ALBO. Because ALBO allows full negation of roles, it is
out of the scope of OWL DL and most description logic systems including
Fact++, KAON2, Pellet, and RacerPro. A tableau decision procedure
for the description logic ALCQIb which allows for Boolean combinations of
`safe' occurrences of negated roles is described in [14]. Safeness essentially im-
plies a `guardedness' property which is violated for unsafe occurrences of role
negation. Description logics with full, i.e. safe and unsafe, role negation can be
decided however by translation to �rst-order logic and �rst-order resolution the-
orem provers such as MSpass, Spass and Vampire. The paper [7] shows that
the logic ALB can be decided by translation to �rst-order logic and ordered
resolution. This result is extended in [3] to ALB with positive occurrences of
composition of roles. ALBO can be embedded into the two-variable fragment
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of �rst-order logic with equality which can be decided with �rst-order resolu-
tion methods [2]. This means that ALBO is decidable and can be decided using
�rst-order resolution methods.

ALBO is a very expressive description logic. It subsumes the Boolean modal
logic [4, 5] and tense, hybrid versions of Boolean modal logic with the @ operator
and nominals. ALBO can also be shown to subsume the two-variable fragment of
�rst-order logic (without equality) [8]. The following constructs and statements
can be handled in ALBO.

� Role negation, the universal role, the su�ciency or window operator, Peirce
sum, domain restriction, cross product, and cylindri�cation.

� Role inclusion axioms and role equivalence axioms in the language of ALBO.
� Role assertions in the language of ALBO.
� Boolean combinations of both concept and role inclusion and equivalence

axioms.

� Boolean combinations of concept and role assertions, including negated role
assertions.

� Disjoint roles, symmetric roles and serial roles.1

Since ALBO subsumes Boolean modal logic it follows from [10] that the satis-
�ability problem in ALBO is NExpTime-hard. In [6] it is shown that the two vari-
able �rst-order fragment with equality is NExpTime-complete. It follows there-
fore that the computational complexity of ALBO-satis�ability is NExpTime-
complete. This follows also from a (slight extension of a) result in [14].

In this paper we present a tableau approach which decides the description
logic ALBO. The tableau calculi we de�ne for ALBO are ground semantic
tableau calculi which work on ground labelled expressions. In contrast to the
tableau calculi for description logics with role operators presented in [3, 11�13]
(including ALC(t,u,−1), ALC(t,u,−1, �), and Peirce logic, or the equivalent
modal versions, where � denotes the domain restriction operator), our tableau
calculi operate only on ground labelled concept expressions. As a consequence
the calculi can be implemented as extensions of existing tableau-based descrip-
tion logic systems which can handle singleton concepts.

In order to limit the number of objects in the tableau we need a mechanism
for detecting periodicity in the underlying interpretations (models). Standard
loop checking mechanisms are based on comparing sets of (labelled or unlabelled)
concept expressions such as subset blocking or equality blocking. Instead of using
the standard loop checking mechanisms our procedure uses a new inference rule,
the unrestricted blocking rule, and equality reasoning. Our approach has the
following advantages over standard loop checking.

� It is conceptually simple and easy to implement.

� It is universal and does not depend on the notion of a type.

1 It is not di�cult to extend our method and results to include full equality handling
including re�exive roles, identity and diversity roles, and the test operator.
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� It is versatile and enables more controlled model construction in a tableau
procedure. For instance, it can be used to construct small models for a sat-
is�able concept, e.g. domain minimal models.

� It generalises to other logics, including full �rst-order logic.
� It can be simulated in �rst-order logic provers.

The unrestricted blocking rule corresponds to an unrestricted version of the �rst-
order blocking rule invented by [1], simply called the blocking rule. The blocking
rule is constrained to objects l and l′ such that the object l′ is a successor of the
object l. I.e. in the common branch of l and l′ the object l′ is obtained from l as
a result of a sequence of applications of the existential restriction rule. In this
form the rule can be used to simulate standard blocking mechanisms.

The structure of the paper is as follows. The syntax and semantics of ALBO
is de�ned in Section 2. In Section 3 we prove that ALBO has the �nite model
property. The constructions used in the proof are also used in Section 4, where
we de�ne a tableau calculus for ALBO and prove that it is sound and complete
without the unrestricted blocking rule. Section 5 introduces the (unrestricted)
blocking mechanism and proves soundness, completeness and termination of the
extended tableau calculus. This allows us to de�ne general decision procedures
for ALBO and its sublogics which is discussed in Section 6. We conclude with
Section 7. Due to lack of space some proofs are omitted or only sketched.

2 Syntax and semantics of ALBO
The syntax of ALBO is de�ned over the signature σ = (O,C,R) of three disjoint
alphabets: O = {`0, `1, . . .} the alphabet of object symbols, C = {p0, p1, . . .} the
alphabet of concept symbols, and R = {r0, r1, . . .} the alphabet of role symbols.
The logical connectives are: ¬, t, ∃, −1 (role inverse), � (domain restriction), �
(range restriction). Concept expressions (or concepts) and role expressions (or
roles) are de�ned as follows:

C
def= p | {`} | ¬C | C tD | ∃R.C,

R
def= r | R−1 | ¬R | R t S | R � C | R � C.

p ranges over the set C, ` ranges over O, and r ranges over R. The u connective
on concepts and roles is de�ned as usual in terms of ¬ and t, and the top and

bottom concepts are de�ned by > def= pt¬p and ⊥ def= pu¬p, respectively, for some
concept name p. The universal restriction operator ∀ is a dual to the existential

restriction operator ∃, speci�ed by ∀R.C def= ¬∃R.¬C.
Next, we de�ne the semantics of ALBO. A model (or an interpretation) I

of ALBO is a tuple I = (∆I , pI0 , . . . , `
I
0 , . . . , r

I
0 , . . .), where ∆

I is a non-empty
set, pIi is a subset of ∆I , `Ii ∈ ∆I , and rI0 is a binary relation over ∆I . The
semantics of concepts and roles in the model I, i.e. CI and RI , is speci�ed in
Figure 1. A TBox (respectively RBox ), is a (�nite) set of inclusion statements
C v D (respectively R v S) which are interpreted in any model I as subset
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{`}I def
= {`I}, (R−1)I def

= (RI)−1 = {(x, y) | (y, x) ∈ RI},
(¬C)I def

= ∆I \ CI , (¬R)I def
= (∆I ×∆I) \RI ,

(C tD)I def
= CI ∪DI , (R t S)I def

= RI ∪ SI ,
(R � C)I def

= {(x, y) | x ∈ CI and (x, y) ∈ RI},
(R � C)I def

= {(x, y) | y ∈ CI and (x, y) ∈ RI},
(∃R.C)I def

= {x | ∃y ∈ CI (x, y) ∈ RI}.

Fig. 1. De�nition of ·I

relationships, namely CI ⊆ DI (respectively RI ⊆ SI). An ABox is a (�nite)
set of statements of the form ` : C or (`, `′) : R, called concept assertions or role
assertions. A knowledge base is a tuple (T,R,A) of a TBox T , an RBox R, and
an ABox A.

The top role O and the empty role M are de�nable in ALBO as rt¬r and ru
¬r, respectively, for some role symbol r. As a consequence any concept assertion

` : C can be expressed as a concept expression as follows: ` : C def= ∃O.({`}uC). It
is clear that (` : C)I = ∆I i� `I ∈ CI in every model I. InALBO a role assertion
(`, `′) : R can also be expressed as a concept assertion and concept expression,

namely (`, `′) : R def= ` : ∃R.{`′}. Moreover, concept and role inclusion axioms

and are de�nable as concept expressions, too. We let C v D
def= ∀O.(¬C t D)

and R v S
def= ∀O.∃¬(¬R t S).⊥, respectively. Thus, Boolean combinations of

inclusion and assertion statements of concepts and roles are also expressible
in ALBO as the corresponding Boolean combinations of the concepts which
represent these statements. As usual, concept satis�ability inALBO with respect
to any knowledge base can be reduced to concept satis�ability with respect to
a knowledge base where all TBox, RBox, and ABox are empty. Without loss of
generality we therefore focus on the problem of concept satis�ability in ALBO.

3 Finite model property

Let ≺ be the smallest transitive ordering on the set of all ALBO expressions
(concepts and roles) satisfying:

(s1) C ≺ ¬C,
(s2) C ≺ C tD,
(s3) D ≺ C tD,
(s4) ¬C ≺ ¬(C tD),
(s5) ¬D ≺ ¬(C tD),
(s6) C ≺ ∃R.C,

(s7) R ≺ ∃R.C,
(s8) ¬C ≺ ¬∃R.C,
(s9) R ≺ ¬∃R.C,
(s10) R ≺ R t S,
(s11) S ≺ R t S,
(s12) R ≺ R−1,

(s13) ¬C ≺ R � C,
(s14) R ≺ R � C,
(s15) ¬C ≺ R � C,
(s16) R ≺ R � C,
(s17) R ≺ ¬R.

It is easy to see that ≺ is a well-founded ordering. Let � be the re�exive
closure of ≺.
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Let I be any ALBO model and C be a concept. A C-type τC(x) of an

element x of the model I is de�ned by τC(x) def= {D | D � C and x ∈ DI}.
Let ∼ be an equivalence relation on ∆I such that x ∼ y implies τC(x) = τC(y).
Let ‖x‖ def= {y ∈ ∆I | x ∼ y}.

Given a model I we de�ne the �ltrated model I (through ∼), as follows. Let
∆I def= {‖x‖ | x ∈ ∆I}. For every r ∈ R let rI def= {(‖x‖, ‖y‖) | (x, y) ∈ rI}. For
every p ∈ C let pI def= {‖x‖ | x ∈ pI} and for every ` ∈ O let `I def= ‖`I‖ = {`I}.

The following lemma can be proved by induction on the ordering ≺.
Lemma 1 (Filtration Lemma).

(1) x ∈ DI i� ‖x‖ ∈ DI for any D � C and x ∈ ∆I ,
(2) (x, y) ∈ RI i� (‖x‖, ‖y‖) ∈ RI for every R ≺ C and x, y ∈ ∆I .

A corollary of this lemma is the �nite model property.

Theorem 1 (Finite Model Property). ALBO has the �nite model property,
i.e. if a concept C is satis�able then it has a �nite model.

Proof. Let I be a model for a concept C and ∼ is an equivalence relation on

∆I de�ned by x ∼ y
def⇐⇒ τC(x) = τC(y). Then, by the Filtration Lemma, the

model I �ltrated through ∼ is also a model for C. Moreover the domain of I is
�nite because the number of C-types in every model is �nite.

4 Tableau calculus

Let T denote a tableau calculus and C a concept. We denote by T (C) a �nished
tableau built using the rules of the calculus T starting with the concept C as
input. I.e. we assume that all branches in the tableau are expanded and all
applicable rules of T have been applied in T (C). As usual we assume that all the
rules of the calculus are applied non-deterministically, to a tableau. A branch of
a tableau is closed if a contradiction has been derived in this branch, otherwise
the branch is called open. The tableau T (C) is closed if all its branches are closed
and T (C) is open otherwise. We say that T is terminating i� for every concept
C either T (C) is �nite whenever T (C) is closed or T (C) has a �nite open branch
if T (C) is open. T is sound i� C is unsatis�able whenever T (C) is closed for all
concepts C. T is complete i� for any concept C, C is satis�able (has a model)
whenever T (C) is open.

Let TALBO be the tableau calculus consisting of the rules listed in Table 1.
Given an input concept C, preprocessing is performed which pushes the role
inverse operators toward atomic concepts by exhaustively applying the following
role equivalences from left to right.

(¬R)−1 = ¬(R−1), (R t S)−1 = R−1 t S−1,

(R � C)−1 = R−1 � C, (R � C)−1 = R−1 � C, (R−1)−1 = R.
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(⊥): ` : C, ` : ¬C
⊥ (¬¬): ` : ¬¬C

` : C

(¬t): ` : ¬(C tD)

` : ¬C, ` : ¬D (t): ` : (C tD)

` : C | ` : D

(sym):
` : {`′}
`′ : {`} (sym-):

` : ¬{`′}
`′ : ¬{`} (mon):

` : {`′}, `′ : C
` : C

(id):
` : C

` : {`}
(∃): ` : ∃R.C

` : ∃R.{`′}, `′ : C
(`′ is new) (¬∃): ` : ¬∃R.C, ` : ∃R.{`′}

`′ : ¬C
(bridge):

` : ∃R.{`′}, `′ : {`′′}
` : ∃R.{`′′}

(∃t): ` : ∃(R t S).{`′}
` : ∃R.{`′} | ` : ∃S.{`′} (¬∃t): ` : ¬∃(R t S).C

` : ¬∃R.C, ` : ¬∃S.C

(∃−1):
` : ∃R−1.{`′}
`′ : ∃R.{`} (¬∃−1):

` : ¬∃R−1.C, `′ : ∃R.{`}
`′ : ¬C

(∃�): ` : ∃(R � C).{`′}
` : C, ` : ∃R.{`′} (¬∃�): ` : ¬∃(R � C).D

` : ¬C | ` : ¬∃R.D
(∃�): ` : ∃(R � C).{`′}

`′ : C, ` : ∃R.{`′} (¬∃�): ` : ¬∃(R � C).D

` : ¬∃R.¬(¬C t ¬D)

(∃¬): ` : ∃¬R.{`′}
` : ¬∃R.{`′} (¬∃¬): ` : ¬∃¬R.C, `′ : D

` : ∃R.{`′} | ` : ∃¬R.{`′}
Table 1. Tableau calculus TALBO for ALBO.

Next, the (preprocessed) input concept C is tagged with a fresh object name
` which does not occur in C. Then we build a complete tableau TALBO(C) as
usual by applying the rules of TALBO to the concept assertion ` : C. It is however
important to note that ` : C and all labelled expressions and assertions really
denote concept expressions.

Because every rule preserves the satis�ability of concept assertions, it is easy
to see that the calculus TALBO is sound for ALBO.

We turn to proving completeness of the calculus. Suppose that a tableau
TALBO(C) for the given concept C is open, i.e. it contains an open branch B.
We construct a model I for the satis�ability of C as follows. By de�nition, let

` ∼ `′ def⇐⇒ ` : {`′} ∈ B. It is clear that the rules (sym), (mon), and (id) ensure
that ∼ is an equivalence relation on objects. The equivalence class ‖`‖ of a

representative ` is de�ned as usual by: ‖`‖ def= {`′ | ` ∼ `′}. We set

∆I def= {‖`‖ | ` : {`} ∈ B}, rI def= {(‖`‖, ‖`′‖) | ` : ∃r.{`′} ∈ B},

pI def= {‖`‖ | ` : p ∈ B}, `I def=

{
‖`‖, if ` : {`} ∈ B,
‖`′‖ for some ‖`′‖ ∈ ∆I , otherwise.

It is easy to show that, using the rules (sym), (mon), and (id), the de�nition of
I does not depend on representatives of the equivalence classes.
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Lemma 2. (1) If ` : D ∈ B then ‖`‖ ∈ DI for any concept D.
(2) For every role R and every concept D

(2a) ` : ∃R.{`′} ∈ B implies (‖`‖, ‖`′‖) ∈ RI ,
(2b) if (‖`‖, ‖`′‖) ∈ RI and ` : ¬∃R.D ∈ B then `′ : ¬D ∈ B.

Proof. We prove both properties simultaneously by induction on the ordering
≺. The induction hypothesis is: for an arbitrary ALBO expression E for every
expression F such that F ≺ E if F is a concept then property (1) holds with
D = F . Otherwise (i.e. if F is a role), property (2) holds with R = F . To prove
property (1) we consider the following cases.

D = p, D = {`′}. These cases follow from the de�nitions of pI and `I .
D = ¬D0. If ` : ¬D0 ∈ B then ` : D0 /∈ B because otherwise B would have been

closed by the (⊥) rule. We have the following subcases.
D0 = p. We have ` : p ∈ B ⇐⇒ ‖`‖ ∈ pI by the de�nition of pI .
D0 = {`′}. As the rules (sym-) and (id) have been applied in B it is clear

that `′ : {`′} is in B and `′I = ‖`′‖. Similarly, `I = ‖`‖. Furthermore,
because ` : {`′} /∈ B we have ` 6∼ `′, i.e. ` /∈ ‖`′‖ = `′I . That is,
‖`‖ /∈ {‖`′‖} = {`′}I .

D0 = ¬D1, D0 = D1 tD2. The proofs of these cases are easy.
D0 = ∃R.D1. Let ‖`′‖ be an arbitrary element of ∆I such that (‖`‖, ‖`′‖) ∈

RI (trivially, if there is no such element then there is nothing to prove).
By the induction hypothesis the property (2b) holds for R ≺ D0. Thus,
`′ : ¬D1 ∈ B. The induction hypothesis for the property (1) gives us
‖`′‖ /∈ DI1 . Finally, we obtain ‖`‖ ∈ (¬∃R.D1)I because `′ was chosen
arbitrarily.

D = D0 tD1. The proof of this case is easy.
D = ∃R.D0. If ` : ∃R.D0 ∈ B then `′ : D0 ∈ B and ` : ∃R.{`′} ∈ B for some

object `′ by the (∃) rule. By the induction hypothesis the properties (1)
and (2a) hold for D0 ≺ D and R ≺ D respectively. Hence, ‖`′‖ ∈ DI0 and
(‖`‖, ‖`′‖) ∈ RI . That is, ‖`‖ ∈ (∃R.D0)I .

To prove property (2) we consider all cases corresponding to the possible forms
of a role R.

R = r. This case easily follows from the de�nition of rI .
R = S−1. For the property (2a) let ` : ∃S−1.{`′} ∈ B. Then `′ : ∃S.{`} ∈ B by

the rule (∃−1). By the induction hypothesis for S ≺ R we have (‖`′‖, ‖`‖) ∈
SI . Consequently, (‖`‖, ‖`′‖) ∈ (S−1)I . For (2b) suppose that (‖`‖, ‖`′‖) ∈
(S−1)I and ` : ¬∃S−1.D ∈ B. As all the occurrences of the inverse operator
have been pushed through other role connectives and double occurrences of
−1 have been removed2 we can assume that S = r for some role name r.
Hence, (‖`′‖, ‖`‖) ∈ rI and, consequently, `′ : ∃r.{`} ∈ B by the de�nition
of rI . Finally, by the (¬∃−1) rule, `′ : ¬D is in the branch B.

R = S0 t S1, R = S � D, R = S � D. The proofs of these cases are easy.

2 Removal of the double occurrences of the inverse operator in front of atoms is not
essential for the proof but it simpli�es the proof a bit.
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R = ¬S. For (2a) suppose ` : ∃¬S.{`′} ∈ B. Then ` : ¬∃S.{`′} ∈ B is obtained
with the (∃¬) rule. If (‖`‖, ‖`′‖) /∈ (¬S)I then (‖`‖, ‖`′‖) ∈ SI and by
property (2b) which holds by the induction hypothesis for S ≺ R we have
that `′ : ¬{`′} is in B. This concept together with `′ : {`′} implies the branch
is closed. We reach a contradiction, so (‖`‖, ‖`′‖) ∈ (¬S)I .
For property (2b) suppose that (‖`‖, ‖`′‖) ∈ (¬S)I and ` : ¬∃¬S.D are in the
branch B. Then we have (‖`‖, ‖`′‖) /∈ SI and, hence, by the contra-positive
of property (2a) for S ≺ R, ` : ∃S.{`′} is not in B. Applying the (¬∃¬) rule
to ` : ¬∃¬S.D we get ` : ∃¬S.{`′} ∈ B. Therefore, by the (¬∃) rule, `′ : ¬D
is in the branch too.

A consequence of this lemma is completeness of the tableau calculus. Hence, we
can state:

Theorem 2. TALBO is a sound and complete tableau calculus for ALBO.

5 Blocking

The calculus TALBO is non-terminating for ALBO. There are satis�able concepts
which result in an in�nite TALBO-tableau where all open branches are in�nite.
All the rules respect the well-founded ordering ≺ of expressions under labels, i.e.
in every rule the main symbol of the concept above the line is strictly greater
w.r.t. ≺ than the main symbol(s) of the expression(s) below the line of the rule.
Furthermore, it is easy to see that only applications of the (∃) rule generate
new symbols in the branch. Thus, the reason that a branch can be in�nite is
the unlimited application of the (∃) rule. As a consequence, the following lemma
holds, where #∃(B) denotes the number of applications of the (∃) rule in a
branch B.
Lemma 3. If #∃(B) is �nite then B is �nite.

In order to avoid in�nite derivations we restrict the application of the (∃) rule
by the following blocking mechanism.

Let < be an ordering on objects in the branch which is a linear extension of
the order in which the objects are introduced during a derivation. I.e. let ` < `′

whenever the �rst appearance of object `′ in the branch is strictly later than the
�rst appearance of the object `. We add the following rule, called the unrestricted
blocking rule, to the calculus.

(ub):
` : C, `′ : D

` : {`′} | ` : ¬{`′}
Moreover, we require the following conditions to hold.

(c1) Any rule is applied at most once to the same set of premises.
(c2) The (∃) rule is applied only to expressions of the form ` : ∃R.C when C

is not a singleton, i.e. C 6= {`′′} for some object `′′.
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(c3) If ` : {`′} appears in a branch and ` < `′ then all further applications of
the (∃) rule to expressions of the form `′ : ∃R.C are not performed within
the branch.

(c4) In every open branch there is some node from which point onwards before
any application of the (∃) rule all possible applications of the (ub) rule
must have been performed.

We use the notation TALBO + (ub) for the extension of TALBO with this rule
and this blocking mechanism.

Theorem 3. TALBO+(ub) is a sound and complete tableau calculus for ALBO.
Proof. The blocking requirements (c1)�(c4) are sound in the sense that they
cannot cause an open branch to become closed. The (ub) rule is sound in the
usual sense. Thus, we can safely add the blocking requirements and the block-
ing rule to a sound and complete tableau without endangering soundness or
completeness. Hence, TALBO + (ub) is sound and complete.

Let B be the leftmost open branch with respect to the rule (ub) in the
TALBO + (ub) tableau for a given concept C. Assume that I is a model con-
structed from B as in the completeness section above.

Lemma 4. If τC(‖`‖) = τC(‖`′‖) in I then ` : {`′} ∈ B.
Proof. Suppose that τC(‖`‖) = τC(‖`′‖). Therefore, ` : {`′} is consistent with C.
By (c4) the rule (ub) has been applied to the objects ` and `′ in B. As ` : {`′} is
consistent with C, the left branch (containing ` : {`′}) of this application of (ub)
is open and, by the choice of the branch B, coincides with B.
Corollary 1. The model I obtained from I by �ltration with respect to C is
isomorphic to I. In particular, ∆I is �nite.

For every ‖`‖ ∈ ∆I , let #∃(‖`‖) denote the number of applications of the
(∃) rule to concepts of the form `′ : ∃R.D with `′ ∈ ‖`‖.
Lemma 5. #∃(‖`‖) is �nite for every ‖`‖ ∈ ∆I .
Proof. Suppose not, i.e. #∃(‖`‖) is in�nite. The number of concepts of the
shape ∃R.D under labels in the branch is �nitely bounded. By requirements (c1)
and (c2) there is a sequence of objects `0, `1, . . . such that every `i ∈ ‖`‖ and
the (∃) rule has been applied to concepts `0 : ∃R.D, `1 : ∃R.D, . . . for some
∃R.D ≺ C. However, such a situation is impossible because of requirements (c4)
and (c3). Indeed, without loss of generality we can assume that ` < `0 < `1 < · · · .
Then, by requirement (c4), starting from some node of B, as soon as `i appears
in B, it is detected that `i ∈ ‖`‖ before any next application of the rule (∃)
and, hence, `i is immediately blocked for any application of the rule (∃), by
requirement (c3).

Lemma 6. #∃(B) is �nite.
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Proof. Clearly #∃(B) ≤ max{#∃(‖`‖) | ‖`‖ ∈ ∆I}×Card(∆I). The rest follows
from Corollary 1 and Lemma 5.

Corollary 2. If the leftmost branch with respect to the rule (ub) in a TALBO +
(ub) tableau is open then the branch is �nite.

Theorem 4 (Termination). TALBO + (ub) is a terminating tableau calculus
for ALBO.
Proof. Termination of TALBO + (ub) follows from Corollary 2. Indeed, every
closed branch of a TALBO+(ub)-tableau is trivially �nite and by Corollary 2 the
length of the leftmost open branch with respect to the rule (ub) is �nite, too.

Notice that condition (c4) is essential for ensuring termination of a TALBO+
(ub) derivation. Indeed, it easy to see that in absence of (c4) the TALBO + (ub)
tableau for the concept ¬(∃(st¬s).¬∃r.pt∃(st¬s).¬∃r.¬p) does not terminate
because new objects are generated more often than their equality check via the
rule (ub) is performed in the tableau.

6 Decision procedures

When turning the presented calculus TALBO+ (ub) into a deterministic decision
procedure it is crucial that this is done in a fair way. A procedure is fair if, when
if an inference is possible forever then it is performed eventually. In other words
a deterministic tableau algorithm based on TALBO + (ub) may not defer the
use of an applicable rule inde�nitely. Note that understand fairness in a `global'
sense. That is, a tableau algorithm has to be fair not only to expressions in a
particular branch but to expressions in all branches of a tableau. In another
words, the algorithm is fair if it is fairly chooses a branch and expression(s) in
it to apply a rule.

Theorem 5. Any fair tableau procedure based on TALBO + (ub) is a decision
procedure for ALBO and all its sublogics.

Note that we do not assume that the branches are expanded in a depth-�rst
left-to-right order. However it also follows from our results that:

Theorem 6. Any fair tableau procedure based on TALBO + (ub) which uses
a depth-�rst and left-to-right strategy, with respect to branch selection of the
(ub) rule, is a decision procedure for ALBO and all its sublogics.

To illustrate the importance of fairness we give an example. The concept

C
def= ¬ (∃(s t ¬s).¬∃r.p t ¬∃t.¬∃r.p)

is not satis�able. Figure 2 gives a depth-�rst left-to-right derivation which is
unfair and does not terminate. Each line in the derivation is numbered on the
left. The rule applied and the number of the premise(s) to which it was applied to
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1. `0 : C . . . . . . . . . . . . . . . . . . . . . . . . . given
2. `0 : ¬∃(s t ¬s).¬∃r.p . . . . . . . . (¬t),1
3. `0 : ¬¬∃t.¬∃r.p . . . . . . . . . . . . . . (¬t),1
4. `0 : ∃t.¬∃r.p . . . . . . . . . . . . . . . . . (¬¬),3
5. `0 : ¬∃s.¬∃r.p . . . . . . . . . . . . . . (¬∃t),2
6. `0 : ¬∃¬s.¬∃r.p . . . . . . . . . . . . (¬∃t),2
7. I`0 : ∃s.{`0} . . . . . . . . . . . . . . . (¬∃¬),6
8. `0 : ¬¬∃r.p . . . . . . . . . . . . . . . (¬∃),7,5
9. `0 : ∃r.p . . . . . . . . . . . . . . . . . . . (¬¬),8
10. `1 : p . . . . . . . . . . . . . . . . . . . . . . . . (∃),9
11. `0 : ∃r.{`1} . . . . . . . . . . . . . . . . . . (∃),9
12. I`0 : ∃s.{`1} . . . . . . . . . . (¬∃¬),6,10
13. `1 : ¬¬∃r.p . . . . . . . . . . . . (¬∃),12,5
14. `1 : ∃r.p . . . . . . . . . . . . . . . . .(¬¬),13
15. I`0 : {`1} . . . . . . . . . . . . . . . . . . (ub)
16. `2 : ¬∃r.p . . . . . . . . . . . . . . . . (∃),4
17. `0 : ∃t.{`2} . . . . . . . . . . . . . . . (∃),4
18. I`0 : ∃s.{`2} . . . . . . . (¬∃¬),6,16
19. `2 : ¬¬∃r.p . . . . . . . . (¬∃),5,18

20. Unsatis�able. . . . . . .(⊥),16,19
21. I`0 : ∃¬s.{`2} . . . . . (¬∃¬),6,16
22. `2 : ¬¬∃r.p . . . . . . . . (¬∃),6,21
23. Unsatis�able. . . . . . .(⊥),16,22
24. I`0 : ¬{`1} . . . . . . . . . . . . . . . . (ub)
25. `2 : p . . . . . . . . . . . . . . . . . . . (∃),14
26. `1 : ∃r.{`2} . . . . . . . . . . . . . (∃),14
27. I`0 : ∃s.{`2} . . . . . . . (¬∃¬),6,25
28. `2 : ¬¬∃r.p . . . . . . . . (¬∃),27,5
29. `2 : ∃r.p . . . . . . . . . . . . . (¬¬),28
30. Non-terminating . . . . . . . . .

. . . . . . . . . Repetition of 14�29

31. I`0 : ∃¬s.{`2} . . . . . (¬∃¬),6,25
32. . . . . . . . . . . Similarly to 27�30

33. I`0 : ∃¬s.{`1} . . . . . . . . . (¬∃¬),6,10
34. . . . . . . . . . . . . . . Similarly to 12�32

35. I`0 : ∃¬s.{`0} . . . . . . . . . . . . . (¬∃¬),6
36. . . . . . . . . . . . . . . . . . Similarly to 7�34

Fig. 2. An in�nite, unfair derivation

produce the labelled concept expression (assertion) in each line is speci�ed on the
right. The black triangles denote branching points in the derivation. A branch
expansion after a branching point is indicated by appropriate indentation. We
observe that the derivation is in�nite because the application of the (∃) rule to
`0 : ∃t.¬∃r.p is deferred forever and, consequently, a contradiction is not found.
The example illustrates the importance of fairness to completeness.

Without giving further details we observe that the calculi are compatible with
standard optimisations such as backjumping, simpli�cation, di�erent strategies
for branch selection and rule selection, etc provided that the fairness condition
is not violated.

We have implemented the unrestricted blocking rule as a plug-in to the
MetTeL tableau prover [9], and tested it on various description logics.

7 Conclusion

We have presented a new, general tableau approach for deciding description log-
ics with complex role operators, including especially `non-safe' occurrences of
role negation. The tableau decision procedures found in the description logic
literature, and implemented in existing tableau-based description logic systems,
can handle a large class of description logics but cannot currently handle de-
scription logics with full role negation such as ALB or ALBO. An important
novelty of our approach is the use of a blocking mechanism based on the use of
inference rules rather than standard loop checking mechanisms which are based
on tests performed on sets of expressions or assertions which may need to be
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tailored toward speci�c logics. Our techniques are versatile and are not limited
to ALBO or its sublogics, but carry over to all description logics and also other
logics including �rst-order logic. We are optimistic that the ideas of this paper
can be taken a lot further.
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Description Logic vs.Order-Sorted Feature Logic

Hassan Aı̈t-Kaci

ILOG, Inc.
hak@ilog.com

Abstract. We compare and contrast Description Logic (DL) and Order-Sorted Feature (OSF)
Logic from the perspective of using them for expressing and reasoning with knowledge struc-
tures of the kind used for the Semantic Web.

Introduction

The advent of the Semantic Web has spurred a great deal of interest in various Knowldege Representation
formalisms for expressing, and reasoning with, so-called formalontologies. Such ontologies are essentially
sets of expressions describing data and properties thereof. Data is generally organized into ordered hierarchies
of set-denoting concepts where the order denotes set inclusion. Properties are binary relations involving these
concepts. This set-theoretic semantics is amenable to a crisp formal rendering based on first-order logic, and
therefore to proof-theoretic operational semantics.

Description Logic (DL) and Order-Sorted Feature (OSF) logic are two mathematical formalisms that
possess such proof-theories. Both are direct descendants of Ron Brachman’s original ideas [1]. This inher-
itance goes through my own early work formalizing Brachman’s ideas [2], which in turn inspired the work
of Gert Smolka, who pioneered the use of constraintsboth for theDL [3] andOSF [4] formalisms. While
theDL approach has become the mainstream of research on the Semantic Web, the lesser knownOSF for-
malisms have evolved out of Unification Theory [5], and been used in Constraint-Logic Programming and
Computational Linguistics [6–19].

In this short communication (extracted from [20]), we compare and contrastDL andOSF logics with
the purpose of using them effectively for ontological representation and reasoning.

Relation betweenDL and OSF Formalisms

The two formalisms for describing attributed typed objectsof interest—viz., DL andOSF—have several
common, as well as distinguishing, aspects. Thanks to both formalisms using the common language ofFOL
for expressing semantics, they may thus be easily compared—see, for example, [21, 22]. We here brush on
some essential points of comparison and contrast.1

Common AspectsDL reasoning is generally carried out using (variations on) Deductive Tableau methods
[23].2 This is also the case of the constraint propagation rules of Fig. 1, which simply mimick a Deductive
Tableau decision procedure [24].3 OSF reasoning is performed by theOSF-constraint normalization rules
of Figs. 2 and 3, which implement a logic of sorted-feature equality.

1 Due to severe, and strictly enforced, space limitation in these proceedings, most of the points we make here are further elaborated for the
interested reader in [20].

2 Although one can find some publications on Description Logics that do not (fully) use Tableaux reasoning for their operational semantics
and mix it with resolution (i.e., Prolog technology), the overwhelming majority follow theofficial W3C recommendations based on
Tableaux methods for TBox reasoning.

3 The constraint-rule notation we use is Plotkin’s SOS style [30]. The constraint systemALCNR is given here as an exemplar of a DL
Tableaux-based reasoning system. It is neither the most expressive nor the most efficient. However, it uses the same style of formula-
expansion rules used by all Tableaux-based DL systems such as, in particular, the ever-growing family of esoterically-named Description
LogicsSHIQ, SHOIN , SHOIQ, SHOQ(D), SRIQ, and otherSROIQ, which underlie all the official nocturnal bird
languages promoted by the W3C to enable the Semantic Web—seefor example the “official” DL site (http://dl.kr.org/ ) as well
as the output of one of its most prolific spokesperson (http//www.cs.man.ac.uk/˜horrocks/Publications/ ).
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(C⊓) CONJUNCTIVE CONCEPT:»
if x : (C1 ⊓ C2) ∈ S

and {x : C1, x : C2} 6⊆ S

– S

S ∪ {x : C1, x : C2}

(C⊔) DISJUNCTIVE CONCEPT:»
if x : (C1 ⊔ C2) ∈ S

and x : Ci 6∈ S (i = 1, 2)

– S

S ∪ {x : C1}

(C∀) UNIVERSAL ROLE :24 if x : (∀R.C) ∈ S
and y ∈ RS [x]
and y : C 6∈ S

35 S

S ∪ {y : C}

(C∃) EXISTENTIAL ROLE :24 if x : (∃R.C) ∈ S s.t. R
DEF
==

` dm
i=1 Ri

´
and z : C ∈ S =⇒ z 6∈ RS [x]
and y is new

35 S

S ∪ {xRiy}m
i=1 ∪ {y : C}

(C≥) M IN CARDINALITY :24 if x : (≥ n.R) ∈ S s.t. R
DEF
==

` dm
i=1 Ri

´
and |RS[x]| 6= n
and yi is new(0 ≤ i ≤ n)

35 S

S ∪{xRiyj}m,n
i,j=1,1

∪{yi 6 .= yj}1≤i<j≤n

(C≤) M AX CARDINALITY :264 if x : (≤ n.R) ∈ S
and |RS[x]| > n
and y, z ∈ RS [x]
and y 6 .= z 6∈ S

375 S

S ∪ S[y/z]

Fig. 1. SomeDL-constraint propagation rules (ALCNR)

§Object Descriptions—Both theDL andOSF formalisms describe typed attributed objects. In each, ob-
jects are data structures described by combining set-denoting concepts and relation-denoting roles.
§Logic-Based Semantics—BothDL andOSF logic are syntatic formalisms expressing meaning using con-
ventional logic styles. In other words, both formalisms take their meaning in a common universal language—
viz., (elementary) Set Theory. This is good since it eases understanding each formalism in relation to the
other thanks to their denotations in the common language.
§Proof-Theoretic Semantics—BothDL andOSF logics have their corresponding proof theory. Indeed,
since both formalisms are syntactic variants of fragments of FOL, proving theorems in each can always rely
onFOL mechanized theorem proving.
§Constraint-Based Formalisms—Even further, bothDL andOSF logic are operationalized using a constraint-
based decision procedure. As we have expounded, this makes both paradigms amenable to being manipulated
by rule-based systems such as based onCLP , rewrite rules, or production rules.
§Concept Definitions—BothDL andOSF provide a means for defining concepts in terms of other con-
cepts. This enables a rich framework for expressing recursive data structures.
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Distinguishing Aspects There are also aspects in each that distinguish theDL andOSF formalisms
apart. However, several of these distinguishing features are in fact cosmetic—i.e., are simply equivalent
notation for the same meaning. Remaining non-cosmetic differences are related to the nature of the deductive
processes enabled out by each formalism.
§Functional Featuresvs.Relational Roles—TheOSF formalism usesfunctionsto denote attributes while
theDL formalism usesbinary relationsfor the same purpose. Many have argued that this difference is
fundamental and restricts the expressivity ofOSF vs.DL. This, however, is only a cosmetic difference as
we have already explained. First of all, a functionf : A 7→ B is a binary relation sincef ∈ A × B. It a
functional relation because it obeys the axiom of functionality; namely,〈a, b〉 ∈ f & 〈a, b′〉 ∈ f ⇒ b = b′.
In other words, a function is a binary relation that associates at most one range element to any domain element.
This axiom is fundamental as it is is used in basicOSF unification“Feature Functionality”shown in Fig. 2.
Indeed, the correctness of this rule relies on the semanticsof features as functions, not as relations.

(O1) SORT I NTERSECTION: φ & X : s & X : s′

φ & X : s ∧ s′

(O2) I NCONSISTENT SORT: φ & X : ⊥
X : ⊥

(O3) FEATURE FUNCTIONALITY : φ & X.f
.
= X ′ & X.f

.
= X ′′

φ & X.f
.
= X ′ & X ′ .

= X ′′

(O4) VARIABLE ELIMINATION :ˆ
if X 6= X′ and X ∈ VAR(φ)

˜ φ & X
.
= X ′

φ[X/X ′] & X
.
= X ′

(O5) VARIABLE CLEANUP : φ & X
.
= X

φ

Fig. 2. BasicOSF-constraint normalization rules

However, a relationR ∈ A × B is equivalent to either of a pair of set-denoting functions—viz.., either
the functionR[ ] : A 7→ 2B , returning theR-object (or R-image) setR[x] ⊆ B of an elementx ∈ A; or,
dually, the functionR−1[ ] : B 7→ 2A, returning theR-subject(or R-antecedent) setR−1[y] ⊆ A of an
elementy ∈ B. Indeed, the following statements (s1)–(s3) are equivalent:

∀〈x, y〉 ∈ A×B, 〈x, y〉 ∈ R (s1)
y ∈ R[x] (s2)

x ∈ R−1[y] (s3)

Therefore, it is a simple matter for theOSF formalism to express relational attributes (or roles) withfeatures
taking values as sets. This is trivially done as a special case of the“Value Aggregation”OSF unification
rule shown in Fig. 3, using a set data constructor—i.e., a commutative idempotent monoid.
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(O6) PARTIAL FEATURE :ˆ
if s ∈ DOM (f) and RANs(f) = s′

˜ φ & X.f
.
= X ′

φ & X.f
.
= X ′ & X : s & X ′ : s′

(O7) WEAK EXTENSIONALITY :»
if s ∈ E and ∀f ∈ ARITY (s) :
{X.f

.
= Y, X′.f .

= Y } ⊆ φ

– φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

(O8) VALUE AGGREGATION :»
if s ands′ are both subsorts of
commutative monoid〈⋆, 1⋆〉

– φ & X = e : s & X = e′ : s′

φ & X = e ⋆ e′ : s ∧ s′

Fig. 3. AdditionalOSF-constraint normalization rules

§Setsvs. Individuals—Because theOSF formalism has only set-denoting sorts, it is often misconstrued as
unable to deal with individual elements of these sets. However, as explained in [20], this is again an innocuous
cosmetic difference since elements are simply assimilatedto singleton-denoting sorts.
§No Number Restrictionsvs.Number Restrictions—Strictly speaking, theOSF formalism has no special
constructs for number restrictions as they exist inDL. Now, this does not mean that it lacks the power to
enforce such constraints. Before we show how this may be done, however, it important to realize that it may
not always be a good idea to use theDL approach to do so.

Indeed, as can be seen in Fig. 1, the“Min Cardinality” rule (C≤) will introducen(n − 1)/2 new dis-
equality constraints for each such constraint of cardinality n. Clearly, this is a source of gross inefficiency
a n increases. Similarly, the“Existential Role” rule (C∃) will systematically introduce a new variable for a
role, even when this role is never accessed!It does so because, it materializes the full extent of role value
sets. In other words,C constraint-propagation rules flesh out complete skeletonsfor attributed data structures
whether or not the actual attribute values are needed.

By contrast, it is simple and efficient to accommodate cardinality constraints in theOSF calculus with
value aggregation using a set constructor (i.e., an idempotent commutative monoidM = 〈⋆, 1⋆〉), and a
function CARD : M 7→ N that returns the number of elements in a set. Then, imposing arole cardinality
constraint for a roler in a feature termt = X : s(r ⇒ S = {e1, . . . , en} : m), where sortm denotesM ’s
domain, is achieved by the constraintϕ(t) & CARD(S) ≤ n—or ϕ(t) & CARD(S) ≥ n. If the set contains
variables, these constraints will residuate as needed pending the complete evaluation of the functionCARD.
However, as soon as enough non-variable elements have materialized in the set that enable the decision,
the constraint will be duly enforced. Clearly, this “lazy” approach saves the time and space wasted byDL-
propagation rules, while fully enforcing the needed cardinalities.

Incidentally, note also that this principle allows not onlymin and max cardinality, but any constraints on
a set, whether cardinality or otherwise. Importantly, thisforegoing method works not only for sets, but can
be used with arbitrary aggregations using other monoids.
§Greatest Fix-Point vs. Least Fix-Point—It is well known that unfolding recursive definitions of all kinds
(be it function, relation, or sort) is precisely formalizedas computing a fix-point in some information-theoretic
lattice. Indeed, given a complete latticeL

DEF
== 〈DL , ⊑ L ,⊓L ,⊔L ,⊤L ,⊥L〉 and a monotone function4

F : DL 7→ DL , Tarski’s fix-point theorem5 states that the setFP(F)
DEF
== {x ∈ DL | F(x) = x} of

4 That is, such that:∀x, y ∈ DL, x ⊑Ly =⇒ F(x) ⊑LF(y).
5 See,e.g., [25].
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fix-points ofF is itself a complete sublattice ofL. Moreover, its bottom element is calledF ’s least fix-point
(LFP), writtenF↑, defined by Equation (1):

F↑ DEF
==

G
n∈N

LFn`⊥L´
(1)

and its top element is calledF ’s greatest fix-point(GFP), writtenF↓, defined by Equation (2):

F↓ DEF
==

l
n∈N

LFn`⊤L´
(2)

where:

Fn(x) =


x if n = 0,
F(Fn−1(x)) otherwise.

Informally, F↑ is the upward iterative limit of F starting from the least element inDL , while F↓ is its
downward iterative limit starting from the greatest element inDL . One can easily show thatF(F↑) = F↑

[resp.,F(F↓) = F↓], and that no element ofDL lesser thanF↑ [resp., greater thanF↓ ] is a fix-point ofF .
One may wonder when one, or the other, kind of fix-point captures the semantics intended for a set of re-

cursive definitions. Intuitively, LFP semantics is appropriate when inference proceeds by derivingnecessary
consequencesfrom facts that hold true, and GFP semantics is appropriate when inference proceeds by deriv-
ing sufficient conditionsfor facts to hold true.6 Therefore, LFP computation can model only well-founded
(i.e., terminating) recursion, while GFP computation can also model non well-founded (i.e., not necessarily
terminating) recursion. Hence, typically, LFP computation is naturally described as abottom-upprocess,
while GFP computation is naturally described as atop-downprocess.

An example of GFP semantics is given by the Herbrand-term unification. Indeed, this process transforms
a set of equations into an equivalent one using sufficient conditions by processing the terms top-down from
roots to leaves. The problem posed is to find sufficient conditions for a term equation to hold on the con-
stituents (i.e., the subterms) of both sides of the equation. For first-orderterms, this process converges to
either failure or producing a most general sufficient condition in the form of a variable substitution, or equa-
tion set in solved form (the MGU). Similarly, theOSF-constraint normalization rules of Figs. 2, 4, 5, and
3 also form an example of converging GFP computation for the same reasons. Yet another example of GFP
computation where the process may diverge is the lazy recursive sort definition unfolding described in [26].

On the other hand, constraint-propagation rules based on Deductive Tableau methods such as used in [3]
or shown in Fig. 1 are LFP computations. Indeed, they proceedbottom-up by building larger and larger con-
straint sets by completing them with additional (and often redundant) constraints. In short,OSF-constraint
normalization follows a reductive semantics (it eliminates constraints) whileDL-constraint propagation fol-
lows an inflationary semantics (it introduces constraints). As a result,DL’s tableau-style reasoning method
is expansive—therefore,expensivein time and space. One can easily see this simply by realizingthat each
rule in Fig. 1 builds a larger setS as it keeps adding more constraints and more variables toS. Only the
“Max Cardinality” rule (C≤) may reduce the size ofS to enforce upper limits on a concept’s extent’s size by
merging two variables. Finally, it requires that the constraint-solving process be decidable.

By contrast, theOSF labelled-graph unification-style reasoning method is moreefficient both in time
and space. Moreover, it can accommodate semi-decidable—i.e., undecidable, though recursively enumerable—
constraint-solving. Indeed, no rule in Figs. 2, 4, 5, and 3 ever introduces a new variable. Moreover, all the
rules in Fig. 2 as well as the rule 3, except for the“Partial Feature”rule, all eliminate constraints. Even this
latter rule introduces no more constraints than the number of features in the whole constraint. The rules in
Figs. 4 and 5 may replace some constraints with more constraints, but the introduced constraints are all more
restrictive than those eliminated.
§Coinduction vs. Induction—Remarkably, the interesting duality between least and greatest fix-point com-
putations is in fact equivalent to another fundamental one;namely,induction vs. coinductionin computation

6 One might also say that LFP isdeductivesince it moves from premiss to consequent, and that GFP isabductivesince it moves from
consequent to premiss.
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(O9) NON-UNIQUE GLB :»
if {s1}n

i=0 = max≤{t ∈ S | t ≤ s
and t ≤ s′}

– φ & X : s & X : s′

φ &
`
X : s1 ‖ . . . ‖ X : sn

´
(O10) DISTRIBUTIVITY : φ &

`
φ′ ‖ φ′′

´`
φ & φ′

´ ‖ `
φ & φ′′

´
(O11) DISJUNCTION : φ ‖ φ′

φ

Fig. 4. DisjunctiveOSF-constraint normalization

(O12) DISEQUALITY : φ & X 6 .= X

⊥

(O13) COMPLEMENT :»
if s′ ∈ max≤{t ∈ S | t 6≤ s
and t 6≤ s}

– φ & X : s

φ & X : s′

Fig. 5. NegativeOSF-constraint normalization

and logic, as nicely explained in [27]. Indeed, while induction allows to derive a whole entity from its con-
stituents, coinduction allows to derive the constituents from the whole. Thus, least fix-point computation is
induction, while greatest fix-point computation is coinduction. Indeed, coinduction is invaluable for reason-
ing about non well-founded computations such as those carried out on potentially infinite data structures [28],
or (possibly infinite) process bisimulation [29].

This is a fundamental difference betweenDL andOSF formalisms:DL reasoning proceeds by actually
building a model’s domain verifying a TBox, whileOSF reasoning proceeds by eliminating impossible
values from the domains. Interestingly, this was already surmised in [3] where the authors state:

“[. . . ] approaches using feature terms as constraints [. . . ]use a lazy classification and can thus
tolerate undecidable subproblems by postponing the decision until further information is available.
[. . . these] approaches are restricted to feature terms; however, an extension to KL-ONE-like concept
terms appears possible.”

Indeed, the extendedOSF formalism overviewed in [20] is a means to achieve preciselythis.

Conclusion

We have briefly reviewed two well-known data description formalisms based on constraints, Description
Logic and Order-Sorted Feature Logic, explicating how theywork and how they are formally related. We
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have identified similarities and differences by studying their set-theoretic semantics and first-order logic
proof-theory based on constraint-solving. In so doing, we identified that the two formalisms differ essentially
as they follow dual constraint-based reasoning strategies, DL constraint-solving being inductive (or eager),
andOSF constraint-solving being coinductive (or lazy). This has as consequence thatOSF logic is more
effective at dealing with infinite data structures and semi-decidable inference.

It seems therefore evident that, since theDL andOSF formalisms are one another’s formalduals,
both semantically and pragmatically, we should be well-advised to know preciselywhen one or the other
technology is more appropriate forwhat Semantic Web reasoning task.
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Abstract. Enabling the Semantic Web requires solving the semantic
heterogeneity problem, for which ontology matching methods have been
proposed. These methods rely on similarity measures that are mainly
focused on terminological, structural and extensional properties of the
ontologies. Semantics rarely play a direct role on the ontology matching
process, albeit some algorithms have been proposed. On the other hand,
many ontology engineers choose representation languages that have an
underlying formal logic, providing well-defined model-theoretic seman-
tics. Since semantics are a key advantage of ontologies, we believe that
semantics-based similarity measures are crucial. In this paper, we present
a novel approach to semantic similarity.

Key words: ontology matching, semantic similarity

1 Introduction

Given the semi-anarchic organisation of the current World Wide Web, it is unre-
alistic to expect that the Semantic Web, its envisioned evolution, will not suffer
from semantic heterogeneity, which can, if it is not properly tackled, hinder its
acceptance and consequently its growth and, in the worst case, preclude its devel-
opment. Ontology matching and alignment is an area that deals with this prob-
lem by establishing relations (usually equivalence and subsumption relations)
between elements in different ontologies. According to [1], ontology alignment
techniques can be categorised in two major groups: local, which focuses on simi-
larities of individual elements and/or their relations to other elements, and global,
dealing with the whole ontology or parts of it. The local alignment techniques
are further classified as terminological, structural, extensional or semantics. Ter-
minological methods are twofold: many rely in string-matching techniques, such
as sub-string matching, Jaccard Distance, Edit Distance, etc; others use external
linguistic resources, such as dictionaries or thesauri. Structural techniques rely
on the structure of the elements, and their relations to other elements, recurring,
for example, to graph matching techniques. Extensional techniques focus on the
extensions (instances) of concepts to assess their likelihood. Finally, semantics-
based alignment approaches are aware and make use of the semantics underlying
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the representation language, which enables them to resort to deduction services,
such as subsumption and consistency checking.

Similarity measures are used to assess the likelihood of elements of ontologies
or the ontologies themselves. In this paper we present our preliminary work on
defining an ontology similarity measure that is purely based in the semantics of
concepts. We should note at this point that we are committing to the notion
of semantics as defined by a formal logic system, and not as its pragmatical
meaning as approached in [2]. For the target representation language, we chose
a Description Logics formalism for mainly three reasons: it is the backbone of
the current most prominent ontology representation language for the Semantic
Web – the OWL language –, it is the most active family of languages in the
community and it provides well-defined model-theoretic semantics. Our target
representation language is ALC without roles. Although this is a rather inex-
pressive logic, we stress that this work is only preliminary and that we plan to
extend it towards more expressive languages. Note that this logic is equivalent
to propositional logic, which, inexpressive as it is, can still find application in the
real world, since it allows to describe taxonomies (web directories are examples
of this). In the following, we assume that a TBox is a set of subsumption and
equivalence axioms, that relate atomic and complex concepts. The concepts we
are considering are ⊥, >, A, C u D, C t D, ¬C, where A is a concept name,
and C and D are concepts. Their semantics are defined as usually [3]. The term
ontology is often used to refer to a number of different artifacts that may in-
clude, for example, a glossary of terms, the conceptual and coded model and
the documentation. For simplicity, in this paper we will restrict the notion of
ontology to an ALC TBox without roles. In the following, it is assumed that the
set of concepts C contained in an ontology is finite.

The paper is organised as follows: section 2 presents the theoretical under-
pinning of the work presented here, followed by a toy example demonstrating
how it works in practice. The implementation of the algorithm is the subject of
section 3. We conducted an experiment with average-sized ontologies, using the
proposed similarity measure, described in section 4. Section 5 comprises an eval-
uation and discussion of the proposed measure. We summarise related work in
section 6 and finish the paper with conclusions and future directions in section 7.

2 Theory

Given the set of possible ontologies in the language we are considering, O, our
aim is to define a similarity measure σ : O × O → [0, 1], which is purely based
on semantics. This similarity measure is required to take the highest value for
equivalent ontologies, i.e. given three ontologies T1, T2 and T3, if T2 ≡ T3:1

1. σ(T1, T2) = σ(T1, T3).
2. σ(T2, T3) = 1.

1 Assume that T1 ≡ T2 is equivalent to T1 |= T2 and T2 |= T1.
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Our approach starts by considering a simple version of the aimed similarity
function, defined as follows:

σ′(T1, T2) =

1 if T1 ≡ T2
0.5 else if T1 |= T2 or T2 |= T1
0 otherwise .

(1)

This similarity function is not sufficiently discriminative, which is due to the
fact that the definition of the entailment operator requires every model of T1
to be a model of T2 so that T1 |= T2. What we wish to achieve is a similarity
operator that is a function of the quantity of models of T1 and T2. However, the
amount of models of an ontology is usually infinite. Our approach is to consider
a kind of Herbrand interpretation to get around this problem, but instead of
redefining the whole logic system, as it is done with Herbrand logic to deal with
Herbrand models, we choose to define syntactic elements (concepts), rather than
semantic ones (interpretations). Consider the following definitions.

Definition 1 (Characteristic Concept). Let C be a set of DL concept names.
A characteristic concept wrt C is a concept conjunction of the form C1u . . .uCn,
where Ci is either A or ¬A, with A ∈ C, n = |C|, and for every i 6= j, Ci 6= Cj
and Ci 6= ¬Cj. ζ(C) is the set of all possible characteristic concepts wrt C.
Definition 2 (Characteristic Disjunction and Axiom). Let C be a set of
DL concept names and S ⊆ ζ(C). The characteristic disjunction of S, U(S),
is the concept

⊔
C∈S C. The characteristic axiom of S, θ(U(S)), is the axiom

> v U(S).

Definition 3 (Characteristic Acceptance Set). Let T be an ontology con-
taining the set of DL concept names C. The characteristic acceptance set of T ,
written Z(T ), is such that Z(T ) ⊆ ζ(C) and T ≡ θ(Z(T )).

In other words, a characteristic concept wrt a set of concept names is one of
the most specific concepts that is possible to build from them. The characteristic
disjunction is the concept disjunction of all the characteristic concepts. Finally,
the characteristic acceptance set of an ontology is the set of all characteristic
concepts consistent in that ontology. We should note that the characteristic dis-
junction can also be interpreted as a formula in the disjunctive normal form
(DNF). Although normal forms are usually very large, we show how to circum-
vent this in section 3. Note that the elements of the characteristic acceptance set
can be thought of as Herbrand models (with an arbitrary constant). Since the
similarity measure we present is heavily based on the characteristic acceptance
set, the following lemmas must hold.

Lemma 1. Let T be a consistent ontology containing the DL concept names C.
Z(T ) exists and is unique.

Lemma 2. Let T1 and T2 be consistent ontologies containing the concepts C.
i. T1 |= T2 iff Z(T1) ⊆ Z(T2);
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ii. T1 ≡ T2 iff Z(T1) = Z(T2).
The proofs of these lemmas can be found in [4]. The acceptance set depends

on the number of models of the ontology, since it is the set of most specific
consistent concepts in the ontology (i.e., for which there are at least one model).
Given these definitions, we are now able to expand the definition of our similarity
measure.

Definition 4 (Semantic Similarity). Let T1 and T2 be consistent ontologies
containing the concepts C. Let Z1 = Z(T1) and Z2 = Z(T2). The semantic
similarity measure σ : O ×O → [0, 1] is defined as follows:

σ(T1, T2) = 1− (|Z1 − Z2|+ |Z2 − Z1|)/2|C| . (2)

Intuitively, equation 2 measures the accordance of characteristic concepts
between both ontologies.

Theorem 1. Let T1, T2 and T3 be consistent ontologies containing the DL con-
cept names C. If T2 ≡ T3 then σ(T1, T2) = σ(T1, T3) (i.e., σ is purely based on
semantics).

Proof. The result follows immediately from Lemma 2.

Example 1. Consider the following ontologies:

T1 T2
¬Male v Female Person v Male t Female

Man
.= Person uMale Man

.= Person uMale
Woman

.= Person u Female Female
.= ¬Male

MaleCat
.= Cat uMale Woman

.= Person u ¬Man
MaleCat v Cat

Although similar, these two ontologies display subtle differences. In particu-
lar, Male or Female are necessary in T1 (each individual has to be either one or
the other, or both), but in T2 the definition is stricter: each individual is exclu-
sively one or the other. Furthermore, in T2 we define Woman as a Person and not
a Man. In both ontologies, the concept of Man is defined as the intersection of
Person and Male, but in T1, some members of Man can also be Female. However,
in T2 it is forbidden for a Male to be Female, so it restricts the concept of Man
to individuals who are Male and, consequently, not Female. Finally, MaleCat’s
definition in T2 is incomplete wrt T1.

Table 1 shows the Z(T1) and Z(T2) sets. Each row is a concept name and
each column is a characteristic concept, in such a way that if +(resp. −) is in
the intersection of a concept name C and a characteristic concept D, then C
appears in D as a positive (resp. negative) literal.

As can be seen from the table, |Z1 −Z2| = |Z2 −Z1| = 4. Equation 2 yields:

σ(T1, T2) = 1− (|Z1 − Z2|+ |Z2 − Z1|)/2|C| = 1− (4 + 4)/128 = 93.75% .
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Table 1. The characteristic acceptance sets for T1 and T2.

Concept Z1 − Z2 Z1 ∩ Z2 Z2 − Z1

Man + − − + + + − − − − − − − − + −
Male + + + + + + − − − − + + − − + +

Person + − − + + + + + − − − − − + + −
Cat + + − − + − − + − + − + + + + +

Female + + + + − − + + + + − − + + − −
Woman + − − + − − + + − − − − − + − −
MaleCat + + − − + − − − − − − + + + − −

3 Implementation

A naive implementation of this theory could potentially be very inefficient, since
Z(T ) grows exponentially in proportion to |C|. However, we only need the size
of a sub-set of Z(T ). Given that the characteristic disjunction of a sub-set of
Z(T ) is equivalent to a DNF formula, we can use #SAT, which computes the
size of the set.

Given two ontologies T1 and T2, our implementation starts by computing the
concepts C1 and C2 such that T1 ≡ > v C1 and T2 ≡ > v C2. The purpose
is to count the characteristic concepts that are subsumed by C1 u C2 (i.e., that
are both in Z(T1) and Z(T2)) and the ones that are subsumed by ¬C1 u ¬C2

(i.e., that are neither in Z(T1) nor Z(T2)). To achieve this, we represent the
concept C1uC2t¬C1u¬C2 as a CNF formula and feed it to a #SAT solver. To
transform the concept into CNF we use the Definitional CNF Transformation
algorithm (CNF with naming). Note that the following holds:

σ(T1, T2) = mc(cnf(C1 u C2 t ¬C1 u ¬C2))/2|C| , (3)

where mc is the model count and cnf is the CNF representation of the formula.
To perform model counting we use the relsat tool [5]. We should note that the
computation is not performed exactly as defined in equation 3. We observed that
relsat performed considerably faster using the following equivalent equation:

σ(T1, T2) =
(
(2|C| −mc(cnf(C1)))−mc(cnf(C2)) + 2×mc(cnf(C1 u C2))

)
/2|C| .

4 Experiment

In this experiment, we were aiming at evaluating our similarity measure against
an intuition of similarity. This measure is only applicable to ontologies sharing
the same concept names, but the lack of such ontologies thwarts the direct
employment of the measure. It is thus necessary to map a set of ontologies in
the same domain. Then, the set of concepts involved in the mapping are cropped,
so that the ontologies that are to be compared contain the same set of concept
names.
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As dataset we used three ontologies in the cooking domain. The first one is
called OntoChefGS (OGS) and can be seen as a gold standard, as its develop-
ment was carried out more zealously and by a bigger team than the others [6].
The other two, OntoChef1 and OntoChef2 (O1 and O2), were developed by
students at an undergraduate course on Knowledge Representation. The selec-
tion of these ontologies was based on their correctness and thoroughness. Many
contained axioms such as Preparation v Recipe, using subsumption incorrectly
and were ruled out. The ontologies were required to define at least: recipes, mea-
surements, (kitchen) tools and ingredients/food, so we ruled out the ones that
were not sufficiently thorough on (or completely neglected) these topics. Figure 1
shows a section of each ontology. O1 has 49 concept names, while O2 has 167
and OGS has 571.

OntoChef1 OntoChef2 OntoChefGS

Fig. 1. A relevant part of the ontologies.

Despite obvious dissimilarities, there is an overlap of concepts in the ontolo-
gies. For example, both O1 and O2 characterise dishes as Recipes, while in OGS
these are subsumed by KindOfDish, which intuitively makes more sense. Also,
in OGS , Salad is subsumed by Starters, but in O1 and O2 they are at the same
level as the other kinds of dishes, which shows that even the gold standard can
be (and usually is) less than perfect, since salads are not necessarily starters.

The results of applying the similarity measure are as follows:

σ(O1, O2) = 98.1134%, σ(O1, OGS) = 94.8180%, σ(O2, OGS) = 94.0139%

5 Evaluation and Discussion

Although it is not clear from figure 1 that these ontologies are as similar as
assessed by the proposed measure, their cropped sections display many simi-
larities. Thus, we can say that the measure is on a par with our intuition of
similarity. We can also observe that when a set of values is available, comparing
the different values is a reasonable way to establish which ontologies are more
or less similar to an ontology. In the previous section we observed that the two
ontologies built by the undergraduate students were more similar, which is an
intuitive outcome. This is mostly due to the fact that each kind of dish is con-
sidered as a Recipe in O1 and O2, and also that the kinds of Ingredient in these
ontologies are considered as Food in OGS . Furthermore, the similarity between
O1 and OGS is slightly higher than the similarity between O2 and OGS . This
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happens mainly because Cup, TeaSpoon and SoupSpoon are represented in O1

as volume measurement units and in O2 they are tools.
A possible use-case we envision for our similarity measure is the automatic

assessment of a learnt ontology against a gold standard, assuming the learnt
ontology has the same concepts as the gold standard, or a sub-set of them. Also,
our measure could be used in an ontology merging system that would search an
ontology library for similar ontologies and propose extending the source ontology
with axioms and concepts from the most similar ontologies.

In [7], the authors present a set of reasonable criteria for assessing the quality
of a similarity measure. It can be shown that our measure respects the propor-
tional error effect and the usage of interval criteria. It is also worth mentioning
that the measure is, indeed, a similarity measure as it is usually defined (e.g. [8]).

Although our implementation is based on #SAT, which is NP-Hard, the
use of heuristics boost the efficiency of the #SAT solvers, and can deliver results
for ontologies containing more than 500 concepts, in less than 10 seconds. We
consider this to be acceptable.

6 Related Work

Some alignment algorithms and tools have been developed, many of which are
described in [1]. In this survey it is mentioned that only 4 out of the 21 systems
analysed rely directly on semantic properties of the ontologies: S-Match [9],
Buster [10], Chimarae [11] and KILT [12]. There are also approaches to simi-
larity in DL formalisms, such as [13]. In this work, Hu et al. present a method
for calculating distances between concepts based on their signatures. A concept
signature is the set of elements that a concept is dependent of, which is deter-
mined using tableaux-like reasoning rules. Their approach starts by computing
the signatures of concepts and counting the times each element (atomic concept
and role) appears in the signature and fine-tuning it using information retrieval
techniques. They define the distance between ontologies by aggregating the dis-
tances between their different components. Herein lies an advantage of their
work: they define similarity on many levels; our work focuses on ontologies as
wholes. An advantage of our work is that our measure is bounded between 0 and
1, as opposed to their work which can yield any (possibly negative) number, and
thus cannot be strictly considered as a similarity measure since it does not hold
the positive definiteness condition. Other work in DL similarity can be found
in [8, 14, 15].

7 Conclusions and Future Work

In this paper we present a semantic similarity measure for a sub-set of the ALC
Description Logic. We show some properties of the measure, how it can be ap-
plied to average-sized ontologies and that the results yielded roughly correspond
to our intuitive notion of similarity.
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In the future, we would like to tackle the efficiency and expressiveness prob-
lems. A formal analysis of the algorithm should be done in order to provide
a deeper understanding of the limitations of the current implementation. We
would like to add the possibility of having a weighing factor in the form of a
probability distribution over concepts. Finally, we should apply it to a use-case,
namely in the automatic assessment of learnt ontologies against a gold standard.
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metrics. In Staab, S., Svátek, V., eds.: Proc. of EKAW 2006. Volume 4248 of LNCS.,
Springer (2006) 166–181

14. Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description
logics. In Horrocks, I., Sattler, U., Wolter, F., eds.: Proc. of DL2005. Volume 147
of CEUR Workshop Proceedings., CEUR-WS.org (2005)

15. Janowicz, K.: Sim-DL: Towards a semantic similarity measurement theory for the
description logic ALCNR in geographic information retrieval. In Meersman, R.,
Tari, Z., Herrero, P., eds.: On the Move to Meaningful Internet Systems. Proc.,
Part II. Volume 4278 of LNCS., Springer (2006) 1681–1692

162 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 163 — #173 i
i

i
i

i
i

Complexity of Reasoning over
Entity-Relationship Models?

A. Artale1, D. Calvanese1, R. Kontchakov2, V. Ryzhikov1 and
M. Zakharyaschev2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname @inf.unibz.it

2 School of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

Abstract. We investigate the complexity of reasoning over various frag-
ments of the Extended Entity-Relationship (EER) language, which in-
clude different combinations of the constructors for isa between concepts
and relationships, disjointness, covering, cardinality constraints and their
refinement. Specifically, we show that reasoning over EER diagrams with
isa between relationships is ExpTime-complete even when we drop both
covering and disjointness for relationships. Surprisingly, when we also
drop isa between relations, reasoning becomes NP-complete. If we fur-
ther remove the possibility to express covering between entities, rea-
soning becomes polynomial. Our lower bound results are established by
direct reductions, while the upper bounds follow from correspondences
with expressive variants of the description logic DL-Lite. The established
correspondence shows also the usefulness of DL-Lite as a language for
reasoning over conceptual models and ontologies.

1 Introduction

Conceptual modelling formalisms, such as the Entity-Relationship model [1], are
used in the phase of conceptual database design where the aim is to capture at
best the semantics of the modelled application. This is achieved by expressing
constraints that hold on the concepts, attributes and relations representing the
domain of interest through suitable constructors provided by the conceptual
modelling language. Thus, on the one hand it would be desirable to make such
a language as expressive as possible in order to represent as many aspects of
the modelled reality as possible. On the other hand, when using an expressive
language, the designer faces the problem of understanding the complex interac-
tions between different parts of the conceptual model under construction and
the constraints therein. Such interactions may force, e.g., some class (or even all
classes) in the model to become inconsistent in the sense that there cannot be
any database state satisfying all constraints in which the class (respectively, all
classes) is populated by at least one object. Or a class may be implied to be
a subclass of another one, even if this is not explicitly asserted in the model.

? Authors partially supported by the U.K. EPSRC grant GR/S63175, Tones, Knowl-
edgeWeb and InterOp EU projects, and by the PRIN project funded by MIUR.
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To understand the consequences, both explicit and implicit, of the constraints
in the conceptual model being constructed, it is thus essential to provide for an
automated reasoning support.

In this paper, we address these issues and investigate the complexity of
reasoning in conceptual modelling languages equipped with various forms of
constraints. We carry out our analysis in the context of the Extended Entity-
Relationship (EER) language [2], where the domain of interest is represented
via entities (representing sets of objects), possibly equipped with attributes, and
relationships (representing relations over objects)1. Specifically, the kind of con-
straints that will be taken into account in this paper are the ones typically used
in conceptual modelling, namely:

– is-a relations between both entities and relationships;
– disjointness and covering (referred to as the Boolean constructors in what

follows) between both entities and relationships;
– cardinality constraints for participation of entities in relationships;
– refinement of cardinalities for sub-entities participating in relationships; and
– multiplicity constraints for attributes.

The hierarchy of EER languages we consider here is shown in the table below
together with the complexity results for reasoning in these languages (all our
languages include cardinality, refinement and multiplicity constraints).

entities relationships
lang. isa disjoint covering isa disjoint covering complexity

C1 v C2 C1 u C2 v ⊥ C = C1 t C2 R1 v R2 R1 u R2 v⊥ R=R1 t R2

ERfull + + + + + + ExpTime [3]
ERisaR + + + + − − ExpTime
ERbool + + + − − − NP
ERref + + − − − − NLogSpace

According to [3] reasoning over UML class diagrams is ExpTime-complete, and
it is easy to see that the same holds for ERfull diagrams as well (cf. e.g., [4]).
Here we strengthen this result by showing (using reification) that reasoning is
still ExpTime-complete for its sublanguage ERisaR. The NP upper bound for
ERbool is proved by embedding ERbool into DL-Litebool, the Boolean extension
of the tractable DL DL-Lite [5, 6]. Thus, quite surprisingly, isa between relation-
ships alone is a major source of complexity of reasoning over conceptual schemas.
Finally, we show that ERref is closely related to DL-Litekrom, the Krom frag-
ment of DL-Litebool, and that reasoning in it is polynomial. The correspondence
between modelling languages like ERbool and DLs like DL-Litebool shows that
the DL-Lite family are useful languages for reasoning over conceptual models
and ontologies, even though they are not equipped with all the constructors that
are typical of rich ontology languages such as OWL and its variants [7].

Our analysis is in spirit similar to [8], where the consistency checking problem
for an EER model equipped with forms of inclusion and disjointness constraints
is studied and a polynomial-time algorithm for the problem is given (assuming
constant arities of relationships). Such a polynomial-time result is incomparable

1 Our results can be adapted to other modelling formalisms, such as UML diagrams.
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with the one for ERref, since ERref lacks both isa and disjointness for relation-
ships (both present in [8]); on the other hand, it is equipped with cardinality
and multiplicity constraints. We also mention [9], where reasoning over cardi-
nality constraints in the basic ER model is investigated and a polynomial-time
algorithm for strong schema consistency is given, and [10], where the study is
extended to the case where isa between entities is also allowed and an expo-
nential algorithm for entity consistency is provided. Note, however, that in [9,
10] the reasoning problem is analysed under the assumption that databases are
finite, whereas we do not require finiteness in this paper.

2 The DL-Lite Language

We consider the extension DL-Litebool [6] of the description logic DL-Lite [11, 5].
The language of DL-Litebool contains concept names A0, A1, . . . and role names
P0, P1, . . . . Complex roles R and concepts C of DL-Litebool are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. Concepts of the form B are called basic concepts. A DL-Litebool
knowledge base is a finite set of axioms of the form C1 v C2. A DL-Litebool
interpretation I is a structure

(
∆I , ·I), where ∆I 6= ∅ and ·I is a function such

that AIi ⊆ ∆I , for all Ai, and P Ii ⊆ ∆I ×∆I , for all Pi. The role and concept
constructors are interpreted in I as usual. We also make use of the standard
abbreviations: > := ¬⊥, ∃R := (≥ 1R) and ≤ q R := ¬(≥ q + 1R). We say that
I satisfies an axiom C1 v C2 if CI1 ⊆ CI2 . A knowledge base K is satisfiable if
there is an interpretation I that satisfies all the axioms of K (such an I is called
a model of K). A concept C is satisfiable w.r.t. K if there is a model I of K such
that CI 6= ∅.

We also consider a sub-language DL-Litekrom of DL-Litebool, called the Krom
fragment, where only axioms of the following form are allowed (with Bi basic
concepts):

B1 v B2, B1 v ¬B2, ¬B1 v B2,

Theorem 1 ([6]). Concept and KB satisfiability are NP-complete for
DL-Litebool KBs and NLogSpace-complete for DL-Litekrom KBs.

3 The Conceptual Modelling Language

In this section, we define the notion of a conceptual schema by providing its syn-
tax and semantics for the fully-fledged conceptual modelling language ERfull.
First citizens of a conceptual schema are entities, relationships and attributes.
Arguments of relationships—specifying the role played by an entity when partic-
ipating in a particular relationship—are called roles. Given a conceptual schema,
we make the following assumptions: relationship and entity names are unique;
attribute names are local to entities (i.e., the same attribute may be used by
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different entities; its type, however, must be the same); role names are local to
relationships (this freedom will be limited when considering conceptual models
without sub-relationships).

Given a finite set X = {x1, . . . , xn} and a set Y , an X-labelled tuple over
Y is a (total) function T : X → Y . The element T [x] ∈ Y is said to be labelled
by x; we also write (x, y) ∈ T if y = T [x]. The set of all X-labelled tuples over
Y is denoted by TY (X). For y1, . . . , yn ∈ Y , the expression 〈x1 : y1, . . . , xn : yn〉
denotes T ∈ TY (X) such that T [xi] = yi, for 1 ≤ i ≤ n.

Definition 1 (ERfull syntax). An ERfull conceptual schema Σ is a tuple of
the form (L,rel,att,cardR,cardA,ref, isa,disj,cov), where

– L is the disjoint union of alphabets E of entity symbols, A of attribute sym-
bols, R of relationship symbols, U of role symbols and D of domain symbols;
the tuple (E ,A,R,U ,D) is called the signature of the schema Σ.

– rel is a function assigning to every relationship symbol R ∈ R a tuple
rel(R) = 〈U1 : E1, . . . , Um : Em〉 over the entity symbols E labelled with a
non-empty set {U1, . . . , Um} of role symbols; m is called the arity of R.

– att is a function that assigns to every entity symbol E ∈ E a tuple att(E),
att(E) = 〈A1 : D1, . . . , Ah : Dh〉, over the domain symbols D labelled with
some (possibly empty) set {A1, . . . , Ah} of attribute symbols.

– cardR : R×U ×E → N× (N∪{∞}) is a partial function (called cardinality
constraints); cardR(R,U,E) may be defined only if (U,E) ∈ rel(R).

– cardA : A× E → N× (N ∪ {∞}) is a partial function (called multiplicity of
attributes); cardA(A,E) may be defined only if (A,D) ∈ att(E), for some
D ∈ D.

– ref : R×U ×E → N× (N∪ {∞}) is a partial function (called refinement of
cardinality constraints); ref(R,U,E) may be defined only if E isa E′ and
(U,E′) ∈ rel(R); note that ref subsumes cardinality constraints cardR.

– isa = isaE ∪ isaR, where isaR ⊆ E × E and isaR ⊆ R×R.
– disj = disjE ∪disjR and cov = covE ∪covR, where disjE ,covE ⊆ 2E×E

and disjR,covR ⊆ 2R ×R.

isaR, disjR and covR may only be defined for relationships of the same arity.
In what follows we also use infix notation for relations isa, isaE , etc.

Definition 2 (ERfull semantics). Let Σ be an ERfull conceptual schema and
BD, for D ∈ D, a collection of disjoint countable sets called basic domains. An
interpretation ofΣ is a pair B = (∆B∪ΛB, ·B), where∆B 6= ∅ is the interpretation
domain; ΛB =

⋃
D∈D Λ

B
D, with ΛBD ⊆ BD for each D ∈ D, is the active domain

such that ∆B ∩ ΛB = ∅; ·B is a function such that EB ⊆ ∆B, for each E ∈ E ,
AB ⊆ ∆B × ΛB, for each A ∈ A, RB ⊆ T∆B(U), for each R ∈ R; and DB = ΛBD,
for each D ∈ D. An interpretation B of Σ is called a legal database state if the
following holds:

1. for each R ∈ R with rel(R) = 〈U1 : E1, . . . , Um : Em〉 and each 1 ≤ i ≤ m,
– for all r ∈ RB, r = 〈U1 : e1, . . . , Um : em〉 and ei ∈ EBi ;
– if cardR(R,Ui, Ei) = (α, β) then α ≤ ]{r ∈ RB | (Ui, ei) ∈ r} ≤ β, for

all ei ∈ EBi ;
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– if ref(R,Ui, E) = (α, β), for E ∈ E with E isa Ei, then, for all e ∈ EB,
α ≤ ]{r ∈ RB | (Ui, e) ∈ r} ≤ β;

2. for each E ∈ E with att(E) = 〈A1 : D1, . . . , Ah : Dh〉 and each 1 ≤ i ≤ h,
– for all (e, a) ∈ ∆B × ΛB , if (e, a) ∈ ABi then a ∈ DBi ;
– if cardA(Ai, E) = (α, β) then α ≤ ]{(e, a) ∈ ABi } ≤ β, for all e ∈ EB;

3. for all E1, E2 ∈ E , if E1 isaE E2 then EB1 ⊆ EB2 (similarly for relationships);

4. for all E,E1, . . . , En ∈ E , if {E1, . . . , En} disjE E then EBi ⊆ EB, for every
1 ≤ i ≤ n, and EBi ∩ EBj = ∅, for 1 ≤ i < j ≤ n (similarly for relationships);

5. for all E,E1, . . . , En ∈ E , {E1, . . . , En} covE E implies EB =
⋃n
i=1E

B
i

(similarly for relationships).

Reasoning tasks over conceptual schemas include verifying whether an entity,
a relationship, or a schema is consistent, or checking whether an entity (or a
relationship) subsumes another entity (relationship, respectively):

Definition 3 (Reasoning services). Let Σ be an ERfull schema.

• Σ is consistent (strongly consistent) if there exists a legal database state B
for Σ such that EB 6= ∅, for some (every, respectively) entity E ∈ E .

• An entity E ∈ E (relationship R ∈ R) is consistent w.r.t. Σ if there exists a
legal database state B for Σ such that EB 6= ∅ (RB 6= ∅, respectively).

• An entity E1 ∈ E (relationship R1 ∈ R) subsumes an entity E2 ∈ E (relation-
ship R2 ∈ R) w.r.t. Σ if EB2 ⊆ EB1 (RB2 ⊆ RB1 , respectively), for every legal
database state B for Σ.

One can show that the reasoning tasks of schema/entity/relationship con-
sistency and entity subsumption are reducible to each other. (Note that in the
absence of the covering constructor schema consistency cannot be reduced to a
single instance of entity consistency, though it can be reduced to several entity
consistency checks.) Due to these equivalences, in the following we will consider
entity consistency as the main reasoning service.

4 Complexity of Reasoning in EER Languages

This section shows the complexity results obtained in this paper for
reasoning over different EER languages (All proofs can be found at
http://www.inf.unibz.it/~artale/papers/dl07-full.pdf.)

Reasoning over ERisaR schemas. The modelling language ERisaR is the sub-
set of ERfull without the Booleans between relationships (i.e., disjR = ∅ and
covR = ∅) but with the possibility to express isa between them. We establish
an ExpTime lower bound for satisfiability of ERisaR conceptual schemas by re-
duction of the satisfiability problem for ALC knowledge bases. It is easy to show
(see, e.g., [3, Lemma 5.1]) that one can convert, in a satisfiability preserving way,
an ALC KB K into a primitive KB K′ that contains only axioms of the form:
A v B,A v ¬B,A v B tB′, A v ∀R.B,A v ∃R.B, where A,B,B′ are concept
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Fig. 1. Encoding axioms: (a) A v ∀R.B; (b) A v ∃R.B.

names and R is a role name, and the size of K′ is linear in the size of K. Thus,
satisfiability problem for primitive ALC KBs is ExpTime-complete [3].

Let K be a primitive ALC KB. The reduction in [3] maps K into an UML class
diagram. We show how to define an ERisaR schema Σ(K): the first three types
of axioms are dealt with in a way similar to [3]. Axioms of the form A v ∀R.B
are encoded in [3] using both the Booleans and isa between relationships, which
are unavailable in ERisaR. In order to to stay within ERisaR, we propose to
use reification of ALC roles (which are binary relationships) to encode the last
two types of axioms. This approach is illustrated in Fig. 1: in (a), A v ∀R.B
is encoded by reifying the binary relationship R with the entity CR so that the
functional relationships R1 and R2 give the first and second component of the
reified R, respectively; a similar encoding is used to capture A v ∃R.B in (b).

Lemma 1. A concept name A is satisfiable w.r.t a primitive ALC KB K iff the
entity A is consistent w.r.t the ERisaR schema Σ(K).

Theorem 2. Reasoning over ERisaR schemas is ExpTime-complete.

The lower bound follows, by Lemma 1, from ExpTime-completeness of con-
cept satisfiability w.r.t. primitive ALC KBs [3] and the upper bound from the
respective upper bound for ERfull [3].

Reasoning over ERbool schemas. Denote by ERbool the sub-language of ERfull

without isa and the Booleans between relationships (i.e., isaR = ∅, disjR = ∅
and covR = ∅). In ERbool we impose an insignificant syntactic restriction on
rel: there is no U ∈ U such that (U,Ei) ∈ rel(Ri), i = 1, 2, for some E1, E2 ∈ E
and some distinct R1, R2 ∈ R.

We define a polynomial translation τ of ERbool schemas into DL-Litebool KBs.
Let Σ be an ERbool schema. For every entity, domain or relationship symbol
N ∈ E ∪D∪R, we fix a DL-Litebool concept name N ; for every attribute or role
symbol N ∈ A ∪ U , we fix a DL-Litebool role name N . The translation τ(Σ) of
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Σ is defined as follows:

τ(Σ) = τdom ∪
⋃
R∈R

[
τRrel ∪ τRcardR

∪ τRref
] ∪

⋃
E∈E

[
τEatt ∪ τEcardA

] ∪
⋃

E1,E2∈E
E1isaE2

τE1,E2
isa ∪

⋃
E1,...,En,E∈E
{E1,...,En}disjE

τ
{E1,...,En},E
disj ∪

⋃
E1,...,En,E∈E
{E1,...,En}covE

τ{E1,...,En},E
cov ,

where
– τdom =

{
D v ¬X | D ∈ D, X ∈ E ∪ R ∪ D, D 6= X

}
;

– τRrel =
{
R v ∃U, ≥ 2U v ⊥, ∃U v R, ∃U− v E | (U,E) ∈ rel(R)

}
;

– τRcardR
=
{
E v ≥ αU− | (U,E) ∈ rel(R),cardR(R,U,E) = (α, β), α 6= 0

}
∪{E v ≤ β U− | (U,E) ∈ rel(R),cardR(R,U,E) = (α, β), β 6=∞};

– τRref =
{
E v ≥ αU− | (U,E) ∈ rel(R),ref(R,U,E) = (α, β), α 6= 0

}
∪ {E v ≤ β U− | (U,E) ∈ rel(R),ref(R,U,E) = (α, β), β 6=∞};

– τEatt =
{∃A− v D | (A,D) ∈ att(E)

}
;

– τEcardA
=
{
E v ≥ αA | (A,D) ∈ att(E),cardA(A,E) = (α, β), α 6= 0

}
∪ {E v ≤ β A | (A,D) ∈ att(E),cardA(A,E) = (α, β), β 6=∞};

– τE1,E2
isa =

{
E1 v E2

}
;

– τ
{E1,...,En},E
disj =

{
Ei v E | 1 ≤ i ≤ n

} ∪ {Ei v ¬Ej | 1 ≤ i < j ≤ n};

– τ
{E1,...,En},E
cov =

{
Ei v E | 1 ≤ i ≤ n} ∪

{
E v E1 t · · · t En

}
.

Clearly, the size of τ(Σ) is polynomial in the size of Σ.

Lemma 2. An entity E is consistent w.r.t. an ERbool schema Σ iff the concept
E is satisfiable w.r.t. the DL-Litebool KB τ(Σ).

Theorem 3. Reasoning over ERbool conceptual schemas is NP-complete.

The upper bound is proved by Lemma 2 and Theorem 1; the lower one is by
reduction of the NP-complete 3SAT problem to entity consistency for ERbool

schemas.

Reasoning over ERref schemas. Denote by ERref the modelling language with-
out the Booleans and isa between relationships, but with the possibility to ex-
press isa and disjointness between entities (i.e., disjR = ∅, covR = ∅, isaR = ∅
and covE = ∅). Thus, ERref is essentially ERbool without covering.

Theorem 4. The entity consistency problem for ERref is NLogSpace-
complete.

The upper bound follows from the fact that for any ERref schema, Σ, τ(Σ) is a
DL-Litekrom KB (τcov = ∅). Thus, by Lemma 2, the entity consistency problem
for ERref can be reduced to concept satisfiability for DL-Litekrom KBs, which
is NLogSpace-complete (see Theorem 1), while the reduction can be proved
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to be computed in logspace. The lower bound is obtained by reduction of the
non-reachability problem in oriented graphs (the non-reachability problem is
known to be coNLogSpace-complete and so, it is NLogSpace-complete as
these classes coincide by the Immerman-Szelepcsényi theorem; see, e.g., [12]).

5 Conclusions

This paper provides new complexity results for reasoning over Extended Entity-
Relationship (EER) models with different modelling constructors. Starting from
the ExpTime result [3] for reasoning over the fully-fledged EER language, we
prove that the same complexity holds even if the Boolean constructors (dis-
jointness and covering) on relationships are dropped. This result shows that
isa between relationships (with the Booleans on entities) is powerful enough to
capture ExpTime-hard problems. To illustrate that the presence of relationship
hierarchies is a major source of complexity in reasoning we show that avoiding
them makes reasoning in ERbool an NP-complete problem. Another source of
complexity is the covering constraint. Indeed, without relationship hierarchies
and covering constraints reasoning problem for ERref is NLogSpace-complete.

The paper also provides a tight correspondence between conceptual modelling
languages and the DL-Lite family of description logics and shows the usefulness
of DL-Lite in representing and reasoning over conceptual models and ontologies.
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1. Introduction

For a developer or user of a DL-based ontology, it is often quite hard to un-
derstand why a certain consequence holds, and even harder to decide how to
change the ontology in case the consequence is unwanted. For example, in the
current version of the medical ontology SNOMED [16], the concept Amputation-
of-Finger is classified as a subconcept of Amputation-of-Arm. Finding the axioms
that are responsible for this among the more than 350,000 terminological axioms
of SNOMED without support by an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [14]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. In the following, we call such a set
a minimal axiom set (MinA). It helps the user to comprehend why a certain
consequence holds. The knowledge bases considered in [14] are so-called unfold-
able ALC-terminologies, and the unwanted consequences are the unsatisfiability
of concepts. The algorithm is an extension of the known tableau-based satis-
fiability algorithm for ALC [15], where labels keep track of which axioms are
responsible for an assertion to be generated during the run of the algorithm.
The authors also coin the name “axiom pinpointing” for the task of computing
these minimal subsets.

The problem of computing MinAs of a DL knowledge base was actually con-
sidered earlier in the context of extending DLs by default rules. In [2], Baader and
Hollunder solve this problem by introducing a labeled extension of the tableau-
based consistency algorithm for ALC-ABoxes [9], which is very similar to the
one described later in [14]. The main difference is that the algorithm described
in [2] does not directly compute minimal subsets that have a consequence, but
rather a monotone Boolean formula whose variables correspond to the axioms
of the knowledge bases and whose minimal satisfying valuations correspond to
the MinAs.

The approach of Schlobach and Cornet [14] was extended by Parsia et al. [12]
to more expressive DLs, and the one of Baader and Hollunder [2] was extended
by Meyer et al. [11] to the case of ALC-terminologies with general concept in-
clusions (GCIs), which are no longer unfoldable. Axiom pinpointing has also
been considered in other research areas, though usually not under this name.
⋆ Funded by the German Research Foundation (DFG) under grant GRK 446.
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For example, in the SAT community, people have considered the problem of
computing minimally unsatisfiable (and maximally satisfiable) subsets of a set
of propositional formulae. The approaches for computing these sets developed
there include special purpose algorithms that call a SAT solver as a black box
[10, 5], but also algorithms that extend a resolution-based SAT solver directly
[7, 18].

Whereas the previous work on pinpointing in DLs considered fairly expres-
sive DLs that contain at least ALC, this work is concerned with pinpointing in
the inexpressive DL EL, which has recently drawn considerable attention. On
the one hand, several bio-medical ontologies such as SNOMED [16], the Gene
Ontology [17], and large parts of Galen [13] can be expressed in EL. On the
other hand, reasoning in EL and some of its extensions remains polynomial even
in the presence of GCIs [6, 1]. Although the polynomial-time subsumption al-
gorithm for EL described in [6, 1] is not tableau-based, the ideas for extending
tableau-based algorithms to pinpointing algorithms employed in [2, 14] can also
be applied to this algorithm. However, we will see that the normalization phase
employed by this algorithm introduces an additional problem. We will also con-
sider the complexity of pinpointing in EL. In contrast to the case of ALC, where
the subsumption problem is already highly complex, subsumption in EL is poly-
nomial, which makes it easier to analyze the extent to which pinpointing is a
source of additional complexity. Not surprisingly, it turns out that there may be
exponentially many MinAs. In addition, even testing whether there is a MinA
of cardinality ≤ n for a given natural number n is an NP-complete problem.
However, one MinA can always be computed in polynomial time. Finally, we
will provide some experimental results regarding the performance of a practi-
cal algorithm that computes one (not necessarily minimal) set that has a given
consequence.

2. A pinpointing algorithm for EL
Recall that EL allows for conjunction (⊓), existential restrictions (∃r.C), and the
top concept (⊤). We consider general EL-TBoxes T consisting of GCIs C ⊑ D,
where C,D are arbitrary EL-concept descriptions, and are interested in the
subsumption relation between concept names occurring in T , which is denoted
as ⊑T . Given such a TBox T and concept names A,B occurring in it, a MinA
for T w.r.t. A ⊑ B is a subset S of T such that A ⊑S B, but A 6⊑S′ B for all
strict subsets S′ ⊂ S. For example, consider the TBox T consisting of the GCIs

ax1: A ⊑ ∃r.A, ax2: A ⊑ Y, ax3: ∃r.Y ⊑ B, ax4: Y ⊑ B. (1)

We have A ⊑T B, and it is easy to see that {ax2, ax4} and {ax1, ax2, ax3} are
the MinAs of T w.r.t. A ⊑ B.

In the following, we show how the polynomial-time subsumption algorithm
for EL with GCIs [6, 1] can be modified to a pinpointing algorithm. However,
instead of computing the MinAs directly, we follow the approach introduced
in [2] that computes a monotone Boolean formula from which the MinAs can
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be derived. To define this formula, which we will call a pinpointing formula
in the following, we assume that every GCI t ∈ T is labeled with a unique
propositional variable, lab(t). Let lab(T ) be the set of all propositional variables
labeling GCIs in T . A monotone Boolean formula over lab(T ) is a Boolean
formula using (some of) the variables in lab(T ) and only the binary connectives
conjunction and disjunction and the nullary connective t (for truth). As usual,
we identify a propositional valuation with the set of propositional variables it
makes true. For a valuation V ⊆ lab(T ), let TV := {t ∈ T | lab(t) ∈ V}.
Definition 1 (pinpointing formula). Given an EL-TBox T and concept names
A,B occurring in it, the monotone Boolean formula φ over lab(T ) is a pin-
pointing formula for T w.r.t. A ⊑ B if the following holds for every valuation
V ⊆ lab(T ): A ⊑TV B iff V satisfies φ.

In our example, we can take lab(T ) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that ax2 ∧ (ax4 ∨ (ax1 ∧ ax3)) is a pinpointing formula
for T w.r.t. A ⊑ B.

Let φ be a pinpointing formula for T w.r.t. A ⊑ B. If we order valuations by
set inclusion, then we obviously have that

{TV | V is a minimal valuation satisfying φ}
is the set of all MinAs for T w.r.t. A ⊑ B. This shows that it is enough to
design an algorithm for computing a pinpointing formula to obtain all MinAs.
For example, one possibility is to bring φ into disjunctive normal form and
then remove disjuncts implying other disjuncts. Note that this may cause an
exponential blowup, which means that, in some cases, the pinpointing formula
provides us with a compact representation of the set of all MinAs. Also note
that this blowup is not really in the size of the pinpointing formula but rather in
the number of variables. Thus, if the size of the pinpointing formula is already
exponential in the size of the TBox T (which may well happen), computing all
MinAs from it is still “only” exponential in the size of T .

In order to describe our algorithm for computing pinpointing formulae for
subsumption in EL, we must briefly recall the subsumption algorithm for EL
[6, 1]. First, this algorithm transforms a given TBox into a normal form where
all GCIs have one of the following forms: A1⊓. . .⊓An ⊑ B, A ⊑ ∃r.B, ∃r.A ⊑ B,
where n ≥ 1 and A,A1, . . . , An, B are concept names (including ⊤). This trans-
formation can be achieved in linear time using simple transformation rules, which
basically break down complex GCIs into simpler ones (see [6, 1] for details). For
the pinpointing extension it is relevant that the relationship between original ax-
ioms and normalized axioms is many to many: one axiom in the original TBox
can give rise to several axioms in the normalized one, and one axiom in the
normalized TBox can come from several axioms in the original TBox. For ex-
ample, consider the GCIs A ⊑ B1 ⊓ B2, A ⊑ B2 ⊓ B3, which are normalized
to A ⊑ B1, A ⊑ B2, A ⊑ B3. Each original GCI gives rise to two normalized
ones, and the normalized GCI A ⊑ B2 has two sources, i.e., it is present in the
normalized TBox if the first or the second original GCI is present in the input
TBox.
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If A1 ⊓ . . . ⊓An ⊑ B ∈ T and {(X, A1), . . . , (X, An)} ⊆ A then add (X, B) to A.

If A ⊑ ∃r.B ∈ T and (X, A) ∈ A then add (X, r, B) to A.

If ∃r.A ⊑ B ∈ T and {(X, r, Y ), (Y,A)} ⊆ A then add (X, B) to A.

Fig. 1. Completion rules for subsumption in EL.

Given a TBox T in normal form, the subsumption algorithm for EL employs
completion rules to extend an initial set of assertions until no more assertions can
be added. Assertions are of the form (A,B) or (A, r,B) where A,B are concept
names occurring in T or ⊤, and r is a role name occurring in T . Intuitively,
the assertion (A,B) expresses that A ⊑T B holds and (A, r,B) expresses that
A ⊑T ∃r.B holds. The algorithm starts with a set of assertions A that contains
(A,⊤) and (A,A) for every concept name A, and then uses the rules shown in
Fig. 1 to extend A. Note that such a rule is only applied if it really extends A,
i.e., if the assertion added by the rule is not yet contained in A. As shown in
[6, 1], rule application terminates after a polynomial number of steps, and the
set of assertions A obtained after termination satisfies A ⊑T B iff (A,B) ∈ A
for all concept names A,B occurring in T .

In the pinpointing extension of this algorithm, assertions a are also labeled
with monotone Boolean formulae lab(a). The initial assertions (A,⊤) and (A,A)
receive label t. The definition of rule application is modified as follows. Assume
that the precondition of a rule from Fig. 1 are satisfied for the set of assertions
A w.r.t. the TBox T . Let φ be the conjunction of the labels of the GCIs from T
and the assertions from A occurring in the precondition. If the assertion in the
consequence of the rule does not yet belong to A, then it is added with label φ.
If the assertion is already there with label ψ, then its label is changed to ψ ∨ φ
if this formula is not equivalent to ψ; otherwise (i.e., if φ implies ψ) the rule is
not applied.

It is easy to see that this modified algorithm always terminates, though not
necessarily in polynomial time. In fact, there are polynomially many assertions
that can be added to A. If the label of an assertion is changed, then the new
label is a more general monotone Boolean formula, i.e., it has more models than
the original label. Since there are only exponentially many models, the label of a
given assertion can be changed only exponentially often. In addition, the set of
assertions A obtained after termination is identical to the one obtained by the
unmodified algorithm, and for all assertions (A,B) ∈ A we have that lab((A,B))
is a pinpointing formula for T w.r.t. A ⊑ B.

As an example, consider the TBox consisting of the GCIs given in (1). The
pinpointing algorithm proceeds as follows. Since ax2 : A ⊑ Y ∈ T and (A,A) ∈
A with label t, the assertion (A, Y ) is added to A with label ax2 (actually
with label ax2 ∧ t, which is equivalent to ax2). Since ax1 : A ⊑ ∃r.A ∈ T
and (A,A) ∈ A with label t, (A, r,A) is added to A with label ax1. Since
ax4 : Y ⊑ B ∈ T and (A, Y ) ∈ A with label ax2, (A,B) is added to A with label
ax2 ∧ ax4. Finally, since ax3 : ∃r.Y ⊑ B ∈ T , (A, Y ) ∈ A with label ax2, and
(A, r,A) ∈ A with label ax1, the label of (A,B) ∈ A is modified from ax2 ∧ ax4
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Algorithm 1 Compute one MinA for T = {t1, . . . , tn} w.r.t. A ⊑ B.
1: if A 6⊑T B then
2: return no MinA
3: S := T .
4: for 1 ≤ i ≤ n do
5: if A ⊑S\{ti} B then
6: S := S \ {ti}
7: return S

to (ax2 ∧ ax4) ∨ (ax1 ∧ ax2 ∧ ax3). This final label of (A,B) is a pinpointing
formula for T w.r.t. A ⊑ B.

As described until now, our pinpointing algorithm for EL can only deal with
normalized TBoxes, i.e., the pinpointing formula φ it yields contains proposi-
tional variables corresponding to the normalized GCIs. However, modifying φ to
a pinpointing formula for the original TBox is quite simple. Assume that the
original GCIs are also associated with propositional variables. Each normalized
GCI has a finite number of original GCIs as sources. We modify φ by replacing
the propositional variable for each normalized axiom by the disjunction of the
propositional variables of its sources.

3. The complexity of pinpointing in EL
If we want to compute all MinAs, then in the worst case an exponential runtime
cannot be avoided since there may be exponentially many MinAs for a given
TBox. This is shown by the following example.

Example 1. For all n ≥ 1, the size of the TBox

Tn := {Bi−1 ⊑ Pi ⊓Qi, Pi ⊑ Bi, Qi ⊑ Bi | 1 ≤ i ≤ n}

is linear in n, and we have B0 ⊑Tn Bn. There are 2n MinAs for Tn w.r.t. B0 ⊑ Bn

since, for each i, 1 ≤ i ≤ n, it is enough to have Pi ⊑ Bi or Qi ⊑ Bi in the set.

On the other hand, a single MinA can be computed in polynomial time by
the simple Algorithm 1, which goes through all GCIs (in a given fixed order)
and throws away those that are not needed to obtain the desired subsumption
relationship. Since the algorithm performs n+ 1 subsumption tests (where n is
the cardinality of T ), and each such test takes only polynomial time, the overall
complexity of this algorithm is polynomial. It is easy to see that its output (in
case A ⊑T B) is indeed a MinA for T w.r.t. A ⊑ B.

However, as soon as we want to know more about the properties of the set
of all MinAs, this cannot be achieved in polynomial time (unless P=NP). For
example, the following minimum cardinality problem is NP-complete: given an
EL-TBox T , concept names A,B occurring in T , and a natural number n, is
there a MinA for T w.r.t. A ⊑ B of cardinality ≤ n? The problem is in NP,
since one can simply guess a subset S of T cardinality n, and then check in
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polynomial time whether A ⊑S B. Clearly, such a set exists iff there is a MinA
of cardinality ≤ n.

NP-hardness can be shown by a reduction of the NP-hard hitting set problem
[8]: given a collection S1, . . . Sk of sets and a natural number n, is there a set
S of cardinality ≤ n such that S ∩ Si 6= ∅ for i = 1, . . . , k. Such a set S is
called a hitting set. In the reduction, we use a concept name P for every element
p ∈ S1∪ . . .∪Sn as well as the additional concept names A,B,Q1, . . . , Qk. Given
S1 = {p11, . . . , p1ℓ1}, . . . , Sk = {pk1, . . . , pkℓk

}, we define the TBox

T := {Pij ⊑ Qi | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi} ∪
{A ⊑ Pij | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi} ∪ {Q1 ⊓ . . . ⊓Qk ⊑ B}.

It is easy to see that S1, . . . , Sk has a hitting set of cardinality ≤ n iff there is a
MinA for T w.r.t. A ⊑ B of cardinality ≤ n+ k + 1.

4. A practical algorithm for computing one MinA

Although it requires only polynomial time, computing one MinA using Algo-
rithm 1 may still be impractical for very large TBoxes like SNOMED. In fact,
the algorithm has to make as many calls of the subsumption algorithm as there
are axioms in the TBox (in the case of SNOMED, more than 350,000). Here
we propose an improved algorithm that proceeds in two steps: (i) first compute
a (not necessarily minimal) subset of the TBox from which the subsumption
relationship follows; (ii) then minimize this set using Algorithm 1. Of course,
this approach makes sense only if the algorithm used in step (i) is efficient and
produces fairly small sets. It would not help to use the trivial algorithm that
always produces the whole TBox.

An algorithm that realizes step (i) and runs in polynomial time can easily be
obtained from the pinpointing algorithm sketched in Section 2. The only mod-
ification is the following: if an assertion in the consequence of a rule already
belongs to the current set of assertions, then this rule is not applied, i.e., once
an assertion is there with some label, the label remains unchanged. Thus, ev-
ery assertion (A,B) in the final set has a conjunction of propositional variables
as its label, which clearly corresponds to a subset of the TBox from which the
subsumption relationship A ⊑ B follows. In general, this subset is not minimal,
however. (Because of the space constraints, we cannot give an example demon-
strating this.)

As described until now, this modified algorithm works on normalized TBoxes.
To get an appropriate subset of the original axioms, one can use a greedy strategy
for producing a set of original axioms that covers a given set S of normalized
axioms in the following sense. For each original axiom t, let St be the set of
normalized axioms t gives rise to. The set T ′ of original axioms covers S if
S ⊆ ⋃

t∈T ′ St. The use of a greedy strategy adds another possible source of
non-minimality. (We use a non-optimal greedy strategy to keep the algorithm
polynomial. In fact, even determining whether there is a cover set of size ≤ n is
another NP-complete problem [8].)
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Our preliminary experimental results confirm that this algorithm is indeed
more practical than Algorithm 1. Based on the CEL reasoner [3], we have im-
plemented a slightly extended version of the practical algorithm for computing
one MinA in EL+, which is EL extended with complex role inclusions, and thus
can express role hierarchies and transitive roles. The experiments were run on a
variant of the Galen Medical Knowledge Base [13],3 which is a TBox consisting
of more than 4,000 axioms. On the normalized version of this TBox, CEL needs
about 14 sec to compute all subsumption relationships between concept names
occurring in this TBox. Overall, more than 27,000 subsumption relationships are
computed. The overhead for computing for all of these subsumption relationships
(possibly non-minimal) subsets from which they already follow was a bit more
than 50%: the modified pinpointing algorithm described above needed about 23
sec. Going from the subsets of the normalized TBox to the corresponding (still
possibly non-minimal) subsets of the original Galen TBox took 0.27 sec. Finally,
the overall time required for minimizing these sets using Algorithm 1 (with
CEL as the subsumption reasoner) was 9:45 min. For these last two numbers one
should take into account, however, that these involved treating more then 27,000
such sets. For a single such set, the average post-processing time was negligible
(on average 21 milliseconds). Also note that applying Algorithm 1 directly to
the whole TBox for just one subsumption relationship (between Renal-Artery
and Artery-Which-Has-Laterality) took more than 7 hours.

Thus, from the point of view of runtime, our practical algorithm behaves
quite well on Galen. The same can be said about the quality of its results. The
average size of an axiom set computed by the algorithm before using Algorithm 1
to minimize it was 5 (with maximum size 31), which is quite small and thus
means that this set can directly be given to the user as an explanation for
the subsumption relationship. Also, the computed sets were almost minimal: on
average, the possibly non-minimal sets computed by the algorithm were only
2.59% larger than the minimal ones. When considering the normalized TBox
(i.e., without translating back to the original TBox), this number was even better
(0.1%). This means that in most cases it is probably not necessary to further
minimize the sets using Algorithm 1. If demanded by the user for a specific
subsumption relationship it can still be done without taking much time.

5. Additional work on pinpointing

The pinpointing extension of the subsumption algorithm for EL described in
Section 2 as well as the pinpointing algorithm for ALC described in [2] are in-
stances of a general approach for modifying “tableau-like” reasoning procedures
to pinpointing procedures [4].

Instead of computing minimal subsets that have a given consequence, one
sometimes also wants to compute maximal subsets that do not have a given
consequence. Given the pinpointing formula φ, these sets correspond to maximal

3 Since Galen uses expressivity not available in EL+, we have simplified it by removing
inverse role axioms and treating functional roles as ordinary ones.
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valuations that do not satisfy φ. The complexity results from Section 3 hold
accordingly for such maximal sets. However, we currently do not know how to
obtain a practical algorithm computing one such set (i.e., the results of Section 4
cannot be transferred to the case of maximal sets).
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Modal vs. Propositional Reasoning for Model Checking
with Description Logic
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1 Introduction

Model checking ([7, 13], c.f.[6]) is a technique for verifying finite-state concurrent sys-
tems that has proven effective in the verification of industrial hardware and software
programs. In model checking, a modelM , given as a set of state variablesV and their
next-state relations, is verified against a temporal logic formulaϕ. In this work we con-
sider only safety formulas of the formAG(b), with b being a Boolean expression over
the state variables of the model, meaning thatb is an invariant ofM .

The main challenge in model checking is known as thestate space explosionprob-
lem, where the number of states in the model grows exponentially in the number of
program variables. To cope with this problem, model checking is donesymbolically, by
representing the system under verification as sets of states and transitions, and by us-
ing Boolean functions to manipulate those sets. Two main symbolic methods are used
to perform model checking. The first, implemented inSMV [10], is based on Binary
Decision Diagrams (BDDs) [5]. The second is known as Bounded Model Checking
(BMC) [4]. Using this method, the model under verification and its specification are
unfolded to depthk (for a given boundk), and translated into a propositional CNF
formula. This results in an encoding of the model checking problem that is essentially
k times the size of the textual description ofM . A SAT solver is then applied to the
formula to find a satisfying assignment. Such an assignment, if found, demonstrates an
error in the model.

We investigate the possibility of using a Description Logic reasoner for bounded
model checking. Recent work [3] showed how to embed BMC problems as concept
consistency problems in the DL dialectALCI. The encoding as a terminology resulted
in a naturalsymbolicrepresentation of the sets of states and transitions that is signifi-
cantly smaller than the one obtained by translating a model into a CNF formula. This
translation works as follows.

LetM be a model defined by a setV of Boolean state variables and their next-state
transitionsR. We represent each variablevi ∈ V as a conceptVi, and the transition
relation as a single roleR. We then introduce concept inclusions of the type

C0 v ∀R.C1

stating that if the current state satisfies the condition represented byC0 then all the
next-states that can be reached in one step byRmust satisfy the conditionC1. Note that
interpretations for this set of concept inclusions correspond to sub-models ofM .

Let the conceptS0 represent the set of initial states ofM , and letS1 be a new
concept. If the concept inclusionS1 v ∃R−.S0 holds in the interpretation, then the set
S1 is a subset of all the states that can be reached fromS0 by going one step forward
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using the relationR. Similarly, we denote bySi a subset of the states that can be reached
afteri steps, and introduce the inclusions

Si v ∃R−.Si−1

for 0 < i ≤ k. Let ϕ = AG(b) be the specification to be verified, and letB be the
concept representingb (composed of a Boolean combination of the conceptsVi rep-
resenting the state variables). Model checking is then carried out by asking the query:
“does there exist an interpretation for the above set of concept inclusions such that
¬Bu Si is not empty for someSi?”. A positive answer from the DL reasoner indicates
an error inM .

Experimental results comparing this method to SAT-based model checking showed
that SAT solving outperformed DL reasoning, especially as the boundk increased [3],
despite the significantly smaller DL encoding of the model checking problem —k times
the size ofM in the SAT case vs.k plus the size ofM in the DL case.

In this paper we report on an experiment aimed at determining whether it is the
modalreasoning (that involved taking backward steps through the roleR) that caused
the problem, or the propositional reasoning that is more efficient in the SAT solvers.
For this we produced a series of translations of the model into a terminology. Instead
of one set of concepts corresponding to the variables of the given model, we introduce
l copies to represent states of increasing distance from the initial state. The number of
modaltraversals throughR is then reduced by a factor ofl while increasing the size of
the DL encoding by a factor ofl. We expected the reduced modality translations would
outperform the original. It was surprising to us that the results suggested the opposite.

The rest of the paper is organized as follows. In the next section we give definitions
and present bounded model checking using DL [3]. Section 3 is the main section of the
paper where the new translation is presented. An evaluation and discussion follow in
Section 4.

2 Background and Definitions

Definition 1 (Description LogicALCI) LetNC andNR be sets of atomic concepts
{A1, A2, . . .} and atomic roles{R1, R2, . . .} respectively. The set ofconceptsC of the
description logicALCI is the smallest set includingNC that satisfies the following.

– If C1, C2 ∈ C then so are¬C1 andC1 u C2

– If C ∈ C andR ∈ R then so are∃R.C and∃R−.C

Additional concepts are defined as syntactic sugaring of those above:
– > = A t ¬A for someA
– ∀R.C = ¬∃R.¬C
– C1 t C2 = ¬(¬C1 u ¬C2)

A General Concept Inclusion Axiomis an expression of the formC1 v C2. A TBoxT
consists of a finite set of inclusion dependencies.

The semanticsof expressions is defined with respect to a structureI = (∆I , ·I),
where∆I is a non-empty set, and·I is a function mapping every concept to a subset
of ∆I and every role to a subset of∆I × ∆I such that the following conditions are
satisfied.
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– (¬C)I = ∆I \ CI
– (C1 u C2)I = CI1 u CI2
– ∃R.C = {x ∈ ∆I | ∃y ∈ ∆I s.t.(x, y) ∈ RI ∧ y ∈ CI}
– ∃R−.C = {y ∈ ∆I | ∃x ∈ ∆I s.t.(x, y) ∈ RI ∧ x ∈ CI}

A structuresatisfies an inclusion dependencyC1 v C2 if CI1 ⊆ CI2 . Theconsistency

problem forALCI asks ifT |=dl C holds;1 that is, if there existsI such thatCI is
non-empty and such thatCI1 ⊆ CI2 holds for eachC1 v C2 in T .

2.1 Symbolic Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. AKripke struc-
tureM overV is a four tupleM = (S, I,R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every states ∈ S

there is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that

state.

We view each states as a truth assignment to the variablesV . We view a set of states as
a Boolean function overV , characterizing the set. For example, The set of initial states
I is considered as a Boolean function overV . Thus, if a states belongs toI, we write
s |= I. Similarly, if vi ∈ L(s) we writes |= vi, and ifvi 6∈ L(s) we writes |= ¬vi. We
say thatw = s0, s1, ..., sk is a path inM if ∀i, 0 ≤ i < k, (si, si+1) ∈ R ands0 |= I.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is given as a set of Boolean variablesV = {v1, ..., vn}, their initial values and
their next-state assignments. The definition we give below is an abstraction of the input
language ofSMV [10].

Definition 3 (Model Description) LetV = {v1, ..., vn} be a set of Boolean variables.
A tuple MD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) is a Model Descriptionover V where
IMD, ci, c′i are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L),
whereS = 2V ,L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci
impliess′ |= ¬vi ands |= c′i ∧ ¬ci impliess′ |= vi}.

Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variablevi in terms of
the current values of{v1, ..., vn}. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of vari-
ablesv1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state
with vi = 0.
1 We write “|=dl” to distinguish the use of the double turnstyle symbol by both description logic

and model checking communities.
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Safety Formulas The formulas we consider aresafetyformulas, given asAG(b) in
CTL [7], orG(b) in LTL [12]. Such formulas state that the Boolean expressionb holds
on all reachable states of the model under verification. We note that a large and useful
subset of CTL and LTL can be translated intoAG(b) type formulas [2].

Bounded Model Checking Given a Kripke structureM = (S, I,R, L), a formulaϕ,
and a boundk, Bounded Model Checking (BMC) tries to refuteM |= ϕ by proving the
existence of a witness to the negation ofϕ of lengthk or less. Forϕ = AG(b), we say
thatMk 6|= ϕ if and only if there exists a pathw = s0, ..., sj in M such thatj ≤ k and
sj |= ¬b.
2.2 Bounded Model Checking Using Description Logic Reasoning
We briefly describe how bounded model checking can be achieved using description
logic reasoning. For a detailed explanation and proof of correctness, refer to [3].

LetMD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the modelMMD =
(S, I,R, L), overV = {v1, ..., vn}. Let k be the bound and letϕ = AG(b) be a safety
formula. We generate a terminologyT kMD , linear in the size ofMD , and a conceptCϕ
such thatT kMD |=dl Cϕ if and only ifMk

MD 6|= ϕ.
For each variablevi ∈ V we introduce one primitive conceptVi, whereVi denotes

vi = 1 and¬Vi denotesvi = 0. We introduce one primitive roleRcorresponding to the
transition relation of the model. We define the conceptS0 to representI, by replacing
eachvi in I with the conceptVi, and the connectives∧,∨,¬ with u,t,¬. The concepts
Ci,C′i correspond to the Boolean conditionsci, c′i in the same way. We then introduce
three types of concept inclusions:

1. (inclusions describing the model) For each pair〈ci, c′i〉 add the pair of inclusions

Ci v ∀R.¬Vi
(¬Ci u C′i) v ∀R.Vi.

2. (inclusions describing sets of reachable states, of distancei from the initial set)
For a boundk, addk primitive concepts,S1, ...,Sk, and for1 ≤ i ≤ k, add thek
inclusions

Si v ∃R−.Si−1.

3. (inclusion to describe the specification) Let ϕ = AG(b) be the specification to be
verified. The Boolean formulab is translated to a conceptB in the usual way; in par-
ticular, each variablevi is mapped to the conceptVi, and the Boolean connectives
∨,∧,¬ into their corresponding concept constructorst,u,¬.
We define the conceptCϕ ≡ ¬Bu(S0tS1t...tSk). If Cϕ is consistent with respect
to the terminologyT kMD then¬b must hold in some state with distance less thank

from the initial state. Verification is therefore reduced to the query:T kMD |=dl Cϕ.

Theorem 4 (from [3]).Mk
MD 6|= ϕ if and only ifT kMD |=dl Cϕ.

Let |T kMD | represent the number of concept inclusions inT kMD , and letn be the number
of state variables in the modelMMD . The following proposition is discussed in [3].

Proposition 5. (size of translation)|T kMD | = 2 · n+ k + 1.
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3 On Controlling Propositional vs. Modal Reasoning

The above translation of a BMC problem into a terminology, denotedT kMD , uses one
set of primitive concepts corresponding to the state variables, andk conceptsS1, ...,Sk,
whereSi represents the set of states of distancei from the initial state. Thus, reaching
a state that isi steps from an initial state will require a DL reasoner to build anR-chain
consisting ofi nodes. On the suspicion that reducing the length of this chain might
improve performance, we generalize the above terminological embedding of model de-
scriptions with an ability to supply an additional parameterl so that the resulting ter-
minology, denotedT k/lMD would entail a reduction of the length of the chain by a factor
of l. We present the details of this more elaborate embedding in the remainder of this
section. For simplicity, we assume that the original boundk is devisable byl.

The initial setS0 does not change, and corresponds toI as before. Ifk/l > 1,
we introduce a roleR. For each variablevi ∈ {v1, ..., vn}, we introducel primitive
conceptsV0

i , ...,V
l−1
i , and for each pair〈ci, c′i〉, we introduce2 ∗ l concept inclusions

of the following form.
C0
i v ¬V1

i

(¬C0
i u C′0i ) v V1

i
...

Cl−2
i v ¬Vl−1

i

(¬Cl−2
i u C′l−2

i ) v Vl−1
i

Cl−1
i v ∀R.¬V0

i

(¬Cl−1
i u C′l−1

i ) v ∀R.V0
i

If k/l = 1 there is no need for the roleR, and the last pair of concept inclusions would
therefore be omitted. We introduce the conceptsSl,S2∗l, ...,Sk, and the followingk/l
concept inclusions.

Sl v ∃R−.S0

S2∗l v ∃R−.Sl
...

Sk v ∃R−.Sk−l
For a specificationϕ = AG(b), let Bj be the correspondent Boolean expression over
the conceptsVji for all 0 ≤ j < l. We then define the concept

C0..l−1
ϕ ≡ (¬B0 t ... t ¬Bl−1) u (S0 t Sl t S2∗l t ... t Sk).

Proposition 6. (Size of encoding)|T k/lMD | = 2 · n · l + k/l + 1.

The following proposition relates the terminologyT kMD to the reduced modality termi-

nologyT k/lMD .

Proposition 7. T kMD |=dl Cϕ if and only ifT k/lMD |=dl C0..l
ϕ .

Proof (sketch).(=⇒) Suppose there exists an interpretationI = (∆I , ·I) for T kMD |=dl Cϕ.
SinceCϕ is not empty in this interpretation, there must exist aj such thatSIj is not
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empty. Letσj ∈ SIj . Since the concept inclusionSj v ∃R−.Sj−1 holds in the interpre-
tation, andSIj is not empty, we deduce thatSIj−1 is not empty, and that∃σj−1 ∈ SIj−1,
such that(σj−1, σj) ∈ RI . By similar considerations, there must exist a sequence of
elementsσ0, ..., σj ∈ ∆I , such that for0 ≤ i < j, (σi, σi+1) ∈ RI , andσ0 ∈ SI0 . We

build an interpretationIl = (∆Il , ·Il) for T k/lMD . ∆Il will consist ofj/l + 1 elements,
γ0, ..., γj/l, where eachγi corresponds tol consequent elements from∆I . The map-

ping ·Il will be defined according to·I . Thus,∀1 ≤ i ≤ n, ∀0 ≤ j < l, γ0 ∈ Vji if and
only if σj ∈ Vi. In a similar manner,γ1 will be mapped according toσl, ..., σ2·l−1 and

γk/l according toσk−l, ..., σj . It remains to show that the concept inclusions ofT k/lMD

hold under the interpretationIl, and that the interpretation ofC0..l
ϕ is not empty. These

follow easily from the definitions, given that all concept inclusions ofT kMD hold under
I.

The opposite direction proceeds in a similar way. ut

Example Consider the model description

Exmp= (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3}with I = ¬v1∧v2∧¬v3. Figure 1 draws the states and transitions
of the Kripke structureMExmp described byExmp, where the label of each state is
the value of the vector(v1, v2, v3). Let the formula to be verified beϕ = AG(¬v2 ∨

S0 v (¬V1 u V2 u ¬V3)
(V1

0 u V0
2) v ¬V1

1

(¬(V0
1 u V0

2) u V0
3) v V1

1

¬V0
2 v ¬V1

2

¬V0
1 v ¬V1

3

V0
1 v V1

3

(V1
1 u V1

2) v ∀R.¬V0
1

(¬(V1
1 u V1

2) u V1
3) v ∀R.V0

1

¬V1
2 v ∀R.¬V0

2

¬V1
1 v ∀R.¬V0

3

V1
1 v ∀R.V0

3

S2 v ∃R−.S0

S4 v ∃R−.S2

Fig. 1.Kripke Structure and Terminology for “Exmp”

¬v3). Note thatMExmp 6|= ϕ, as can be seen in Figure 1, since the state(0, 1, 1), that
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contradictsϕ, can be reached in two steps from the initial state. We choose the bound
to bek = 4, and the reduction factor 2.

We build the terminologyT 4/2

Exmp for Exmp. We introduce one primitive roleRand

two sets of primitive concepts:V0
1,V

0
2,V

0
3 andV1

1,V
1
2,V

1
3. The initial state, represented

by the conceptS0, depends only on the setV0
i : S0 v (¬V0

1 u V0
2 u ¬V0

3). The rest of

T 4/2

Exmp is composed of the transition relation of the model, as given in Figure 1. For

the specificationϕ = AG(¬v2 ∨¬v3) we haveB0 ≡ ¬V0
2 t¬V0

3 andB1 ≡ ¬V1
2 t¬V1

3.
The conceptC0..1

ϕ is then defined asC0..1
ϕ ≡ (¬B0 t ¬B1) u (S0 t S2 t S4).

Verification is carried out by asking the query:T 4/2

Exmp |=dl C0..1
ϕ .

4 Evaluation
We conducted an experiment on a model derived from the NuSMV example “dme1-16”,
taken from [11], to test our hypothesis that reducing the number of nodes created dur-
ing model building would improve performance when using a DL system for bounded
model checking. The original model from [11] was composed of 16 symmetric “cells”,
each consisting of 17 propositional variables. We reduced the model to have only 2
cells, in order to get a reasonable run-time. The formula verified expresses a safely
condition that is satisfied in the model. We used the DL reasonerFaCT++ [9], and as
expected according to our translation, all runs returned an “unsatisfiable” result. Table 4
reports on the length of time required to determine this for reduction factors of 1 (no
reduction), 2 and 4. We believe the times are clear evidence that what really happens is
contrary to our hypothesis.

Table 1.Modal vs. Propositional Reasoning

VariablesBound (k) Reduction FactorTime (m)
34 8 1 140

34 8 2 197

34 8 4 686

4.1 Discussion

Highly successful SAT solvers such as Minisat [8] use model building algorithms that
operate by progressively refining an understanding of a “possible world”. DL systems
such asFaCT++ also use model building algorithms, but, to relate their behavior to typ-
ical SAT solvers, must deal with the added complication of modal reasoning in which a
potentially large number of possible worlds are involved. For applications such as fixed
depth model checking, DL systems therefore enable a tradeoff between the complexity
of particular worlds and the number of worlds.

We were quite surprised that moving towards fewer but more complicated worlds
would have the negative impact on performance that it did in our experiment, which
prompted a lot of reflection on why this happens. We conclude with some suggestions
on directions of future research on how DL technology might be adapted in order to
improve its performance on applications like model checking.

Part of this reflection was to conduct a small literature survey on how modern SAT
solvers and DL reasoners are implemented [1, 8]. It became quickly apparent that, e.g.,
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Minisat relies heavily on using arrays to encode knowledge about a particular world,
and that DL technology is more likely to encode similar knowledge in separate records,
and to navigate among the records via pointers. It is common folklore that, when fea-
sible, replacing pointer navigation with array indexing will improve the performance
of algorithms, which suggests one possible avenue for improving the performance of
propositional reasoning in DL systems.

A non-trivial problem for DL systems relates toblocking. In particular, such systems
must frequently compare different possible worlds to ensure that model building will
terminate. This prompted a more carefully consideration of the structure of the terminol-
ogy encoding a model description. We noticed that it might be straightforward to recog-
nize that the “schema” underlying all occurrences of the “∃R−.C” concept constructor
was acyclic, which suggests a possible extension to, e.g., preprocessing inFaCT++ in
which such acyclic (sub)schema are recognized, and consequently that blocking activity
during model building is disabled for possible worlds “within” acyclic schema. Indeed,
any terminology generated by our reductions will always satisfy a global acyclicity
property that would allow disabling any processing relating to blocking.
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Abstract. We describe a general framework for covering concepts using
terminologies and briefly present the already investigated instances of
this framework. Then, we formalize the best covering problem in the
context of the ALN language, in which the difference operation is not
semantically unique, and sketches the technique to solve the underlying
computation problems.

1 Introduction

In [2] a general framework for rewriting using terminologies is defined as follows:

– given a terminology T expressed using a language Lt,
– given a (query) concept description Q, expressed using a language
Ls and that does not contain concept names defined in T ,

– given a binary relation ρ : Ls ×Lt, between Ls and Lt descriptions.
Can Q be rewritten into a description E, expressed using a language Ld
and built using (some) of the names defined in T , such that QρE ?
Additionally, some optimality criterion may be used in order to select
the relevant rewritings.

Existing instances of this general framework can be distinguished with respect
to the nature of the relation ρ, the optimality criterion as well as the languages
Lt, Ls and Ld, respectively used to describe the terminology T the (query)
concept Q and the rewriting E. Examples of such instances are (i) the minimal
rewriting problem [2], where ρ is instantiated by equivalence modulo T while
the size of the rewriting is used as the optimality criterion and (ii) rewriting
queries using views [5], while ρ is instantiated by subsumption and the optimality
criterion is the inverse subsumption [2].

Subsumption relation plays a central role in the existing rewriting approaches.
Indeed, all the mentioned instances of the general framework aim at reformulat-
ing a given query Q into a description which is equivalent or subsumed by Q.
The intuition here is that a given rewriting must capture all the ‘information’
conveyed by a query Q. However, in many application contexts (e.g., see [3, 4])
it is not realistic to assume that such a rewriting always exists and it may be
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interesting to look for a rewriting that approximates a given query. This ob-
servation motivates our work on a new instance of the general framework for
rewriting, namely covering concepts using terminologies [3]. The salient feature
of our approach is to use a measure of a semantic distance between concepts,
instead of subsumption, to define rewritings, thereby enabling a more flexible
rewriting process. More precisely, our aim is to reformulate a query Q into a
description that contain as much as possible of common information with Q.
We call such a reformulation a cover of Q.

A key step toward handling such a problem is a precise definition of the
measure used to compute the semantic proximity between concepts. We rely on
a non standard operation in description logics, namely the (semantic) difference
or subtraction operation, in order to define such a measure. The difference of
two descriptions is defined in [6] as being a description containing all information
which is a part of one argument but not a part of the other one. An interesting
feature of the difference operation comes from its ability to produce a (set of)
concept description(s) as output. In the sequel, we refer to descriptions obtained
by the difference operation as difference descriptions. Note that, if the difference
is not semantically unique, a difference description is in fact a set of descriptions.
Difference descriptions characterize the notion of ‘extra information’, i.e., the
information contained in one description and not contained in the other, thereby
providing a means to measure a semantic distance between concepts.

With the difference operation at hand, and given an appropriate ordering
≺d on difference descriptions, we are then interested by the problem of rewrit-
ing a query Q into a description E such that the difference between Q and E
is minimal w.r.t. ≺d. In our previous work [3, 4], we investigated this problem
in a restricted framework of languages in which the difference is semantically
unique. In such a framework it turns out to be sufficient to specify ≺d as an
ordering on the size of descriptions to capture the intuition behind the notion
of best covers (i.e., covers whose descriptions contain as much as possible of
common information with the original query). However, in the cases where the
difference produces a set of descriptions, for example in the ALN language, a
more subtle ordering is required. This paper extends our previous work in the
following directions: (i) we define a general framework for covering concepts us-
ing terminologies and point out how the previous investigated instances can be
formalized in this context, and (ii) we formalize the best covering problem in the
context of the ALN language, in which the difference operation is not seman-
tically unique, and sketches the technique to solve the underlying computation
problems. Technical details regarding this new result are available in [1].

2 The general best covering problem

This section introduces some basic definitions to formally define the general best
covering problem.

Definition 1. (Cover) Let L be a DL in which the difference operation is com-
putable, T (respectively, Q) be an L-terminology (respectively, an L-concept) and

188 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 189 — #199 i
i

i
i

i
i

let E be a conjunction of some defined concepts from T . E is a cover of Q using
T iff: (i)E is consistent with Q, i.e., Q uE 6≡ ⊥, and (ii) E shares some infor-
mation with Q, i.e., Q 6∈≡ Q− lcsT (Q,E), where ∈≡ stands for set membership
modulo equivalence.

Hence, a cover of a concept Q using T is defined as being a conjunction of
defined concepts occurring in T which is consistent with Q and that share some
information with Q. We use the expression restE(Q) = Q − lcsT (Q,E), called
the rest of a cover, to denote the part of a query Q that is not captured by
the cover E. In practical situations, however, we are not interested in all kinds
of covers. Therefore, we define additional criteria to characterize the notion of
relevant covers. For example, it is clearly not interesting to consider those covers
that do not minimize the rest. Then, given an appropriate ordering ≺d on cover
rests, the notion of closest covers if defined below.

Definition 2. (Closest cover w.r.t. ≺d). Let L be a DL in which the differ-
ence operation is computable, T (respectively, Q) be an L-terminology (respec-
tively, an L-concept) and let E be a conjunction of some defined concepts from
T . E is a closest cover of Q using T w.r.t. ≺d (or simply, closest cover of
Q using T ) iff: (i) E is a cover of Q using T and (ii) it does not exist a cover
E′ of Q using T such that restE′(Q) ≺d restE(Q).

Closest covers correspond to those covers that minimize part of a query Q
not captured in a cover. Hence, they are clearly relevant rewritings in practical
situations. For example, when contained or equivalent rewritings of Q using T
exist, they constitute the closest covers of Q.

However, usually it may not be interesting or efficient to compute all the
possible closest covers. For example, in existing rewriting approaches, it does
not make a lot of sense to compute all the rewritings contained in a given query.
Usually, one is interested by either maximally-contained or equivalent rewritings.
Similarly to the general framework introduced above, an additional optimality
criterion can be used to select among the closest covers of a query Q, the most
relevant ones. To abstract from particular optimality criterion, assume that we
are provided with an ordering, noted ≺c, on concept covers such that E′ ≺c E
means that the cover E is better (or of higher quality) than the cover E′. As
will be seen later, when defined appropriately the ordering ≺c can be used for
example to capture the semantics of maximally-contained rewritings or, more
interestingly, to maximize the user satisfaction with respect to a given set of
Quality of Service (QoS) criteria.

Definition 3 given below characterizes the notion of best covers w.r.t. ≺d, i.e.,
a closest cover that is considered as optimal according to the ordering ≺c.
Definition 3. (Best cover w.r.t. (≺d,≺c)). Let L be a DL in which the dif-
ference operation is computable, T (respectively, Q) be an L-terminology (re-
spectively, an L-concept) and let E be a conjunction of some defined concepts
from T . Given two orderings ≺d and ≺c, E is a best cover of Q using T w.r.t.
(≺d,≺c) iff: (i) E is a closest cover of Q using T w.r.t. ≺d, and (ii) it does
not exist a closest cover E′ of Q using T w.r.t. ≺d such that E′ ≺c E.
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Finally, we are now able to provide a precise definition for the general best
covering problem.

Problem 1. (GBCP (T , Q)). Let L be a DL in which the difference operation
is computable, T (respectively, Q) be an L-terminology (respectively, an L-
concept) and let ≺d be an ordering on difference descriptions and ≺c be an order-
ing on concept covers. The general best covering problem, denotedGBCP (T , Q),
is the problem of computing all the best covers of Q using T w.r.t. (≺d,≺c).

Note that, problem 1 provides a general framework for covering concepts
using terminologies. This framework can have different instantiations depending
on the precise language L used to describe T and Q as well as the precise
definition of the orderings ≺d and ≺c.

3 Investigated instances

Motivated by different application contexts, we have investigated three instances
of the general best covering problem. A first line of demarcation between the
studied instances comes from the properties of the difference operation used in
each setting. We considered two cases in our work:

– Languages in which the difference is semantically unique. As de-
scribed in [3, 4], in this case it is enough to consider ≺d as an ordering on
the size of descriptions. In the sequel, we use the notation ≺||d to denote that
the ordering ≺d is defined on the size of descriptions.

– The ALN language. In the setting of ALN the difference operation is not
semantically unique and produces a set of descriptions. In this case a more
subtle definition of the ordering ≺d is required. In Section 4, we provide a
definition for such an ordering based on an extension of the subsumption re-
lation to sets of descriptions. To differentiate with the first case, we note such
an ordering ≺Sd where the superscript S is used to recall that the ordering
≺d is defined on sets of descriptions.

Table 1 presents the three instances of the best covering problem we have in-
vestigated in our work. The first two instances, respectively called BCOV(T , Q)
and QoS-BCOV(T , Q), consider the family of languages equipped with struc-
tural subsumption5. Such a property ensures that the difference operation is
semantically unique and can be determined using the structural difference op-
eration [6]. Hence, both BCOV(T , Q) and QoS-BCOV(T , Q) use the ordering
≺||d to characterize closest covers (i.e., they define ≺d=≺||d). However, these two
instances differ in the specification of the ordering ≺c which was, in each case,
motivated by the application context. In BCOV(T , Q), the purpose was to select
only the closest covers that contain as less as possible of extra information with

5 Note that we use here the definition of structural subsumption in the sense of [6]
which is different from the one usually used in the literature.
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Instance
Name

L Ordering ≺d Ordering ≺c Applications Refs

BCOV(T , Q) Structural
subsump-
tion

≺||d an ordering
on size of the rest

≺m
c an ordering on

size of the missing
information

Service discov-
ery

[3]

QoS-
BCOV(T , Q)

Structural
subsump-
tion

≺||d an ordering
on size of the rest

≺q
c an order-

ing w.r.t. a QoS
function

Querying
e-catalogs

[4]

ALN -
BCOV(T , Q)

ALN ≺S
d an ordering

on size of the rest
≺S

c an ordering on
size of the missing
information

Service discov-
ery

[1]

Table 1. Investigated instances of the general best covering problem.

respect to a query Q. We call the part of a cover E that is not contained in the
description of the query Q the missing information. Hence, the ordering ≺mc ,
used to instantiate ≺c in the context of BCOV(T , Q), is defined as an ordering
on the size of the missing information. In QoS-BCOV(T , Q), however, the pur-
pose was to select only the closest covers that maximize the user satisfaction
with respect to a given set of Quality of Service (QoS) criteria (e.g., price, ex-
ecution time, reliability, etc). Hence, in the context of QoS-BCOV(T , Q), ≺c is
instantiated as an ordering, noted ≺qc , that sorts the covers of a query Q w.r.t.
their quality scores.

Finally, the third instance, called ALN -BCOV(T , Q), is an extension of
BCOV(T , Q) to the language ALN in which the difference operation is not se-
mantically unique (i.e., it produces sets of descriptions). Hence,ALN -BCOV(T , Q)
uses the ordering ≺Sd to define the closest covers (i.e., ≺d=≺Sd ) and the order-
ing ≺Sc to define the best covers (i.e., ≺c=≺Sc ). The ordering ≺Sc sorts covers
of a query Q by order of their missing information in the case where missing
information are expressed as sets of descriptions.

4 The problem ALN -BCOV(T , Q)

We consider the problem ALN -BCOV(T , Q), an extension of BCOV(T , Q) to
the language ALN . A main feature that sets the ALN setting apart from the
two previous ones lies in the possibility of nontrivial decomposition of the incon-
sistent concept ⊥. As an example, consider the following two decompositions of
⊥: ⊥ ≡ (≤ 2R)u (≥ 4R) ≡ P u¬P , where P denotes an atomic concept. Conse-
quently, as highlighted below, new difficulties arise when dealing with the best
covering problem in this context: (i) the difference operation is not semantically
unique and produces sets of descriptions as a result. Therefore, to handle the
best covering problem in this context there is a need for:

• an effective procedure to compute difference descriptions in ALN , and
• a new formalization of the best covering problem. This is because the rest

of a cover as well as the missing information are now expressed as sets of
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descriptions and hence the orderings ≺||d and ≺mc , respectively used in the
case of BCOV(T , Q) to instantiate ≺d and ≺c, are no longer valid in this
context.

(ii) The possibility to obtain inconsistent conjunctions of consistent concepts.
Therefore, when computing best covers as conjunction of (consistent) defined
concepts we have to ensure that only ’consistent’ covers are generated.

Altogether these points make the best covering problem much more complex
to solve in the context of ALN . We describe below a formalization of the best
covering problem in this setting, then we sketch an approach to solve it.

4.1 Problem statement

Analogous to BCOV(T , Q), in ALN -BCOV(T , Q) we are interested by the com-
putation of covers that contain as much as possible of common information with
Q and as less as possible of extra information with respect to Q. The main diffi-
culty encountered when formalizing ALN -BCOV(T , Q) lies in the specification
of the orderings ≺d and ≺c which, in this context, will be respectively used for
minimizing the rest and the missing information. To this end, we introduce be-
low a slight extension of the subsumption relation to sets of descriptions and
then we show how it can be used for specifying the orderings ≺d and ≺c in the
context of ALN .

Definition 4. (Subsumption between sets of descriptions )
Let C = {c1, . . . , cn} and D = {d1, . . . , dm} be two sets of ALN -descriptions.

The set C is subsumed by D, noted C vS D iff ∀ci ∈ C, ∃dj ∈ D |ci v dj
The orderings ≺d and ≺c of the general best covering problem GBCP (T , Q)

are respectively instantiated in the setting of ALN using the orderings ≺Sd and
≺Sc defined below.

Definition 5. (The orderings ≺Sd and ≺Sc ) Let Q be an L-concept descrip-
tion and E and E′ two covers of Q using T .

– The ordering ≺Sd is defined as follows
E ≺Sd E′ iff restE′(Q) vS restE(Q)

– The ordering ≺Sc is defined as follows
E ≺Sc E′ iff MissE′(Q) vS MissE(Q)

ALN -BCOV(T , Q) is then obtained from the general covering problem, by
instantiating the language L =ALN and the orderings ≺d=≺Sd and ≺c=≺Sc .
As in the case of BCOV(T , Q), in ALN -BCOV(T , Q) we are interested by the
computation of the non redundant best covers.

Problem 2. (ALN -BCOV(T , Q)).
Let T (respectively, Q) be an ALN -terminology (respectively, an ALN -

concept). ALN -BCOV(T , Q) is the problem of computing all the non redundant
best covers of Q using T w.r.t. (≺Sd ,≺Sc ).

The problem ALN -BCOV(T , Q) is NP-hard. This complexity result is easily
derived from the complexity of the BCOV(T , Q) problem [3].
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4.2 Dealing with ALN -BCOV(T , Q)

In this section, we turn our attention to the computational problem underlying
ALN -BCOV(T , Q). The aforementioned features of ALN make this problem
much more complex to solve than the previous instances. A complete descrip-
tion of the solution to ALN -BCOV(T , Q) is lengthly and technical. We sketch
below the main steps of our approach for handling ALN -BCOV(T , Q). Technical
details are given in [1] where an algorithm, called computeALNBCov, to solve
ALN -BCOV(T , Q) is proposed.

The first step in dealing with ALN -BCOV(T , Q) consists in the design of an
algorithm that implements the difference operation between ALN descriptions
[1]. Then, with such an algorithm at hand, we investigated the computational
problem underlying ALN -BCOV(T , Q). Let CT be the set of defined concept
names that appear in T . The search space of ALN -BCOV(T , Q) is the power set
of CT . Unfortunately, a similar approach to the one used for BCOV(T , Q) cannot
be exploited here to avoid an exhaustive exploration of this search space. Indeed,
in the case of BCOV(T , Q) [3], a full characterization of best covers in terms of
hypergraph transversals yields to a reduction of BCOV(T , Q) to a computation
of the minimal transversals with minimal cost of an associated hypergraph. The
characterization of best covers in ALN context is more complex.

The approach we have developed to cope with ALN -BCOV(T , Q) embody
a divide-and-conquer strategy that enables to progressively reduce the search
space. We decompose the ALN -BCOV(T , Q) problem into a set of smaller tasks
by considering separately each criterion that must be satisfied by best covers in
this setting. Then, for each criterion we provide a characterization that enables
to confine the search space.

Observe that a solution E of an ALN -BCOV(T , Q) problem must satisfy the
following conditions: (Cond-1:) E uQ 6≡ ⊥, and (Cond-2:) E is a cover of Q (i.e.,
Q 6∈≡ Q− lcs(Q,E)), and (Cond-3:) E is a closest cover of Q (i.e., RestE(Q) is
minimal w.r.t. ≺Sd ).

For each of these conditions we provide a characterization that yields to
an upper/lower bound in the search space. More precisely, given an ALN -
BCOV(T , Q) problem and let CT be the set of defined concept names appearing
in T , we provide full characterizations for the following borders:

– Scons: the greatest subsets of CT that satisfy Cond-1.
– Scouv: the greatest subsets of CT that satisfy Cond-1 and Cond-2.
– Icouv: the smallest subsets of CT that satisfy Cond-1 and Cond-2.
– Srest: the greatest subsets of CT that satisfy Cond-1, Cond-2 and Cond-3.
– Irest: the smallest subsets of CT that satisfy Cond-1, Cond-2 and Cond-3.

Based on the characterizations of the aforementioned borders, the proposed
algorithm computeALNBCov breaks ALN -BCOV(T , Q) into the following sub-
problems: (1) Computation of Scons, (2) Computation of Scouv and Icouv, (3)
Computation of Srest and Irest, and (4) Computation of the best covers.

Briefly stated, the algorithm computeALNBCov proceeds in four steps each
of which consisting in the resolution of one subproblem. The first three steps
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exploit the provided characterizations of the aforementioned borders to progres-
sively confine the search space of ALN -BCOV(T , Q). Unfortunately, due to the
non-monotonic nature of the ordering ≺Sc , we were not able to provide a full
characterization for the last step. Consequently, to handle step 4, the algorithm
computeALNBCov enumerates all the covers confined between Srest and Irest
and test for minimality w.r.t. ≺Sc . Due to previous reductions of the search space,
we expect step 4 to be still handled efficiently in practical cases. The implemen-
tation of computeALNBCov is an ongoing work. In our future work, we plan
to conduct experiments on real cases as well as synthetic ontologies in order to
evaluate the performance of this algorithm.

5 Conclusion

This paper focuses on the problem of covering concepts using terminologies. This
work has relation with exiting works on concept/query rewriting. The salient
feature of our approach is to use a measure of semantic distance between con-
cepts, instead of subsumption relation, to define rewritings, thereby enabling
a more flexible rewriting process. We provided a formal definition of a general
framework for covering concepts using terminologies and described some already
investigated instances of this problem. We then studied a new instance of the
covering problem in the context of the ALN language, in which the difference
operation is not semantically unique.
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Abstract. We are interested in providing natural language front-ends to
databases upon which an ontology layer has been added. Specifically, here we
deal with how to express ontologies formalized in Description Logics in a con-
trolled language, i.e., a fragment of natural language tailored to compositionally
translate into a knowledge representation (KR) language. As KR languagewe
have chosenDL-LiteR,⊓, a representative of the well-knownDL-Lite family [3,
4], and we aim at understanding the kind of English constructs the controlled lan-
guage can and cannot have to correspond toDL-LiteR,⊓. Hence, we compare the
expressive power ofDL-LiteR,⊓ to that of various fragments of FOL identified by
Pratt and Third as corresponding to fragments of English [8]. Our analysis shows
thatDL-LiteR,⊓, though itself tractable, is incomparable in expressive power with
respect to tractable fragments of English. Interestingly, it allows one to represent a
restricted form of relative clauses, which lead to intractability when used without
restrictions on the occurrences of negations, and existential quantifiers.

1 Introduction

The importance of using an ontology to facilitate the accessof users to structured data
is well established [2, 3]. Having an ontology as support forquerying a database (DB)
will allow the user to find the relevant answers without knowing about the structure of
the DB itself. Though having an ontology will provide support to users able to use query
languages, it will still fail to make the data accessible to non expert users. These could
instead benefit from using a natural language interface to the ontology and the DB,
both for querying the DB and for entering knowledge, either intensional (i.e., ontology
assertions) or extensional (i.e., DB facts) one. Therefore, we are interested in looking
at thequery entailment problem, i.e.,T ∪ D |= ϕ, for an ontologyT , databaseD, and
queryϕ, but from a natural language perspective.

We know that query entailment can be done efficiently (i.e., in LOGSPACE in the
size of the DBD), if the ontologyT is expressed in a Description Logic (DL) of the
DL-Lite family [3, 4] and the queryϕ is a (union of) conjunctive queries (CQs). When
resorting to natural language interfaces, we aim at preserving this efficiency. Thus, we
are interested in understanding (i) which fragments of natural language correspond to
the two fragments of First-Order Logic (FOL) we need, viz.DL-Lite and CQs, and
(ii ) whether these two fragments will be suitable for non expertusers to accomplish
the tasks we are interested in, entering intensional and extensional knowledge into an
ontology and querying a DB.
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Roughly, with respect to FOL, CQs lack negation and universal quantification. This
might seem too restrictive when interested in expressing natural language questions as
DB queries. However, an analysis of several corpora of real life users’ questions1 has
shown that the use of those operators in questions is rather limited. Similarly, we are
now trying to understand how farDL-Lite is from the linguistic structures that domain
experts would naturally use to describe their intensional knowledge. To this end, as a
preliminary study, we have started looking at the answers provided by domain experts
to FAQs2. Again, the first results are rather promising, showing thatdomain experts,
when allowed to freely use natural language, write rather simple structures with only
few occurrences of those operators “forbidden” byDL-Lite definition, e.g., universal
quantifiers in non subject position. Similarly, the use of negation and disjunction is
rather limited and controlled while relative pronouns instead are rather common in these
corpora and they are usually used to further specify properties of the nearest noun. As
will become clearer in the next section, these operators arerelevant to understand the
connection betweenDL-Lite and natural language fragments since their corresponding
logical operators are the major players in determining the complexity property of the
entailment problem above.3

Against this background, our research line is as follows. Wepropose to study the
problem of accessing structured data via an ontology by moving back and forth between
logic and natural language: on the one hand, by studying the expressivity of suitable
logic fragments and identifying the corresponding naturallanguage fragments, and on
the other hand, by analysing natural language structures used in real life applications
and trying to extend the corresponding logic fragments to better suit users’ needs, but
without paying in terms of computational complexity.

In this paper, we concentrate onDL-LiteR,⊓, which is the DL that stays as close
as possible to the expressive power required to capture natural language constructs,
while still preserving the nice computational properties of theDL-Lite family. As a first
step towards understanding the relationship between ontology languages and natural
language constructs, we compareDL-LiteR,⊓ with the expressive power of fragments
of FOL studied by Pratt and Third [8, 10] and defined starting from natural language.

2 The Description LogicDL-LiteR,⊓

In this work, we consider a DL belonging to theDL-Lite family [3, 4], and specifically,
we considerDL-LiteR,⊓, in which the TBox is constituted by a set of (concept and
role) inclusion assertionsof the form Cl ⊑ Cr andR1 ⊑ R2, whereCl and Cr
denote concepts that may occur respectively on the left and right-hand side of inclusion
assertions, andR1,R2 denote roles, constructed according to the following syntax:

Cl −→ A | ∃R | Cl1 ⊓ Cl2 R −→ P | P−
Cr −→ A | ∃R | Cr1 ⊓ Cr2 | ∃R.A | ¬A | ¬∃R

1 http://wiki.answers.com/Q/WikiFAQs:Finding_Questions_to_Answer
http://clinques.nlm.nih.gov/JitSearch.html (clinical questions)

2 http://www.unibz.it/library/faq/
3 What seems to cause a lack of expressivity is the limitation on the occurrences of qualified

existential, viz., the fact that they cannot occur in the left concepts of TBox statements, in all
of the logics of theDL-Lite family. This will be the topic of further studies.
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whereA denotes an atomic concept, andP denotes an atomic role.
For convenience w.r.t. what we need in the following sections, we formally specify

the semantics ofDL-LiteR,⊓, by providing its translation to FOL. Specifically, we map
each conceptC (we useC to denote an arbitrary concept, constructed applying the rules
above) to a FOL formulaϕ(C, x) with one free variablex (i.e., a unary predicate), and
each roleR to a binary predicateϕ(R, x, y) as follows:

ϕ(A, x) = A(x) ϕ(∃R, x) = ∃y(ϕ(R, x, y))
ϕ(¬C, x) = ¬ϕ(C, x) ϕ(∃R.C, x) = ∃y(ϕ(R, x, y) ∧ ϕ(C, y))
ϕ(C1 ⊓ C2, x) = ϕ(C1, x) ∧ ϕ(C2, x)
ϕ(P, x, y) = P (x, y) ϕ(P−, x, y) = P (y, x)

Inclusion assertionsCl ⊑ Cr andR1 ⊑ R2 of the TBox correspond then, respec-
tively, to the universally quantified FOL sentences:

∀x(ϕ(Cl , x) → ϕ(Cr , x)) ∀x∀y(ϕ(R1, x, y) → ϕ(R2, x, y))

In DL-LiteR,⊓, an ABox is constituted by a set of assertions onindividuals, of the
form A(c) or P (a, b), whereA andP denote respectively an atomic concept and an
atomic role, anda, andb denote constants. As in FOL, each constant is interpreted
as an element of the interpretation domain, and we assume that distinct constants are
interpreted as distinct individuals, i.e., we adopt theunique name assumption(UNA).
However, inDL-LiteR,⊓, we may drop such an assumption without affecting the com-
plexity of reasoning, as established below. The above ABox assertions correspond to
the analogous FOL facts, or, by resorting to the above mapping, to ϕ(A, x)(c) and
ϕ(R, x, y)(a, b), respectively.

The reasoning services of interest forDL-LiteR,⊓ knowledge bases are the standard
ones, namelyknowledge base satisfiability, and concept and rolesatisfiability, andsub-
sumption. It has been shown in [4] that inDL-LiteR,⊓ all such reasoning services are
polynomial in the size of the knowledge base, and LOGSPACE in the size of the ABox
only, i.e., indata complexity. Moreover, answering conjunctive queries whose atoms
have as predicates atomic concepts and roles of a knowledge base, is also polynomial
in the size of the knowledge base and in LOGSPACE in data complexity [3, 4].

3 Fragments of English

In this section we give a brief overview of Third and Pratt’s controlled fragments of
English (cf. [8]). They are subsets of standard English meant to capture some simple,
albeit for our purpose important, structure of English. Their interest, as we said in the
introduction, lies in the fact that we would like to know which subset of English we can
use to express only those data constraints required by ontology-driven data access. It is
thus crucial to know which natural language constructs express these constraints and,
more specifically, those suitable for aDL-Lite ontology.

The key feature of these fragments of English is that they compositionally translate,
modulo the standard semantic mapping foreseen by montagovian natural language for-
mal semantics (cf. [6, 7]) into several fragments of FOL. Roughly: (i) A parse tree is
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computed. (ii ) A FOL formula enriched with lambda operators from the lambda calcu-
lus is assigned to the words, i.e., the terminal nodes of the tree, representing their set-
theoretical meaning. (iii ) The logical formula representing the meaning of the parsed
sentence is computed bottom-up by means of function application and beta-reduction
at each internal node or component of the tree. This yields, ultimately, a FOL closed
formula for the whole utterance called itsmeaning representation(MR). An example
is given in the parse tree below, whereτ returns the current value of the translation at
each node.

τ(S) = ∀x(Man(x) → Leave(x))

τ(NP) = λQ.∀x(Man(x) → Q(x))

τ(Det) = λP.λQ.∀x(P (x) → Q(x))

Every

τ(N) = λx.Man(x)

man

τ(VP) = λy.Leave(y)

τ(IV) = λy.Leave(y)

left.

For instance, by applying the translation procedure described above we get the fol-
lowing MRs from their corresponding English utterances:

1. Some people are weak. ; ∃x(People(x) ∧Weak(x)).
2. Every husband has a wife. ; ∀x(Hasband(x) → ∃y(Wife(y) ∧Has(x, y))).
3. Every salesman sells some ; ∀x(Salesman(x) → ∃y(Customer(y)∧

merchandise to some customer. ∃z(Merchandise(z) ∧ Sells(x, z, y))).

Note that in 2. and 3. above, other translations might be possible due to NL ambiguity.
However, these are discarded by the grammar studied by Thirdand Pratt that generates
MRs following exclusively the surface order of components.

Schematically, the sentences above have the shape “Det N VP”, where the verb
phrase (VP) is the constituent built out of a verb and its complements. We come back
to this schema later to summarize the kind of constructs corresponding toDL-LiteR,⊓.

The fragments of English themselves are built step by step, by starting with copula,
nouns, negation, and the universal and existential quantifiers and by extending cover-
age to larger portions of English – covering relative constructions, ditransitive verbs,
anaphora, as summarized by the table below.

This analysis is important for our purposes Because each NL construct has a mean-
ing representation built out of some constant or some logical operation in FOL: The
MRs of relatives (e.g., “who”) are built by conjunction (∧); negations (e.g., “no”, “not”)
introduce logical negation (¬); intransitive verbs (e.g., “runs”) and nouns (e.g., “man”)
correspond to unary predicates; transitive verbs (e.g., “loves”) correspond to binary
predicates, and ditransitive verbs (e.g., “sells to”) to ternary predicates; universal quan-
tifiers (“every”, “all”, “everyone”) to∀, and existential (“some”, “someone”) to∃.

By building a family of fragments, Pratt and Third [8] have studied the impact on
expressive power and computational complexity these constructs have (see Figure 1).
As the reader can see, this process leads ultimately to an undecidable fragment of
English. As a matter of fact, only the first two fragments, COPand COP+TV+DTV
are tractable. Notice that as soon as we add rules dealing with the relative clause, we
lose tractability. COP+Rel (i.e., COP with relative clauses), is already NP-Complete.
COP+TV+DTV+Rel is NEXPTIME-Complete. This is because, as we said, relatives
express conjunctions which, together with negation, generate logics (i.e., fragments of
FOL) that contain the propositional calculus. But coveringrelatives to a certain ex-
tent is crucial: as we mentioned before, they occur quite frequently in NL utterances.
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Fragment Coverage Sat. decision class
COP Copula, common and proper nouns, P

negation, universal and existential quantifiers
COP+TV+DTV COP + Transitive verbs (e.g. ”reads”) P

+ Ditranstive verbs (e.g., ”sells”)
COP+Rel COP + Relative pronoun NP-Complete

(i.e., ”who”, ”that”, ”which”, etc.)
COP+Rel+TV COP + Transtive verbs + Relative pronounEXPTIME-Complete
COP+Rel+TV+DTV COP+TV+DTV + Relative pronouns NEXPTIME-Complete
COP+Rel+TV+RA COP+Rel+TV + Restricted anaphora NEXPTIME-Complete
COP+Rel+TV+GA COP+Rel+TV + Generalized anaphora undecidable

Fig. 1.Fragments of English studied by Pratt and Third [8].

Some means to cover them without yielding an exponential blowup should be found.
As shown in [1], this is possible if we choose as MR logicDL-LiteR,⊓, which allows
relatives (∧) to occur both in subject and in predicate position of sentences with an uni-
versal quantified subject, i.e., in the left and right concepts, respectively, of inclusion
assertions.

COP and COP+TV+DTV generate, through this process of compositional transla-
tion described above, the following FOL fragments:

COP COP+TV+DTV
±A1(c) ψ

∃x1(A1(x1) ∧ ±A2(x1)) Q1x1(A1(x1) ⊡ ψ(x1))
∀x1(A1(x1) → ±A2(x1)) Q1x1(A1(x1) ⊡ ±Q2x2(A2(x2) ⊡ ψ(x1, x2)))

Q1x1(A1(x1) ⊡ ±Q2x2(A2(x2) ⊡ ±Q3x3(A3(x3) ⊡ ψ(x1, x2, x3))))

In the table above,Qi ∈ {∀,∃}, for 1 ≤ i ≤ 3, ⊡ ∈ {∧,→}, c is an individual constant,
theAi’s, for 1 ≤ i ≤ 3, are unary predicates, andψ is ann-placeliteral (postive or
negative) over the variables{x1, . . . , xn} containing possibly constants (thusψ is a
grounded literal). A quick glance at these logic fragments tells us that they can express
IS-A constraints, as well as ABoxes almost directly. Moreover, we can express unary
and binary (and even ternary) predicates, together with quantification.

So the questions now are: exactly to what extent these two tractable fragments or,
equivalently, the FOL fragments thereof generated can expressDL-LiteR,⊓? How much
of DL-LiteR,⊓ can not be expressed by these fragments? Answering these questions
will shed light on the issue of which NL constructs can ultimately expressDL-LiteR,⊓
ontologies in a subset of English.

4 Comparing Expressive Power

In this section, we compare the expressive power ofDL-LiteR,⊓ with that of the two
tractable fragments of English COP and COP+TV+DTV. We show that, under cer-
tain conditions, COP is contained inDL-LiteR,⊓, as it should be expected, but that
COP+TV+DTV only overlaps withDL-LiteR,⊓. This is interesting, since, as shown
in [1], Lite English, the controlled language that compositionally translates intoDL-
LiteR,⊓, covers relative pronouns (mirrored by the qualified existential ∃R.C) without
yielding an exponential blowup, as is the case with Pratt’s fragments.

Proceeding of DL2007 - Regular Papers 199



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 200 — #210 i
i

i
i

i
i

We begin by recalling some basic notions of FOL (without function symbols) model
theory. Aninterpretation structureover a FOL signature (without function symbols)L
is a tupleM = 〈M ; {RM

i }i∈I ; {cMj }j∈J〉 where theRM
i aren-ary relations overM

and thecMj distinguished elements ofM , for i ∈ I, j ∈ J . A structureM′ is said
to be anextensionof M whenever the relations ofM are contained in those ofM′

and they coincide on the distinguished elements. A structure is said to be amodelof
a sentence or formulaφ wheneverM |= φ. The sentenceφ characterizesthe classes
of its models (i.e., the class{M|M |= φ}). These classes are calledproperties. The
expressive powerof a fragment of FOL is then formally given by the model theoretic
properties its sentences can characterize. Finally, a FOL fragmentΛ′ is said to beas
expressive asa fragmentΛ when, and only when,Λ′ can express all properties ofΛ [9].
The idea of the proofs is to individuate properties expressible in one logic and not in the
other – that is, classes of structures thatDL-LiteR,⊓ expresses but that COP+TV+DTV
and COP may or may not express.

Theorem 1. DL-LiteR,⊓ is as expressive as COP, assuming the unique name assump-
tion does not hold.

Proof. Some COP sentences cannot bea priori expressed inDL-LiteR,⊓. In particular,
as we have seen,DL-LiteR,⊓ as it is, cannot express negative facts: ABox assertions
(i.e., ground atoms) cannot be negative following the standard definition ofDL-LiteR,⊓.
However, we can easily express a negative fact¬A(c), by extending our signature with
a new concept nameA′, and introducing the disjointness assertionA′ ⊑ ¬A and the
membership assertionA′(c). To deal with COP formulas of the form∃x(P (x)∧Q(x))
we proceed as follows: (i) we skolemise and extend our signature by adding a new
constantc (expanding modelsM to their skolem expansion(M, cM)) and (ii ) we drop
the unique name assumption (UNA) regarding constants when it comes to these new
constants produced by skolemisation. We can then express these statements as ABox
assertionsP (c) andQ(c). 2

Theorem 2. DL-LiteR,⊓ is not as expressive as COP+TV+DTV.

Proof. To prove this result, we exhibit a closure property ofDL-LiteR,⊓ that is not
preserved by COP+TV (anda fortiori by COP+TV+DTV). The formulas inDL-LiteR,⊓
are all FOL∀∃ formulas,modulothe standard translation. A∀∃ formula or sentence is a
formulaφ := ∀x1 · · · ∀xn∃x1 · · · ∃xmψ, for n,m ≥ 0, whereψ is quantifier-free. Now,
∀∃ formulas are closed under theunion of chainsproperty [5], defined as follows. We
say that a formulaφ is closed under union of chainsiff for every partial order〈T,≺T 〉,
for every modelM of φ, and every family{Mt}t∈T of extensions ofM, s.t. i ≺T j
implies thatMj is an extension ofMi, for i, j ∈ T , then the structureMω, called the
union structureand defined below, is also a model ofφ:

1. Mω =
⋃

t∈T Mt

2. EveryRMω
i is the union of all the relations of the same arity and position among

theMt’s, for t ∈ T , i ∈ I
3. EverycMω

j is a distinguished element among the theMt’s, for t ∈ T , j ∈ J .

Therefore, every set ofDL-LiteR,⊓ sentences (assertions) will be closed under union of
chains. Now, suppose, towards a contradiction that every property that is expressible in
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COP+TV+DTV is expressible also inDL-LiteR,⊓, in particular:∃x(P (x)∧∀y(Q(y) →
R(x, y))). That is, after prenexing:∃x∀y(P (x) ∧ (Q(y) → R(x, y))). This sentence
should be closed under union of chains, following the hypothesis. But this does not hold.
To show this define a modelM of this sentence as follows:M = N; PM = QM = M ;
RM =≤N (i.e., the usual loose order over positive integers).

Define next a sequence{Mi}i∈N of extensions ofM as follows:

– M0: M0 = M ∪ {e0}; PM0 = QM0 = M0; RM0 = RM ∪ {〈e0, 0〉}.
– Mi+1: Mi+1 = Mi ∪ {ei+1}; PMi+1 = QMi+1 = Mi+1; RMi+1 = RMi ∪
{〈ei+1, ei〉}.

Now, {Mi}i∈N constitutes a chain, since (i) a sequence is a family, (ii ) 〈N,≤N〉 is a
partial order and (iii ) wheneveri ≤N j, Mj extendsMi. Finally, consider the union
structureMω for this chain.Mω is not a model of∃x∀y(P (x) ∧ (Q(y) → R(x, y))),
since the relationRMω of Mω has no least element.

Theorem 3. COP+TV+DTV is not as expressive as DL-LiteR,⊓.

Proof. A DL-LiteR,⊓ inclusion assertion of the form∃R ⊑ A corresponds to the FOL
sentence∀x∃y(R(x, y) → A(x)). Skolemizing and clausifying this sentence yields:
¬R(x, f(x)) ∨A(x), i.e., a clause containing both a positive unary literal anda binary
negative literal containing function symbols. But in [8] itis proven that this particular
kind of clauses lies beyond COP+TV+DTV, whence the result.

Theorem 4. COP and COP+TV+DTV overlap in expressive power with DL-LiteR,⊓.

Proof. Consider this following typical meaning representation formula for COP:
∀x(P (x) → Q(x)). The models of these sentences are the FOL interpretation structures
M = 〈M ;PM, QM〉, wherePM ⊆ QM. But this property can be easily expressed in
theDL-LiteR,⊓ with inclusion assertions.

We finish by remarking that it can also be proved that COP is notas expressive as
DL-LiteR,⊓ either, since it cannot express binary relations. Moreover, we can show, in
a way analogous to Theorem 2, that COP+TV is not as expressiveasDL-LiteR,⊓, by
exhibiting a closure property of COP+TV, namely COP+TV-simulation[10] that is not
verified byDL-LiteR,⊓.

An understanding of how the different expressivity of the compared logics is re-
flected on the corresponding natural language fragments canbe reached by considering
the general schema “Det N VP” mentioned previously. In thesefragments “Det” can
be either “every” or “some” or “no”, and all of these determiners can build the direct
and/or indirect objects of the transitive and ditransitiveverbs, i.e., the complements in
the “VP”; the verb of the “VP” can be negated. Logic conjunction is introduced only
by the meaning representation of “some”. The sentences whose meaning representation
belong toDL-LiteR,⊓, instead, do not have ditransitive verbs (ternary relations) and in
the “Det” position only the determiners “every” and “no” canoccur. Notice, that the “N”
and “VP” correspond respectively to theCl andCr concepts of aDL-LiteR,⊓ inclusion
assertion. As in the latter, the two parts can be complex: the“N” constituent can be a
complex structure built out of a relative pronoun (e.g., “student who left”, “student who
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knows something”); transitive verbs can occur only with an unqualified existential as
object; the verb of the relative clause (e.g., “left” and “knows”, resp.) cannot be negated
(negation does not occur inCl ), and the relative clause cannot be iterated, i.e., it cannot
be used to modify the object of a transitive verb (only unqualified existential can occur
in Cl ). Similarly, the “VP” can be a complex structure: since it corresponds to theCr
concept, copula, intransitive verbs, and transitive verbs, with unqualified existential as
object, can be negated. Whereas transitive verbs with qualified existential as object can-
not be negated, e.g., “every student does not know somethingthat is interesting” (notice
how the relative clause modifies an existential building a qualified existential).

Finally, neither in COP and COP+TV+DTV nor in our fragment reflexive pronouns
(e.g., “itself”) and possessive (e.g., “their”) are allowed: they would correspond to the
introduction of role-value-maps, which is a notoriously problematic construct that may
lead to undecidability.

5 Conclusions

We have compared the expressive power ofDL-LiteR,⊓ with that of Pratt’s and Third’s
tractable fragments of English [8, 10]. Using model theoretic arguments, we have shown
that the compared logics are incomparable to each other, even though a reasonable
deal of the semantic structures captured by the two tractable fragments of English is
shared byDL-LiteR,⊓. We remark that a controlled natural language covering constructs
such as intransitive and transitive verbs, copula, common nouns, adjectives, restricted
occurrences of universal and existential quantification aswell as of negation and relative
pronouns can be “reverse engineered” fromDL-LiteR,⊓, as shown in [1].
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1 Introduction

Research on reasoning in description logics has traditionally focused on the standard in-
ference tasks of (un)satisfiability, subsumption, and instance checking. In recent years,
however, there has been a growing interest in so-called non-standard inference services
(cf. [1]) which prove useful in the creation, evolution, and utilisation of description
logic knowledge bases (KBs). In this paper, we propose consequence finding as a new
non-standard reasoning task for description logics.

As its name suggests, consequence finding is concerned with the generation of a
subset of the implicit consequences of a KB. This topic has been extensively studied in
propositional logic (cf. [2]) where it has been shown to be relevant to a number of areas
of AI, among them knowledge compilation, abduction, and non-monotonic reasoning.
In the context of description logics, we view consequence finding as a tool to enable
knowledge engineers and end users alike to better understand and access the contents
of a description logic KB. We consider two possible applications:

Ontology Management The creation and maintenance of description logic KBs is a
difficult and time-consuming task. Consequence finding might prove a useful aid in
ontology design and evolution by allowing the knowledge engineer to have a better
idea of both what information is contained in the KB and how additions may affect
it. For instance, it would allow the knowledge engineer to check the relationships
holding between a set of atomic concepts, or to evaluate the impact of adding a
piece of new information to the KB.

Vague Queries An end user may not always have a specific query in mind but instead
a general idea of the information that interests her. Consequence finding could help
render DL KBs more accessible to users by allowing them to pose vague queries
about the contents of the KB. Possible queries might be “Give me all the facts
concerning penguins” or “Tell me what is known about Bob’s students”.

Consequence finding in DLs could take one of many forms depending on the nature
of the input (concept, ABox, TBox, KB) and the type of consequences desired (con-
cepts, assertions, axioms). In this paper, we investigate consequence finding for concept
expressions in the standard description logicALC. This seemed a suitable starting point
for our investigation as concept expressions are more basic than assertions and axioms,
and ALC is a well-known and reasonably expressive description logic.

Our paper is organized as follows. In Section 2, we generalize the propositional
notion of prime implicates to ALC concepts in order to provide a formal definition
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of the notion of a relevant consequence. More refined variants of prime implicates are
then introduced to allow for more directed consequence finding, and the properties of
these different forms of prime implicates are studied. In Section 3, we give sound and
complete algorithms for computing prime implicates of concepts. In Section 4, we pro-
vide some first results concerning the complexity of prime implicate recognition. We
conclude the paper with a discussion of future work.

2 ALC Prime Implicates

One of the first questions that presents itself when we talk about consequence finding
is which consequences to generate? We obviously cannot generate all of the conse-
quences, because even the simplest propositional formula has infinitely many conse-
quences. Even if we restrict ourselves to one consequence per equivalence class, we
still produce a lot of clearly irrelevant or redundant consequences. Since one of the aims
of consequence finding is to make the contents of the KB more accessible to users, we
clearly need a way of focusing in on the relevant subset of consequences.

In propositional logic, the solution lies in considering only the strongest clausal
consequences of a formula, which are known as its prime implicates. By focusing on
clauses, we avoid redundancies, and by only considering the logically strongest conse-
quences, we eliminate weaker, irrelevant consequences. As every formula can be rewrit-
ten as a conjunction of clauses, and every clausal consequence of a formula is entailed
by some prime implicate of the formula, prime implicates provide a complete picture
of a formula’s consequences.

In order to generalize the notion of prime implicates to ALC concepts, we need to
come up with a suitable definition ofALC clausal concepts. In [3], a number of different
potential definitions are compared, and two are singled out as being most suitable for
the purposes of consequence finding.

The first definition is inspired by the notion of modal atom proposed in [4]. It defines
literal concepts as the concepts in NNF that cannot be decomposed propositionally:

Definition 1. Literal concepts, clausal concepts, and cubal concepts are defined as
follows (where A is an atomic concept and R an atomic role):

L ::= > |⊥ |A | ¬A | ∀R.F | ∃R.F
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb
F ::= > |⊥ |A | ¬A |F u F |F t F | ∀R.F | ∃R.F

The second definition defines literal concepts as those concepts in NNF that cannot be
decomposed modally, resulting in a more restrictive clausal form.

Definition 2. Literal, clausal, and cubal concepts are defined as follows:
L ::= > |⊥ |A | ¬A | ∀R.Cl | ∃R.Cb
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb

Both definitions yield the standard notion of literals, clauses, and cubes when restricted
to the propositional fragment of ALC. They can also be shown to satisfy a number of
properties of the propositional definition:
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Proposition 1. For both Definition 1 and Definition 2, we have:

1. Clausal and cubal concepts are simply unions and intersections of literal concepts.
2. The negation of a literal concept is equivalent to a literal concept. Negations of

clausal (resp. cubal) concepts are equivalent to cubal (resp. clausal) concepts.
3. Every concept C is equivalent to a finite intersection of clausal concepts D =
D1 u ... uDn such that (a) D has the same depth as C, and (b) the size of D is at
most singly exponential in the size of C. Likewise every concept is equivalent to a
finite union of cubal concepts.

Definition 1 has the advantage of yielding a more compact representation while Defi-
nition 2 provides a more fine-grained decomposition of concepts. To simplify the pre-
sentation, we will henceforth consider only the second definition, but all of our results
hold equally well with respect to the first definition.

Now that we have selected a definition of clausal concepts, we can define prime
implicates in exactly the same manner as in propositional logic:1

Definition 3. A clausal concept Cl is an implicate of a concept C if and only if |= C v
Cl. A clausal concept Cl is a prime implicate of C if and only if:

1. Cl is an implicate of C
2. If Cl′ is an implicate of C such that |= Cl′ v Cl, then |= Cl v Cl′

This definition gives the standard notion of prime implicates, in which all of the
clausal consequences of a concept are considered, but for many applications, only some
of the consequences are of interest. This motivates the introduction of more refined
notions of prime implicates in which additional restrictions are placed on implicates. In
this paper, we consider the following three refined versions of prime implicates:

C-prime implicates: the C-prime implicates of a concept D are defined as the most
specific clausal concepts which subsume C uD but do not subsume C

only-L-prime implicates: the only-L-prime implicates of a concept D are the most
specific clausal concepts which both subsume D and contain only those atomic
concepts and roles in L

about-L-prime implicates: the about-L-prime implicates of a concept D are the most
specific clausal concepts which subsume D and which contain non-trivially all
symbols in L (i.e. such that all equivalent concepts contain all symbols in L)

We have chosen to study these particular variants because they seem interesting from an
applications point of view. Once appropriately extended to TBox axioms, C-prime im-
plicates could be used by the knowledge engineer to see how a new axiom will affect the
ontology O under construction (“What are all of the O-prime implicates of axiom?”),
whereas only-L-prime implicates could allow him to explore the relationships between
a set S of atomic concepts (“What are all of the S-prime implicates of O?”). Finally,
about-L-prime implicates can be used to generate all the consequences on a particular
topic of interest and are thus very useful for vague querying. It is this type of prime
implicate which would enable the user to find all the information concerning penguins.

1 The dual notion of prime implicants can also be straightforwardly defined, but here we consider
only prime implicates as they are the most relevant to purposes of the current paper.
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Example 1. Consider the following concept expression Q:

A u (B t C) u ∃R.> u ∀R.(B u (A t C)) u ∀R.(B tD)

The prime implicates of Q are A, B t C, ∃R.(B u A) t ∃R.(B u C), ∀R.B, and
∀R.(A tC). There is just one only-{A}-prime implicates of Q, the atomic concept A.
There are three about-{A}-prime implicates of Q: A, ∃R.(B uA) t ∃R.(B u C), and
∀R.(A t C). The Q-prime implicates of ∀R.¬C are ∀R.¬C, ∀R.A, and ∃R.A uB.

It is not hard to see that standard prime implicates can be recovered as special cases
of C-, only-L-, and about-L-prime implicates. The following proposition further clari-
fies the relationship between standard and refined prime implicates:

Proposition 2.

1. Every C-prime implicate of a concept D is a prime implicate of C uD.
2. Every about-L-prime implicate of a concept D is a prime implicate of D.
3. An only-L-prime implicate of a concept D may not be a prime implicate of D.

To see why (3) holds, consider the concept ∃R.A which is an only-{A,R}-prime im-
plicate of ∃R.(A u (∀R.B)) but not a standard prime implicate.

We now consider some important properties of our notions of prime implicates:

Proposition 3. The set of prime implicates satisfy the following properties:

Finiteness The number of standard, C-, only-L-, and about-L-prime implicates of a
concept is finite modulo logical equivalence.

Covering Every standard, C-, only-L-, or about-L-implicate of a concept subsumes
respectively some standard, C-, only-L-, or about-L-prime implicate of the con-
cept.

Distribution The prime implicates (respectivelyC-, only-L-prime implicates) of a con-
cept C1 t ... t Cn are equivalent to the logically strongest unions of the prime
implicates (respectively C-, only-L-prime implicates) of the Ci.

Finiteness ensures that the prime implicates of a concept can be finitely represented,
which is of course essential from a computational perspective. Covering, as its name
suggests, implies that every implicate of a concept is “covered” by one of its prime im-
plicates. For the standard definition of prime implicates, Covering implies that the set of
prime implicates of a concept is equivalent to the concept itself, thus guaranteeing that
no information is lost in replacing a formula by its prime implicates. For L-concepts,
Covering implies that the set of L-prime implicates is equivalent to the uniform inter-
polant2 of the concept with respect to L. Distribution is at the heart of several prime
implicate generation algorithms in propositional logic, and we will exploit this property
in our own algorithms presented in the next section. Notice however that Distribution
does not hold for about-L-prime implicates since some disjuncts of about-L-concepts
may not contain all (or any) of the symbols in L.

2 We recall the uniform interpolant of a concept D with respect to a signature L is the most
specific concept built from L which subsumes D.

206 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 207 — #217 i
i

i
i

i
i

3 Prime Implicate Generation

Figure 1 presents algorithms for computing the prime implicates of a concept for the
different forms of prime implicates that we have defined. Our algorithms make use of
the following auxilliary functions:

– DNF-1 and DNF-2 which return a set of satisfiable cubal concepts (w.r.t. Definitions
1 and 2 respectively) whose union is equivalent to the input concept

– INTL which returns a finite union of cubal concepts (w.r.t. Definition 2) which is
equivalent to the uniform interpolant of the input concept w.r.t. L

We remark that we can implement these functions so that the size of the output of these
functions is at most singly exponential in the size of the input concept.

Function PI(X): generates standard prime implicates of X
Step 1: If X is unsatisfiable, return {⊥}. Otherwise, set T = DNF-1(X).
Step 2: For each T ∈ T : let LT be the set of propositional literals in T , let ER

T be the set of concepts
E such that ∃R.E is in T , and let UR

T be the intersection of concepts U such that ∀R.U is in T . Set

∆(T ) = LT ∪
[
R

({∀R.P |P ∈ PI(UR
T )} ∪ {

G
Hi∈DNF-2(EuUR

T
)

∃R.Hi|E ∈ ER
T }

Step 3: Set CANDIDATES = {FT∈T GT |GT ∈ ∆(T )}.
Step 4: For each Cj ∈ CANDIDATES: if |= Ck v Cj for some Ck ∈ CANDIDATES with k > j,
then delete Cj from CANDIDATES.
Step 5: Return CANDIDATES.

We now show how to modify PI to generate other types of prime implicates. For only-L-prime
implicates, we define ∆(T ) as follows where LLT = LT ∪ {>} \ {(¬)A|A 6∈ L}:

∆(T ) = LLT ∪
[

R∈L
({∀R.P |P ∈ PI(UR

T )}∪{
G
i

∃R.Hi | INTL(EuUR
T ) =

G
i

Hi and E ∈ ER
T })

For C-prime implicates, we eliminate from ∆(T ) all implicates of C, and for about-L-prime impli-
cates, we remove from CANDIDATES all concepts which are not about-L-concepts. Notice that for
C- and about-L-prime implicates, the modifications only affect the outermost call to PI; recursive
calls use the same algorithm as for standard prime implicates.

Fig. 1. Algorithms for prime implicate generation.

Our algorithms all work in a similar manner. In Step 1, we check whether the input
concept X is unsatisfiable, outputting ⊥ if this is the case. For satisfiable X , we set
T equal to a set of satisfiable concepts whose union is equivalent to X . We know from
the distribution property (Proposition 3) that every prime implicate ofX is equivalent to
some union of prime implicates of the concepts in T . In Step 2, we construct a set∆(T )
of clausal concepts for each T ∈ T in such a way that every prime implicate of T is
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equivalent to some element in∆(T )3. This means that in Step 3, we are guaranteed that
every prime implicate of the input concept is equivalent to some candidate prime im-
plicate in CANDIDATES. During the comparison phase in Step 4, non-prime candidates
are eliminated, and exactly one prime implicate per equivalence class is retained.

The algorithms differ in their definition of ∆(T ) in Step (2). For standard prime
implicates, we set ∆(T ) equal to the propositional literals in T (LT ) plus the strongest
∀-literal concepts implied by T (

⋃
R({∀R.P |P ∈ PI(URT )}) plus the strongest ∃ clausal

concepts implied by T ({⊔Hi∈DNF-2(EuUR
T ) ∃R.Hi|E ∈ ERT }, i.e. the concepts ∃R.(Eu

URT ) put into clausal form). It can be shown that every standard prime implicate of T
must be equivalent to one of the elements in ∆(T ) (note however that some elements
in ∆(T ) may not be prime implicates). For only-L-prime implicates, we modify ∆(T )
in order to ensure that the elements of ∆(T ) contain only the symbols in L (and that
they include all only-L-prime implicates of T ). For C-prime implicates, we remove
from ∆(T ) all implicates of C. Finally, for about-L-prime implicates, we use the same
∆(T ) as for standard prime implicates, but we eliminate from CANDIDATES all clausal
concepts which are not about-L-concepts.

Proposition 4. The prime implicate generation algorithms presented in Figure 1 are
sound, complete, and always terminate.

Our algorithms correspond to the simplest possible implementation of the distribu-
tion property, and it is well-known that naive implementations of the distribution prop-
erty are computationally infeasible even for propositional logic. More efficient versions
of our algorithms can be obtained using techniques developed for propositional logic,
cf. [2]. For instance, instead of generating all of the candidate concepts and then com-
paring them, we can build them incrementally, comparing them as we go.

By performing induction on the depth of the input concept, it is possible to place an
upper bound on the size of the prime implicates generated by our algorithms:

Proposition 5. The size of the smallest representation of a standard, C-, only-L-, and
about-L-prime implicate of a concept is at most singly exponential in the size of the
concept.

The following proposition shows that this bound is optimal.

Proposition 6. The size of the smallest representation of a standard, C-, only-L-, or
about-L-prime implicate of a concept can be exponential in the size of the concept.

Proof. Consider the concept (
dn
i=1(∀R.(Ai1 t Ai2)) u ∃R.> and its prime implicate⊔

ik∈{1,2} ∃R.(A1i1 u ... uAnin).

4 Prime Implicate Recognition

Prime implicate recognition consists in deciding whether a given concept is a prime
implicate of another. The purpose of this section is to study the complexity of this
decision problem for the different notions of prime implicates that we have introduced.

3 A worked-out example of Step 2 for standard prime implicates can be found in [3].
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It is not hard to see that this decision problem must be at least as difficult as unsat-
isfiability: a concept is unsatisfiable just in the case that it has ⊥ as a prime implicate
(irrespective of the notion of prime implicate considered).

Proposition 7. Recognition of standard, C-, only-L-, and about-L-prime implicates
are all PSPACE-hard problems.

In order to obtain an upper bound, we exploit Proposition 5 which tells us that there
is some polynomial p such that for every concept C the size of its prime implicates is
bounded by 2p(|C|). This leads to a simple non-deterministic procedure for determining
if a clausal concept Cl is a prime implicate of a concept C. We simply guess a clausal
concept W of size at most 2p(|C|) and check whether W is an implicate of C which is
subsumed by Cl and does not subsume Cl. If this is the case, then Cl is not a prime
implicate (we have found a more specific implicate of C), otherwise, there exists no
stronger implicate, so Cl is indeed a prime implicate.

Proposition 8. Recognition of standard, C-, only-L-, and about-L-prime implicates
are all in EXPSPACE4.

The following proposition improves on the above complexity bounds.

Proposition 9. We have the following:

1. Standard prime implicate recognition is in EXPTIME.
2. C-prime implicate recognition is in EXPTIME5.
3. about-L-prime implicates recognition is in NEXPTIME.
4. only-L-prime implicate recognition is CONEXPTIME-hard.

Proof. To demonstrate (1), we have constructed an algorithm for deciding standard
prime implicate recognition in single-exponential time. Our algorithm first checks that
the clausal concept is indeed an implicate and then verifies that each of the component
literals is as specific as possible. Refer to [3] for more details.

(2) follows directly from (1) since C-prime implicates are just standard prime im-
plicates which are not implied by C (by Proposition 2).

(3): We can check whether a concept Cl is an about-L-prime implicate of a concept
D in three steps: first, we check that the Cl contains all symbols in L (linear time),
next, we verify that Cl is indeed a standard prime implicate of D (exponential time
by (1)), and finally, we ensure that each symbol in L appears non-trivially in Cl. For
this last step, it suffices to show that for each symbol s ∈ L the uniform interpolant
UIs of Cl over Sig(Cl) \ {s} is not subsumed by Cl. This can be accomplished in
non-deterministic exponential time by guessing and verifying an open branch of the
tableaux of UIs u ¬Cl for each s.

For (4), we reduce the conservative extension decision problem forK (proven CON-
EXPTIME-complete in [5]) to the only-L-prime implicate recognition problem. We re-
call that a formula φ1 ∧ φ2 is a conservative extension of φ1 if for every formula ψ

4 While the proof given here is non-constructive, we do have constructive exponential-space
algorithms which we were unable to include for lack of space.

5 Here we assume that the concept C is considered as part of the input
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with var(ψ) ⊆ var(φ1) we have φ1 ∧ φ2 |= ψ implies φ1 |= ψ. The reduction is
straightforward: φ1 ∧ φ2 is a conservative extension of a cubal formula φ1 if and only
if ∃R.f(φ1) is a var(φ1) ∪ {R}-prime implicate of ∃R.(f(φ1 ∧ φ2)), where f is the
standard mapping between K-formulae and ALC concepts. This is sufficient to show
CONEXPTIME-hardness since the conservative extension problem remains CONEXP-
TIME-hard even when φ1 is restricted to be a cubal formula.

We leave the determination of the exact complexity classes of the different prime
implicate recognition tasks as an interesting open problem.

5 Future Work

While there are several possible continuations to this work, the question that interests us
most is the appropriate extension of consequence finding to ABox assertions and TBox
axioms. This is a non-trivial task as while the definition of clausal forms of assertions
and axioms, and thus of assertion and axiom prime implicates, is rather straightforward,
we lose some of the nice properties enjoyed by concept prime implicates. In particular,
prime implicate axioms and assertions do not in general satisfy the covering property
since there may be infinite sequences of increasingly more specific assertions or ax-
ioms. This is a familiar problem as these infinite sequences are also responsible for
the inexistence of most specific concepts of ABox individuals in many common DLs
(cf. [6]) and the lack of uniform interpolation for ALC TBoxes [7]. There appear to be
two possible solutions to this problem. The simplest solution consists in bounding the
depth of the assertions/axioms to be generated. A second more elegant possibility is to
enrich the language by fixpoint constructs (cf. [8]) so that these infinite sequences of
assertions/axioms might be finitely represented.
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On Importing Knowledge from DL Ontologies:
some intuitions and problems

Alex Borgida
Dept. of Computer Science,

Rutgers University, New Brunswick, NJ, USA

Abstract. This paper argues for the benefits of distinguishing the no-
tions of “ontology module” and “importing terms from an ontology”, by
sampling some papers on these topics in the AI and Database communi-
ties. It then proposes intuitions and a formal definition for “importing
terms S from KB under rules G”, and looks at the problems of imple-
menting this for very simple kinds of TBoxes.

1 Introduction
There has been considerable recent interest in the notion of “module” in ontolo-
gies, including a workshop on this topic at ISWC’06. We wish to consider mod-
ules not just as units of development, but also as sources of information used by
other ontologies. In this regard, modern programming languages, such as Python
provide interesting patterns of use: “from YourModule import name1 as name2,

name3 as name4, . . . ”. Such an ability to selectively import ontology fragments
will also be beneficial in ontology engineering. For example, the enormous medi-
cal ontology ON9.3, developed at CNR in Italy (http://www.loa-cnr.it/medicine/),
documents each of its theories (modules) with a list of imported terms. Thus,
Anatomy, which defines 55 classes, specifies in its documentation not just
Theories included by Anatomy:

Meronymy, Positions, Topo-Morphology
but also
The following constants were used from included theories:

* 3d-Area-Of defined as a relation in theory Topo-Morphology

* > defined as a relation in theory Kif-Numbers

... (60+ other terms)
and even more interestingly
The following constants were used from theories not included:

* Anatomical-Abnormality defined as a class in theory Abnormalities

... (20+ other terms)

Given the decade-long experience of the scientists on the above project, one
should not ignore their insight that such specifications are helpful in under-
standing, developing, and maintaining large ontologies.

To establish some intuitions concerning the desirable properties of “importing
terms”, we survey a small sample of relevant techniques that have been proposed
in the literature. (Many additional papers are omitted for lack of space.)

2 Previous Approaches to Knowledge Import
A variety of papers provide more subtle approaches than importing entire on-
tology files, as in OWL. The first two categories (a-b) below, rely on (semi-
automatically) fragmenting an ontology into modules, and then importing only
relevant modules. The last two (c-d) directly address importing individual terms.
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(a) Logical Specification of Modules A logical module KB1 of a theory
KB is required to be locally sound (if KB1 |=ψ then KB |=ψ) and locally complete
(if KB |=ψ for a formula ψ that uses only symbols from vocab(KB1), then in
fact also KB1 |=ψ). Cuenca Grau et al [4] extend this idea, by requiring that
module(N,KB) — the module of name N in KB, also be “a coherent and self-
contained subset of KB” (which in this case is a description logic TBox). As
such, it should contain N’s subsuming and subsumed concept names in KB, and
ensure “self-containment”. A more recent proposal, “minimal S-modules” [6],
will be reviewed later.

(b) (Automatic) Graphical Segmentation of Modules. Seidenberg and
Rector [10] suggest that module(N,KB) start out with axioms specifying the
(1) subclasses of N, (2) super-classes of N, (3) restrictions on the roles of N, and
(4) super-roles of N in KB. One then repeatedly adds new identifiers and axioms
according to steps 2-4 above, until a fixed point is reached. If one were to draw
a graph GKB with concept names as nodes connected by edges representing role
restrictions or IsA relationships, then this can be described as a simple graph
traversal algorithm. To reduce a large module, [10] allow limiting the depth of
the traversal, resulting in “dangling” boundary classes.

(c) Importing Terms by Ontology Winnowing. A surprising number
of papers argue for the development of domain-specific ontologies by reusing
fragments of generic, top-level ontologies such as Cyc, WordNet, etc. In such
cases, the portion of the top-level ontology KB to be imported is influenced by a
set of “seed concepts” S, that are to be re-used in the domain-specific ontology.
The key to each such technique are the principles which automatically derive the
axioms and possibly additional concepts to be imported.

For example, Navigli [9] starts with WordNet, whose concepts are organized
by hyponym subsumption. The elements of S are concepts corresponding to
the roots of local ontology trees for domain specific terms. The algorithm first
eliminates concepts not on a path from the top of the WordNet hierarchy to
some element of S, in a “pruning phase”; it then eliminates, as uninteresting,
concepts with only one child in the hierarchy left, in a “trimming phase”. As a
result, import(S,KB) is a taxonomy where every node has at least two children,
so that long chains of uninteresting subsumptions are not present.

Conesa and Olive [2] elaborate Navigli’s technique, to build database concep-
tual schemas by starting from OpenCyc as KB. The paper describes import(S,KB)
as a minimal subset of KB whose vocabulary contains S and its superclasses, and
the algorithm may eliminate concepts between the topmost classes in S and the
root of the taxonomy in KB, as well as classes that only provide “redundant
inheritance paths”.

Note that in all proposals in this category the imported concept names are
restricted to be used in the importing KB according to the following simple
grammar Gwinnow for TBox axioms
<TBox axiom> ::= <local axiom> | <connect up axiom>

<local axiom> ::= <local DL concept> v <local DL concept>
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<connect up axiom> ::= <local DL concept> v <Imported concept identifier>

<local DL concept> ::= ...

(d) Importing Terms in Local-Model Semantics
The theory of binary E-connections between description logics has been used

in [3] to connect DL ontologies KB1 and KB2 (which are interpreted in disjoint
“local” domains) through a number of binary relations (“links”) pk between ob-
jects in these interpretations. The result is that in KB1 one can now construct
concepts by restricting pk with terms C2 from KB2, such as ∀pk.C2. (In KB2, one
can use p−k .) This is like importing concepts from KB2 into KB1, but restricting
their syntactic occurrence to express value restrictions on the roles pk — some-
thing that can obviously be expressed by another grammar, GE , for subsumption
axioms involving imported concepts.

Distributed Description Logics (DDL) [1] use “bridge rules” with approxi-
mately the meaning 1:A v 2:B to relate concepts A and B from ontologies KB1

and KB2 respectively. Such a rule can also be viewed as importing concept B
into KB1 and then highly restricting its syntactic occurence in an axiom.

3 Importing S: intuitions and definition

From the Anatomy example in Section 1, we start by using syntactic expressions
of the form “import S from KBexpt” for import(S,KBexpt), where S is a set of
identifiers {N1, N2, . . . } contained in vocab(KBexpt). For simplicity, when some
KBimpt uses axioms relating the symbols in S to its own local identifiers, we
assume that vocab(KBimpt) ∩ vocab(KBexpt) ⊆ S.

Based on the preceding survey, we take it that the purpose of importing some
set of identifiers S and their related axioms from ontology KB, as opposed to
including the entire KB as a file, is to minimize the material import(S,KB)
required to understand S, in order to facilitate comprehension by humans, and
possibly to help with local caching. This philosophy is most evident above in the
ontology winnowing work, but also appears in the work on automatic ontology
modularization.

There is some sentiment that import(S,KB) should be a subset of KB, rather
than its theorems [4–6]. This means that the syntactic presentation of axioms in
KB is taken to matter, presumably since it helps humans understand the problem
domain. We shall modify this requirement somewhat to say that explanations
of reasoning in import(S,KB) should correspond to explanations in KB. The
main reason for switching to this alternate requirement is that, as argued in
[7], explanations need not always be complete logical proofs, since some obvious
steps may be omitted. One example of this is simple inheritance: chaining of
IsA in a classification hierarchy of primitives. For example, if KB contains {Dog
:<Canine, Canine :<Animal} and S={Dog,Animal} then it should be sufficient
to import {Dog :<Animal}1. Note that Navigli’s proposal [9] omits exactly such
kinds of trivial steps.

1 Contrary to standard practice, we will use A:<B to indicate an axiom in the theory,
and Av B to indicate the subsumption judgment, entailed or proven in a theory.
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Another implication of the need for explanations is that import(S,KB) may
have to contain symbols other than those in S2. For example, if KB= {Married
≡Person u ≥ 1.spouse, Unmarried ≡Person u ≤ 0.spouse}, and S={Married,
Unmarried}, then, to explain why they are disjoint, we will want import(S,KB)
to contain {Married :< ≥ 1.spouse, Unmarried :< ≤ 0.spouse}. One could
also make a case that the actual definitions should be included, since users of the
term should appreciate that these are defined, as opposed to primitive concepts.
A compromise might be to allow for definitions with ellipses: {Married ≡ . . .
u ≥ 1.spouse, Unmarried ≡ . . . u ≤ 0.spouse}.

Once we admit the need for seeing additional symbols from vocab(KB), other
than those in S, the question arises whether such symbols should become part
of S, allowing the importer to use them in constructing new concepts/axioms.
We suggest that this should not be the case, since the user has specified S as the
set of concepts (s)he will be using. Therefore we will keep the set S unchanged,
and consider vocab(import(S,KB))−S to be boundary concepts, used only in
explanations. In line with our desire to reduce the need to understand all of KB,
the set of such additional concepts should however be minimized.

From a logical point of view, we will obviously want import(S,KB) to be
locally sound. We will not however insist on full “local completeness”. The reason
for this is that we have seen in both the work on upper-ontology prunning
and local-model semantics that the imported identifiers might only be used in
a limited way in KBimpt. (The use of external symbols is also limited in [5],
in order to guarantee the desired property of “conservative extension”.) For
example, if imported names Ni can only appear in axioms of the form α :<Ni,
as per Gwinnow, then it might not matter whether import(S,KB) |=¬N1v N2,
since the syntax does not allow asking such questions directly of K3 = KBimpt∪
import(S,KB), and knowledge of this fact might not affect inferences from K3 in
certain DLs. (See Sec. 4 for examples.) The same might happen if the importing
ontology uses a different, weaker logical language than the exporting one. The
limited use of imported concept identifiers can then be exploited to decrease the
set of concepts and axioms from KB that need to be included in import(S,KB).

The import syntax should therefore reflect rules about the use of symbols in
S in the importing ontology. An instruction of the form “KBimpt imports S from

KBexpt” would however seem to be too specific, since the material imported might
change as the local ontology evolves. For this reason, we suggest characterizing
the use of imported identifiers using a grammar G, as we have done in (c) and
(d) above.

To formalize the above discussion for the case of DL TBoxes, we assume
that every description logic D provides, as usual, a syntax for the concepts and
roles, as well as axioms allowed in a TBox, plus a semantic entailment relation-
ship |= of the logic for various kinds of judgements ψ, such as subsumption.
In addition, we also need a specification XPL of acceptable explanations for
judgements in the logic3. As part of XPL, we assume that every DL D provides

2 Of course, this is an integral part of all the proposals surveyed in Section 2.
3 Normally, such a specification is based on a proof theory for the logic, e.g., [7].
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an operator expandD(KB), which may add some redundant axioms to KB to
avoid unnecessarily long explanations. For example4, expand() may collapse in-
heritance according to

inherit(KB)={ A :<α | A :<B0 :< . . . :<Bn :<α in KB}.
The following definition then summarizes the above intuitions
Definition 1. Given (1) an (exporting) TBox KB of description logic D1, (2)
a set of concept names S ⊆ vocab(KB) to be imported, (3) a description logic
D2 for importing Tboxes, and (4) a grammar G specifying the syntax of axioms
in importing Tboxes, including the occurence of identifiers from S: We seek a
minimal set of identifiers S̃ containing S, and a minimal subset K of axioms from
expand(KB) involving only names from S̃ such that for every KBimpt satisfying
G, and every judgement ψ with vocab(ψ) ⊆ vocab(KBimpt) ∪ S , we have that
KBimpt∪ KB |=ψ iff KBimpt∪K|=ψ, with all explanations in the latter being
valid in the former.

Such a TBox K will be referred to as importG(S,KB). ut
Note that such aK is guaranteed to exist, since one can start with S̃=vocab(KB),
and K=KB, and then minimize from there. Of course, K may not be unique.

Independently, in a soon-to-appear paper [6], Cuenca Grau et al have pro-
posed a definition for the notion of “minimal S-module”, which can be viewed
as a special case of the above, where D1 = D2, G does not officially restrict the
occurence of imported names (though a sufficient syntactic test for it is pro-
posed), explanations play no role, and the above-stated conditions must hold
for every D with Tarski-style set-theoretic semantics. Please note that our more
general definition was motivated by actual proposals in the prior literature (cat-
egories (c) and (d)), rather than just our own intuitions. The above cited paper,
as well as [5] contain discussions concerning the related notion of “conservative
extension”.

4 Computing import in some simple cases

We propose to explore some computational consequences of the above definition.
Because of the observation concerning the work in [6], their negative complex-
ity results (e.g., undecidability for ALCO) immediately transfer to our case. So,
rather than jumping to consider very expressive DLs, we propose to see how var-
ious characteristics of DLs (e.g., primitive vs. defined concepts, ability to specify
inconsistent concepts, role restrictions) interact with the above definition in the
absence of other sources of complexity. Hence we restrict ourselves to “weak”
DLs. In fact, Dimport will be taken to be only atomic concepts; and in Dexport

subsumption will be determinable by a proof theory consisting of normalization
rules followed by structural subsumption rules. As in [7], explanations of α v β
are provided by (i) decomposing β into a conjunction of “atomic descriptions”
βj

5, (ii) computing normalize(α), and (iii) then showing how normalize(α)v βj

4 Below, we will use A,B,C, . . . to denote concept identifiers, and Greek letters α, β,
. . . to denote possibly complex concept expressions.

5 An atomic description βj cannot be expressed as the conjunction of two or more
descriptions, each of which is smaller in size.
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for each j. The decomposition of β into atomic description is not usually ex-
plained, since it is rather trivial.

We also restrict G throughout to very simple “top-level ontology” style im-
ports, allowing B∈S to only appear in axioms A:<B for A/∈S. (But note that ax-
ioms {F :<C, F :<B} will give the effect of conjoining elements of S in KBimpt!)

Throughout, we allow KBexpt to have axioms of the form A :<α, providing
necessary conditions for primitive concepts, A. But we forbid recursion in axioms.

4.1 Conjunction in Necessary Conditions
For this, we decompose axioms involving conjunction into ones without them.

Thus, if KB contained F:< (A uG), but all we needed for a proof is F:<A, we
will avoid the trivial steps of going from F:< (A uG) to F:<A. For this purpose,
we use an operator expandu() defined as
expandu(α1u . . .uαn) = {α1, . . . , αn}
expandu(α:<β) = {α:<γ | γ ∈ expandu(β)}
expandu(KB) = {expandu(α:<β) | α:<β ∈ KB}
and call the fixed point of this operator expandu*().

Subsumption reasoning in KBimpt∪ expandu*(KB) now consists solely of
transitive chaining of axioms, which is abbreviated by inherit(). This yields

import(S,KB) = reduce(select(S, inherit(expandu∗(KB))))
where select(V,KB) = {ψ ∈ KB | vocab(ψ) ⊆ V } and reduce( ) removes re-
dundant axioms — in this case, redundancy introduced earlier by inherit().

The complexity of this computation is clearly polynomial.

4.2 Disjoint Concepts and Necessary Conditions
If the exporting DL now also has atomic negation, say, one can specify disjoint

concepts B and C, which means that if KBimpt has axioms {F:<B, F:<C}, then
we must be able to conclude that Fv ⊥, in addition to inherit.

This may require considering identifiers, A, not in S, as in the case where
S={B,C} but KB contains {B :<A, C :<¬A}.

If we define TS = {A ∈ vocab(KB) | there exist B,C∈ S, KB|=Bv A, C
v ¬A}, then it is sufficient to also include in import(S,KB) for all such A,B
and C, axioms {B :<A , C:<¬A}, testifying to the presence of A in TS .

In and of itself this is not hard. However, the two concepts B and C may be
disjoint for more than one reason: e.g., they may also be subsumed by Â and ¬Â
respectively. According to our definition, and its intuitions, we should minimize
the set of additional concepts introduced; hence vocab(import(S,KB)) should
not contain both A and Â. Unfortunately, this minimization is a combinatorial
problem:
Proposition 1. There are simple KB with axioms of the form C :<D and C’
:<¬D’, (C,C’∈S, D,D’/∈S), such that the following problem is NP-hard: find the
smallest set W ⊆ vocab(KB)−S with the property that for all B,C∈ S: KB |=(B
uC) v ⊥ iff select(S∪W,KB) |=(B uC) v ⊥
The proof is by reduction from the hitting set problem [Garey & Johnson, SP8].

Similar arguments will hold for any DL that has some way of describing
inconsistent concepts, such as number restrictions; they also seem to apply to
the minimal S-modules of [6].
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4.3 Definitions with Conjunction
The novelty here is that KB can now have axioms of the form D≡AuB,

as well as C:<E. In this case, definitions can no longer be replaced by simple
subsumptions on atoms. In fact, if we have S ={A’,B’,D,H}, KB0 = {D≡AuB,
A′:<A,B′:<B}, while KBimpt contains {E :<A’, E :<B’}, then KBimpt∪ KB0
|=E v D. Thus import(S,KB0) needs to support this inference by importing all
of KB0.

Now note that since the conjunction of all concepts in S not subsumed by D (
δD = uC∈S,KB6|=Cv DC) is the strongest possible condition w.r.t. KB applicable
to some concept F in KBimpt, if this is not sufficient to entail D (KB 6|= δD
v D) then D’s definition need not be considered, and hence can be omitted from
import(S,DB), since it would never be needed as part of an explanation for
why an F is subsumed by D. Therefore it would be sufficient to repeatedly add
to import(S,KB) definitions for concepts D ∈ vocab(KB) as long as KB|= δD
v D.

Unfortunately, while the result will include enough axioms, it may include
too many. For example, if concepts A and B in KB are subsumed by Â and
B̂ individually, as well as n other concepts C1, . . . , Cn jointly, then importing
the defined concept D ≡ Â uC1 u . . . uCn uB̂, allows for 2n possible minimal
combinations of axioms to be imported (depending on how the Ci are alloted to
A and B). The presence of other concepts and axioms will then tilt in favor of
some of these choices.
Proposition 2. If one allows necessary conditions on definitions, the problem
of finding import(S,KB) when KB has conjunctive definitions or axioms of the
form A:<B, is NP-hard
Proof is by reduction from the NP-hard problem of minimizing Horn proofs, or
minimizing input to monotone boolean circuits. We strongly suspect that the
theorem holds even if definitions cannot have necessary conditions.

4.4 Using FL−
We have seen so far the effect of allowing disjoint concepts and definitions.

Let us consider now the other sine qua non of DLs, role restrictions.
When considering necessary conditions, restrictions of the form ∃p.> are

treated as atomic, while nested ∀-restrictions need to be separated into atomic
descriptions, which do not involve conjunction. For this purpose, extend expandu()
as follows:

expandu(∀p.β) = {∀p.γ | γ ∈ expandu(β)}.
Now inherit(expandu∗(KB)) again contains axioms abbreviating chains of sub-
sumption from a concept A in S to atomic descriptions βi appearing on the right
hand side of axioms in S. import(S,KB) can now be computed as in 4.1 above.

As illustrated above, the general pattern for adding new constructors for DLs
with structural subsumption seems to be to extend the notion of atomic description
and expandu() so that inherit(expandu(KB)) contains the axioms needed to find
the normal forms of concepts in S, and detect conjunctions that can lead to ⊥.
One is then faced with a minimization problem for deciding which new identifiers
and axioms to include, and this is likely to be difficult to solve precisely.
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5 Conclusions

Starting from a sample of works on ontology modularization and reuse, we have
argued for a set of desirable properties for the notion of “KB1 imports terms S
from KB2”, distinguishing this from the problem of ontology modularization by:
allowing restrictions on the place where imported names can be used, and requir-
ing both minimization of material imported and preservation of explanations —
all properties motivated by prior examples of importing studied in the literature.
We then investigated the difficulties encountered with implementing the corre-
sponding formal definition in the case of TBoxes that use simple DLs, where
subsumption itself is easy. Perhaps not surprisingly, attempts to minimize the
set of axioms imported leads to combinatorial difficulties. It remains to be seen
if the definition can be modified in a motivated manner (e.g., importing should
provide all explanations in the exporting KB) and if approximate solutions to
NP-hard problems would help. Forthcoming work with Fausto Giunchiglia will
apply this framework to UML.

Acknowledgements. I am greatful to Fausto Giunchiglia for discussions
starting down this path, and to the referees for pointing out unclear aspects.
This work was supported in part by the U.S. DHS under ONR grant N00014-
07-1-0150.
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Abstract. One of the main concerns of constructive semantics is to
provide a computational interpretation for the proofs of a given logic. In
this paper we introduce a constructive semantics for the basic description
logic ALC in the spirit of the BHK interpretation. We prove that such
a semantics provides an interpretation of ALC formulas consistent with
the classical one and we show how, according to such a semantics, proofs
of a suitable natural deduction calculus for ALC support a proofs-as-
programs paradigm.

1 Introduction

In recent works, see e.g. [3, 5, 6], starting from different motivations, various
constructive interpretations of description logics have been proposed. However,
as far as we know, no computational interpretation for proofs has been given
in this context. The aim of this paper is to propose a constructive semantics
for ALC formulas, we call information-terms semantics, that allows us to give
a computational interpretation of the proofs of a natural deduction calculus for
ALC. In particular, we will be able to read proofs of ALC-“goals” as programs
to compute goal answers.

The information-terms semantics is related to the BHK constructive expla-
nation of logical connectives (see [7, 11] for a deeper discussion) and has already
been applied in several frameworks [4, 8]. An information term is a mathematical
object that explicitly explains the truth of a formula in a given classical model.
For instance, if we prove that an individual c belongs to the concept ∃R.C, the
information term provides the witness d such that (c, d) ∈ R and d ∈ C. Differ-
ently from other approaches, such as [3, 5], information-terms semantics relies on
the classical reading of logical connectives; as a consequence, we can read ALC
formulas in the usual way.

In this paper we introduce the information-terms semantics and we compare
it with the classical one. Then, we introduce a natural deduction calculus NDc

for ALC and we show that it is sound with respect to information-terms se-
mantics. As a by-product of the Soundness Theorem, we get a computational
interpretation of proofs. We show, by means of an example, that this interpre-
tation supports the proofs-as-programs paradigm.
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2 ALC language and semantics

We begin introducing the language L for ALC [1, 10], based on the following
denumerable sets: the set NR of role names, the set NC of concept names, the set
NI of individual names. A concept H is a formula of the kind:

H ::= C | ¬H | H uH | H tH | ∃R.H | ∀R.H

where C ∈ NC and R ∈ NR. Let Var be a denumerable set of individual vari-
ables, our calculus works on formulas K of L defined according to the following
grammar:

K ::= ⊥ | (s, t) : R | (s, t) : ¬R | t : H | ∀H

where s, t ∈ NI ∪ Var, R ∈ NR and H is a concept. We remark that variables,
that usually are not used in description logic formalization, are useful to put in
evidence the “parameters” of natural deduction proofs. An atomic formula of L
is a formula of the kind ⊥, (s, t) : R, t : C, with C a concept name; a negated
formula is a formula of the kind (s, t) : ¬R or t : ¬H. A formula is closed if it
does not contain variables. We write ¬((s, t) : R), ¬((s, t) : ¬R), ¬(t : H) as
abbreviations for (s, t) : ¬R, (s, t) : R, t : ¬H respectively; A v B stands for
∀(¬A tB).

A model (interpretation) M for L is a pair (DM, .M), where DM is a non-
empty set (the domain of M) and .M is a valuation map such that: for every
c ∈ NI, cM ∈ DM; for every C ∈ NC, CM ⊆ DM; for every R ∈ NR, RM ⊆
DM ×DM. A non atomic concept H is interpreted by a subset HM of DM:

(¬A)M = DM \AM (A uB)M = AM ∩BM (A tB)M = AM ∪BM
(∃R.AM) = { d ∈ DM | there is d′ ∈ DM s.t. (d, d′) ∈ RM and d′ ∈ AM}
(∀R.A)M = { d ∈ DM | for all d′ ∈ DM, (d, d′) ∈ RM implies d′ ∈ AM}

An assignment on a model M is a map θ : Var → DM. If t ∈ NI ∪ Var, tM,θ

is the element of D denoting t in M w.r.t. θ, namely: tM,θ = θ(t) if t ∈ Var;
tM,θ = tM if t ∈ NI. A formula K is valid inM w.r.t. θ, and we writeM, θ |= K,
if K 6= ⊥ and one of the following conditions holds:

M, θ |= (s, t) : R iff (sM,θ, tM,θ) ∈ RM M, θ |= t : H iff tM,θ ∈ HM
M, θ |= (s, t) : ¬R iff (sM,θ, tM,θ) 6∈ RM M, θ |= ∀H iff HM = DM

We write M |= K iff M, θ |= K for every assignment θ. Note that M |= ∀H iff
M |= x : H, with x any variable. If Γ is a set of formulas, M |= Γ means that
M |= K for every K ∈ Γ . We say that K is a logical consequence of Γ , and we
write Γ |= K, iff, for every M and every θ,M, θ |= Γ implies M, θ |= K.

Now, we introduce information terms, that will be the base structure of our
constructive semantics. Let N be a finite subset of NI. By LN we denote the set
of formulas K of L such that all the individual names occurring in K belong
to N . Given a closed formula K of LN , we define the set of information terms
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itN (K) by induction on K as follows.

itN (K) = {tt}, if K is an atomic or negated formula

itN (c : A uB) = { (α, β) | α ∈ itN (c : A) and β ∈ itN (c : B) }
itN (c : A1 tA2) = { (k, α) | k ∈ {1, 2} and α ∈ itN (c : Ak) }
itN (c : ∃R.A) = { (d, α) | d ∈ N and α ∈ itN (d : A) }
itN (c : ∀R.A) = itN (∀A) = {φ : N → ⋃

d∈N itN (d : A) | φ(d) ∈ itN (d : A) }
LetM be a model for L, K a closed formula of LN and η ∈ itN (K). We define
the realizability relation M� 〈η〉K by induction on the structure of K.

M� 〈tt〉K iff M |= K, where K is an atomic or negated formula

M� 〈(α, β)〉 c : A uB iff M� 〈α〉 c : A andM� 〈β〉 c : B

M� 〈(k, α)〉 c : A1 tA2 iff M� 〈α〉 c : Ak
M� 〈(d, α)〉 c : ∃R.A iff M |= (c, d) : R andM� 〈α〉 d : A

M� 〈φ〉 c : ∀R.A iff M |= c : ∀R.A and, for every d ∈ N ,
M |= (c, d) : R implies M� 〈φ(d)〉 d : A

M� 〈φ〉 ∀A iff M |= ∀A and, for every d ∈ N ,M� 〈φ(d)〉 d : A

If Γ is a set of closed formulas {K1, . . . ,Kn} of LN , itN (Γ ) denotes the set of n-
tuples η = (η1, . . . , ηn) such that, for every 1 ≤ j ≤ n, ηj ∈ itN (Kj);M� 〈η〉Γ
iff, for every 1 ≤ j ≤ n,M� 〈ηj〉Kj .

We remark thatM�〈η〉K impliesM |= K, hence the constructive semantics
is compatible with the usual classical one. The converse in general does not hold
and stronger conditions are required:

Proposition 1. Let K be a closed formula of L and letM be a finite model for
L. If M |= K, there exists a finite subset N of NI and η ∈ itN (K) such that
M� 〈η〉K.

We point out that in our setting negation has a classical meaning, thus negated
formulas are not constructively explained by an information term. However, how
we will discuss in future works, information terms semantics can be extended to
treat various kinds of constructive negation as those discussed in [6].

In the following example, we show how an information term provides all the
information needed to “constructively” explain the meaning of a formula.

Example 1. Let us consider the knowledge base, inspired to the classical example
of [2], consisting of the Tbox T

(Ax1) : ∀(¬FOOD t ∃goesWith.COLOR) ≡ FOOD v ∃goesWith.COLOR
(Ax2) : ∀(¬COLOR t ∃isColorOf.WINE) ≡ COLOR v ∃isColorOf.WINE

and the Abox A
barolo:WINE red:COLOR (red,barolo):isColorOf

chardonnay:WINE white:COLOR (white,chardonnay):isColorOf

fish:FOOD (fish,white):goesWith

meat:FOOD (meat,red):goesWith
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Let WNI be the set of individual names occurring in A. An element of itWNI(Ax1) is a
function φmapping each c ∈ WNI to an element δ ∈ itWNI(c : ¬FOODt∃goesWith.COLOR),
where either δ = (1, tt) (intuitively, c is not a food) or δ = (2, (d, tt)) (intuitively, d
is a wine color which goes with food c). For instance, let us consider the following
γ1 ∈ itWNI(Ax1), where we enclose between square brackets the pairs (c, φ(c)):

[ (barolo,(1,tt)), (chardonnay,(1,tt)), (red,(1,tt)), (white,(1,tt))

(fish,(2,(white,tt))), (meat,(2,(red,tt))) ]

Let MW be a model of A ∪ T . One can easily check that MW � 〈γ1〉Ax1. Similarly, if
γ2 ∈ itWNI(Ax2) is the information term

[ (barolo,(1,tt)), (chardonnay,(1,tt)),(red,(2,(barolo,tt))),

(white,(2,(chardonnay,tt))), (fish,(1,tt)), (meat,(1,tt)) ]

then MW � 〈γ2〉Ax2 as well. We conclude MW � 〈(γ1, γ2)〉 T .

3 The natural calculus NDc

In this section we introduce a calculus NDc for ALC similar to the usual natural
deduction calculi for classical and intuitionistic logic (see, e.g., [9]). The rules of
NDc are given in Figure 1. We remark that we have introduction and elimination
rules for all the logical constants; some rules (namely, tE, ∃E and ∀I) allow to
discharge some of the assumptions (we put them between square brackets). The
rules ∃E, ∀I and ∀UI need a side condition on the rule parameter to guarantee
correctness. We notice that the rule ⊥E is intuitionistic, we will briefly discuss in
the conclusions the relation with the calculus using the classical rule of reductio
ad absurdum.

By π : Γ ` K, with Γ a set of formulas, we denote a proof of K with
undischarged formulas Γ . We say that π : Γ ` K is over LN if all the formulas
occurring in the proof belong to LN .

First of all, one can easily check that NDc preserves the validity of formulas.
Indeed, let π : Γ ` K be a proof of NDc; then:

(P1). For every model M and assignment θ,M, θ |= Γ implies M, θ |= K.

As a consequence, π : Γ ` K implies Γ |= K. Let N be a finite subset of NI. An
N -substitution σ is a map σ : Var → N . We extend σ to L as usual: if c ∈ NI,
σc = c; for a formula K, σK denotes the closed formula of LN obtained by
replacing every variable x occurring in K with σ(x); if Γ is a set of formulas,
σΓ is the set of σK such that K ∈ Γ . If c ∈ NI, σ[c/p] is the N -substitution σ′

such that σ′(p) = c and σ′(x) = σ(x) for x 6= p.
We associate with every proof π : Γ ` K of NDc over LN and every N -

substitution σ a function

Φπσ,N : itN (σΓ )→ itN (σK)

that will provide the computational interpretation of π. To this aim Φπσ,N will be
defined, by induction on the depth of π, in order to fulfill the following property:
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Γ1··· π1

K

Γ2··· π2

¬K
⊥I

⊥

Γ··· π′

⊥
⊥E

K

Γ1··· π1

t : A

Γ2··· π2

t : B
uI

t : A uB

Γ··· π′

t : A1 uA2

uEk k ∈ {1, 2}
t : Ak

Γ··· π′

t : Ak

tIk

t : A1 tA2

k ∈ {1, 2}
Γ1··· π1

t : A tB

Γ2, [t : A]··· π2

K

Γ3, [t : B]··· π3

K
tE

K

Γ1··· π1

(t, u) : R

Γ2··· π2

u : A
∃I

t : ∃R.A

Γ1··· π1

t : ∃R.A

Γ2, [(t, p) : R, p : A]··· π2

K
∃E

K

where p ∈ Var, p does
not occur in Γ2 ∪ {K}
and p 6= t

Γ, [(t, p) : R]··· π′

p : A
∀I

t : ∀R.A

where p ∈ Var, p does
not occur in Γ and p 6= t

Γ1··· π1

s : ∀R.A

Γ2··· π2

(s, t) : R
∀E

t : A

Γ··· π′

p : A
∀U I

∀A

where p ∈ Var and p does
not occur in Γ

Γ··· π′

∀A
∀U E

t : A

Fig. 1. The rules of the calculus NDc

(P2). For every modelM and γ ∈ itN (σΓ ),M�〈γ〉σΓ impliesM�〈Φπσ,N (γ)〉σK.

If π only consists of the introduction of an assumption K, then Φπσ,N is the
identity function on itN (σK). Otherwise, π is obtained by applying a rule r of
Figure 1 to some subproofs:

(1) r = ⊥I. Then, Φπσ,N (γ1, γ2) = tt.
(2) r = ⊥E. Then, Φπσ,N : itN (σΓ ) → itN (σK) and Φπσ,N (γ) = η+, where η+

is any element of itN (K) (for the definiteness of Φπσ,N , one has to assume
that, for every K ∈ LN , an element η+ ∈ itN (K) is defined).

(3) r = uI. Then, Φπσ,N : itN (σΓ1)× itN (σΓ2)→ itN (σt : A uB) and

Φπσ,N (γ1, γ2) = (Φπ1
σ,N (γ1), Φ

π2
σ,N (γ2) )
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(4) r = uEk (k ∈ {1, 2}). Then, Φπσ,N : itN (σΓ )→ itN (σt : Ak) and

Φπσ,N (γ) = Prok(Φπ
′
σ,N (γ) )

where Prok is the k-projection function.
(5) r = tIk (k ∈ {1, 2}). Then, Φπσ,N : itN (σΓ )→ itN (σt : A1 tA2) and

Φπσ,N (γ) = ( k, Φπ
′
σ,N (γ) )

(6) r = tE. Then, Φπσ,N : itN (σΓ1)× itN (σΓ2)× itN (σΓ3)→ itN (σK) and

Φπσ,N (γ1, γ2, γ3) =

{
Φπ2
σ,N (γ2, α) if Φπ1

σ,N (γ1) = (1, α)

Φπ3
σ,N (γ3, β) if Φπ1

σ,N (γ1) = (2, β)

(7) r = ∃I. Then, Φπσ,N : itN (σΓ1)× itN (σΓ2)→ itN (σt : ∃R.A) and

Φπσ,N (γ1, γ2) = (σu, Φπ2
σ,N (γ2) )

(8) r = ∃E. Then, Φπσ,N : itN (σΓ1)× itN (σΓ2)→ itN (σK) and

Φπσ,N (γ1, γ2) = Φπ2
σ[c/p],N (γ2, tt, α)

where (c, α) = Φπ1
σ,N (γ1)1.

(9) r = ∀I. Then, Φπσ,N : itN (σΓ )→ itN (σt : ∀R.A) and2

[
Φπσ,N (γ)

]
(c) = Φπ

′
σ[c/p],N (γ, tt) for every c ∈ N

(10) r = ∀E. Then, Φπσ,N : itN (σΓ1)× itN (σΓ2)→ itN (σt : A) and

Φπσ,N (γ1, γ2) =
[
Φπ1
σ,N (γ1)

]
(σt)

(11) r = ∀UI. Analogous to the case r = ∀I.
(12) r = ∀UE. Analogous to the case r = ∀E.

One can easily check that Φπσ,N is a well-defined function and that (P2) holds.
Let ΦπN = Φπσ,N , where σ is any N -substitution. By (P1) and (P2), we get:

Theorem 1 (Soundness). Let N be a finite subset of NI and let π : Γ ` K be
a proof of NDc over LN such that the formulas in Γ ∪ {K} are closed. Then:

(i) Γ |= K.
(ii) For every model M and γ ∈ itN (Γ ), M� 〈γ〉Γ implies M� 〈ΦπN (γ)〉K.

To conclude this section we give an example of the information one can
extract from a proof using Theorem 1.
1 We remark that, by the side condition on p, (σ[c/p])Γ2 = σΓ2 and (σ[c/p])K = σK.
2 By the side condition on p, (σ[c/p])Γ = σΓ and (σ[c/p])t : ∀R.A = σt : ∀R.A.
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Example 2. Let us consider the knowledge base of Example 1. We can build a proof

π : T ` ∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE))
in NDc, namely a proof of FOOD v ∃goesWith.(COLORu∃isColorOf.WINE) from T . The
proof π is

Ax1

∀UE

y : ¬FOOD t ∃goesWith.COLOR
[y : ¬FOOD]

tI

K

Ax2 [y : ∃goesWith.COLOR]··· π1

K
tE

K ≡ y : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)
∀UI

∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE))
where π1 is the proof

y : ∃goesWith.COLOR
[(y, z) : goesWith]

Ax2 [z : COLOR]··· π2

z : COLOR u ∃isColorOf.WINE
∃I

y : ∃goesWith.(COLOR u ∃isColorOf.WINE)
∃E

y : ∃goesWith.(COLOR u ∃isColorOf.WINE)
tI

y : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)
and π2 is the proof

Ax2

∀UE

z : ¬COLOR t ∃isColorOf.Wine

z : COLOR [z : ¬COLOR]
⊥I

⊥
⊥E

H

z : COLOR [z : ∃isColorOf.WINE]
uI

H
tE

H ≡ z : COLOR u ∃isColorOf.WINE
Note that individual names do not occur in π. Let MW, γ1 and γ2 be defined as in
Example 1. SinceMW�〈(γ1, γ2)〉 T , by Theorem 1 we get that Φπ

WNI(γ1, γ2) is a function
ψ such that, for every c ∈ WNI:

MW � 〈ψ(c)〉 c : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)
If ψ(c) = (1, tt), then cMW 6∈ FOOD

MW (c is not a food). Otherwise, ψ(c) has the form
(2, (d, (tt, (e, tt)))), meaning that (cMW , dMW) ∈ goesWith

MW (food c goes with color
d) and (dMW , eMW) ∈ isColorOf

MW (wine e has color d), hence we have found a wine
e to pair with c. In our example we get

ψ(meat) = (2, (red, (tt, (barolo, tt))))
ψ(fish) = (2, (white, (tt, (chardonnay, tt))))

and ψ(c) = (1, tt) for all the other c ∈ WNI.
Note that, since in our setting negation has not a constructive meaning, the choice

of axioms is crucial to extract information. As an example, if we replace Ax1 with the
classically equivalent formula ∀(¬(FOODu¬∃goesWith.COLOR)), we cannot build a proof
of the formula ∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)).
To conclude this section we remark that, along the lines of the previous example,
Theorem 1 allows us to interpret a proof of a “goal” as a program to solve it.
We defer to a future work a deeper discussion on the notion of “solvable goal”.
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4 Conclusions

First of all, we compare information-terms semantics with the classical one. Let
ALC denote the set of formulas K such that M |= K, and let ALCc be the set
of formulas K such that there exists a proof π : ` K in NDc. By Theorem 1,
ALCc ⊆ ALC. However, one can easily prove that the classically valid formula
x : D t ¬D is not provable in NDc; hence, ALCc 6= ALC. We remark that in
general a constructive explanation of x : D t ¬D cannot be given. If we replace
the rule ⊥E of NDc with the classical rule of reductio ad absurdum, the set
of provable formulas of the resulting calculus coincides with ALC; obviously,
the computational interpretation of proofs provided by Theorem 1 cannot be
extended to such a rule. Finally, we remark that our constructive semantics and
NDc can be exploited to handle intuitionistic implication and stronger negation
(as discussed in [6]). As for future works, we are developing an extension of NDc

sound and complete with respect to the information-terms semantics for ALC.
Moreover, we plan to extend our framework to treat other description logics.
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1 Introduction

The goal of data integration is to provide a uniform access toa set of heterogeneous
data sources, freeing the user from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data in-
tegration solutions has been addressed by several researchand development projects in
the last years. One of the outcomes of this research work is a clear conceptual architec-
ture for data integration1. According to this architecture [9], the main components ofa
data integration system are the global schema, the sources,and the mapping. Thus, a
data integration system is seen as a triple〈G,S,M〉, where:

– G is theglobal schema, providing both a conceptual representation of the appli-
cation domain, and a reconciled, integrated, and virtual view of the underlying
sources.

– S is thesource schema, i.e., the schema of the sources where real data are stored.
– M is themappingbetweenG andS, constituted by a set of assertions establish-

ing the connection between the elements of the global schemaand those of the
source schema. Two basic approaches have been proposed in the literature. The
first approach, calledglobal-as-view(or simply GAV), focuses on the elements of
the global schema, and associates to each of them a view (query) over the sources.
On the contrary, in the second approach, calledlocal-as-view(or simply LAV), the
focus is on the sources, in the sense that a view (query) over the global schema is
associated to each of them.

We use the term “data integration management system” to denote a software tool
supporting the conceptual architecture described above. Among the various services to
be provided by a data integration management system, we concentrate on query an-
swering: Queries are posed in terms of the global schema, andare to be answered by
suitably reasoning on the global schema, and exploiting themappings to access data at
the sources.

Data integration is still one of the major challenges in Information Technology.
One of the reasons is that large amounts of heterogeneous data are nowadays available
within an organization, but these data have been often collected and stored by different

1 Here we are concerned with the so-called centralized data integration. Other architectures,
e.g. [4], are outside the scope of this paper.
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applications and systems. Therefore, the need of accessingdata by means of flexible
and unified mechanisms is becoming more and more important. On the other hand, cur-
rent commercial data integration tools have several drawbacks. In particular, none of
them realizes the goal of describing the global schema independently from the sources.
In particular, these tools do not allow for specifying integrity constraints in the global
schema, and this implies that the global schema is a sort of data structure for accom-
modating a reconciled view of the source data, rather than a faithful description of the
application domain. It follows that current state-of-the-art data integration tools do not
support the conceptual architecture mentioned above.

In this paper, we present a comprehensive approach to, and a complete management
system for ontology-based data integration. The system, called MASTRO-I, is based on
the following principles:

– The system fully adheres to the conceptual architecture developed by the scientific
community.

– The global schema is specified in terms of an ontology, specifically in terms of
a TBox expressed in a tractable Description Logics, namelyDL-LiteA. So, our
approach conforms to the view that the global schema of a dataintegration system
can be profitably represented by an ontology, so that clientscan rely on a shared
conceptualization when accessing the services provided bythe system.

– The source schema is the schema of a relational database.
– The mapping language allows for expressing GAVsoundmappings between the

sources and the global schema. A GAV sound mapping specifies that the exten-
sion of a source view provides a subset of the tuples satisfying the corresponding
element of the global schema.
Moreover, the mapping language has specific mechanisms for addressing the so-
calledimpedance mismatchproblem. This problem arises from the fact that, while
the data sources store values, the instances of concepts in the ontology (global
schema) are objects, each one denoted by an identifier (e.g.,a constant in logic),
not to be confused with any data item.

MASTRO-I is based on the system QUONTO [1], a reasoner forDL-LiteA, and is
coupled with DB2 Information Integrator, the IBM tool for data federation2.

We point out that our proposal is not the first one advocating the use of ontologies
in data integration (see, for example, [7, 2]). However, to the best of our knowledge,
MASTRO-I is the first data integration management system addressing simultaneously
the following aspects:

– providing a solution to the impedance mismatch problem;
– answering unions of conjunctive queries posed to the globalschema according to a

method which is sound and complete with respect to the semantics of the ontology;
– careful design of the various languages used in the system, resulting in a very effi-

cient technique (LOGSPACE with respect to data complexity)which reduces query
answering to standard SQL query evaluation over the sources.

One might wonder whether the expressive power of the data integration frame-
work underlying MASTRO-I can be improved. We answer this question by showing

2 http://www-128.ibm.com/developerworks/db2/zones/db2ii/
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that even very slight extensions of the expressive abilities of MASTRO-I in modeling
the three components of a data integration system lead beyond the LOGSPACE com-
plexity bound.

We end this section by pointing out that MASTRO-I addresses the problem of
data integration, and not the one of schema or ontology integration. In other words,
MASTRO-I is not concerned with the task of building the ontology representing the
global schema starting from the source schema, or from otherontologies. This task,
which is strongly related to other important problems, suchas database schema integra-
tion [3], ontology alignment, matching, merging, or integration, are outside the scope
of MASTRO-I.

2 MASTRO-I : The data integration framework

In this section we instantiate the conceptual architecturefor data integration systems
introduced in Section 1, by describing the form of the globalschema, the source schema,
and the mapping for data integration systems managed by MASTRO-I.

The global schema.Global schemas managed by MASTRO-I are given in terms of
TBoxes expressed inDL-LiteA [5], a DL of theDL-Lite family. Besides the use of con-
cepts and roles, denoting sets of objects and binary relations between objects, respec-
tively, DL-LiteA allows one to use value-domains, a.k.a. concrete domains, denoting
unbounded sets of (data) values, and concept attributes, denoting binary relations be-
tween objects and values3. In particular, the value-domains that we consider here are
those corresponding to unbounded (i.e., value-domains with an unbounded size) RDF
data types, such as integers, real, strings, etc.

To describeDL-LiteA, we first introduce the DLDL-LiteFR, which combines the
main features of two DLs presented in [6], calledDL-LiteF andDL-LiteR, respectively.
We use the following notation:A denotes anatomic concept, B a basic concept, C a
general concept, and⊤C theuniversal concept; E denotes a basic value-domain, i.e.,
the range of an attribute,T1, . . . , Tn denote then pairwise disjoint unbounded RDF data
types used in our logic, andF denotes ageneral value-domain, which can be either an
unbounded RDF data typeTi or theuniversal value-domain⊤D; P denotes anatomic
role, Q a basic role, andR a general role; UC denotes anatomic attribute, andVC a
general attribute. Given an attributeUC , we calldomainof UC , denoted byδ(UC), the
set of objects thatUC relates to values, and we callrangeof UC , denoted byρ(UC), the
set of values related to objects byUC .

We are now ready to defineDL-LiteFR expressions as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(UC) C ::= ⊤C | B | ¬B | ∃Q.C

– Basic and general value-domain expressions:

E ::= ρ(UC) F ::= ⊤D | T1 | · · · | Tn

3 The logic discussed in [5] is actually more expressive thanDL-LiteA, since it includes role
attributes, user-defined domains, as well as inclusion assertions over such domains.
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– General attribute expressions:

VC ::= UC | ¬UC

– Basic and general role expressions:

Q ::= P | P− R ::= Q | ¬Q

A DL-LiteFR TBox allows one to represent intensional knowledge by means of
assertions of the following forms:

– Inclusion assertions: B ⊑ C (concept inclusion assertion);Q ⊑ R (role inclusion
assertion);E ⊑ F (value-domain inclusion assertion);UC ⊑ VC (attribute inclu-
sion assertion). A concept inclusion assertion expresses that a (basic) conceptB is
subsumed by a (general) conceptC. Analogously for the other types of inclusion
assertions.

– Functionality assertionson atomic attributes or basic roles:(funct I), whereI
denotes either an atomic attribute or a basic role.

DL-LiteA TBoxes areDL-LiteFR TBoxes with suitable limitations in the combi-
nation ofDL-LiteFR TBox assertions. To describe such limitations we first introduce
some preliminary notions. An atomic attributeUC (resp. a basic roleQ) is called an
identifying property in a TBoxT , if T contains a functionality assertion(funct UC)
(resp.(funct Q) or (funct Q−)). Then, an atomic attribute or a basic role is called
primitive in T , if it does not appear positively in the right-hand side of aninclusion
assertion ofT , and it does not appear in an expression of the form∃Q.C in T .

Then,a DL-LiteA TBox is a DL-LiteFR TBoxT satisfying the condition that every
identifying property inT is primitive inT .

Roughly speaking, in our logic,identifying properties cannot be specialized, i.e.,
they cannot be used positively in the right-hand side of inclusion assertions. As shown
in [5], reasoning over aDL-LiteA knowledge base (constituted by a TBox and an
ABox) is tractable. More precisely, TBox reasoning is in PTIME and query answer-
ing is in LOGSPACE w.r.t. data complexity, i.e., the complexity measured in the size
of the ABox only (whereas query answering forDL-LiteFR is PTIME-hard). Thus,
DL-LiteA presents the same computational behavior of all DLs of theDL-Lite family,
and therefore is particularly suited for integration of large amounts of data.

The source schema.The source schema in MASTRO-I is a flat relational database
schema, representing the schemas of all the data sources. Since MASTRO-I integrates
data sources that are distributed, possibly heterogeneous, and not necessarily in rela-
tional format, the source schema may in fact be obtained by wrapping a set of physical
sources. Indeed, MASTRO-I is coupled with the IBM DB2 Information Integrator, and
relies on both the wrapping facilities provided by this datafederation tool, and on its
ability to answer queries posed to a set of distributed physical sources.

The mapping. The mapping in MASTRO-I establishes the relationship between the
source schema and the global schema, thus specifying how data stored at the sources are
linked to the instances of the concepts and the roles in the global schema. To this aim,
the mapping specification takes suitably into account the impedance mismatch problem,
i.e., the mismatch between the way in which data is (and can be) represented in a data
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source, and the way in which the corresponding information is rendered through the
global schema.

The MASTRO-I mapping assertions keep data value constants separate fromobject
identifiers, and construct identifiers as (logic) terms overdata values. More precisely,
object identifiers in MASTRO-I aretermsof the formf(d1, . . . , dn), wheref is a func-
tion symbol of arityn > 0, andd1, . . . , dn are data values stored at the sources. Note
that this idea traces back to the work done in deductive object-oriented databases [8].

We detail below the above ideas. The mapping in MASTRO-I is a set of assertions
of the following the forms:

– Typing mapping assertions: Φ(v) ; Ti(v), whereΦ is a query over the source
schemaS denoting the projection of one relation over one of its attributes,Ti is
one of theDL-LiteA data types, andv is a variable,

– Data-to-ontology mapping assertions: Φ(v) ; P (t,v′), whereΦ is a first-order
logic (FOL) query over the source schemaS, P is an atom in the global schema
G, v,v′ are variables such thatv′ ⊆ v andt arevariable object terms, i.e., terms
having the formf(v′′), wheref is a function symbol, andv′′ are variables such
thatv′′ ⊆ v.

Typing mapping assertions are used to assign appropriateDL-LiteA types to values
occurring in the tuples at the sources. Basically, these assertions are used for interpreting
the values stored at the sources in terms of the types used in the global schema. Data-to-
ontology, on the other hand, are used to map source relations(and the tuples they store),
to global concepts, roles, and attributes (and the objects and the values that constitute
their instances).

3 MASTRO-I : Semantics

We now illustrate the semantics of a data integration systemmanaged by MASTRO-I.
LetJ = 〈G,S,M〉 be a data integration system. The general idea is to start with a

databaseD for the source schemaS, i.e., the extensions of the data sources, and define
the semantics ofJ as the set of intepretations forG that both satisfy the TBox assertions
of G, and satisfy the mapping assertions inM with respect toD.

The above informal definition makes use of different notionsthat we detail below.

– First, the notion of interpretation forG is the usual one in DL. Aninterpretation
I = (∆I , ·I) for G consists of an interpretation domain∆I and aninterpretation
function·I .∆I is the disjoint union of the domain of objects∆IO, and the domain of
values∆IV , while the interpretation function·I assigns the standard formal meaning
to all expressions and assertions of the logicDL-LiteA (see [5]). The only aspect
which is not standard here is the need of dealing with objectsdenoted by terms (see
previous section). To this end, we now introduce two disjoint alphabets, calledΓO

andΓV , respectively. Symbols inΓO are called object terms, and are used to denote
objects, while symbols inΓV , called value constants, are used to denote data values.
More precisely,ΓO is built starting fromΓV and a setΛ of function symbols of any
arity (possibly 0), as follows: Iff ∈ Λ, the arity off is n, andd1, . . . , dn ∈ ΓV ,
thenf(d1, . . . , dn) is a term inΓO, calledobject term. In other words, object terms
are either functional terms of arity 0, called object constants, or terms constituted
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by a function symbol applied to data value constants. We are ready to state how the
interpretation function·I treatsΓV andΓO: ·I simply assigns a different value in
∆IV to each symbol inΓV , and a different element of∆IO to every object term (not
only object constant) inΓO. In other words,DL-LiteA enforces the unique name
assumption on both value constants and object terms.

– To the aim of describing the semantics of mapping assertionswith respect to a
databaseD for the source schemaS, we first assume that all data values stored in
the databaseD belong toΓV

4. Then, ifq is a query over the source schemaS, we
denote byans(q,D) the set of tuples obtained by evaluating the queryq over the
databaseD (if q has not distinguished variables, thenans(q,D) is a boolean). Fi-
nally, we introduce the notion of ground instance of a formula. Letγ be a formula
with free variablesx = (x1, . . . , xn), and lets = (s1, . . . , sn) be a tuple of ele-
ments inΓV ∪ΓO. A ground instanceγ[x/s] of γ is obtained fromγ by substituting
every occurrence ofxi with si.
We are now ready to specify the semantics of mapping assertions. We say that
an interpretationI = (∆I , ·I) satisfiesthe mapping assertionϕ ; ψ with re-
spect toD, if for every ground instanceϕ[x/s] ; ψ[x/s] of ϕ ; ψ, we have
thatans(ϕ[x/s],D) = true impliesψ[x/s]I = true (where, for a ground atom
p(t), with t = (t1, . . . , tn) a tuple of object terms, we have thatp(t)I = true if
(tI1 , . . . , t

I
n) ∈ pI). Note that the above definition formalizes the notion of sound

mapping, as it treats each mapping assertion as an implication.
– With the above notion in place, we can simply define the semantics of J with

respect toD as follows:

semD(J ) = { I | I is a model of G, and I satisfies all assertions in M wrt D }
As we said in the introduction, in this paper we are mainly interested in the problem

of answering unions of conjunctive queries (UCQs) posed to the global schema. The
semantics of query answering is given in terms of certain answers to the query, defined
as follows. Given a data integration systemJ = 〈G,S,M〉, and a databaseD for S, the
set ofcertain answersto the queryq(x) overG is the set (denoted byans(q,J ,D)) of
all tuplest of elements ofΓV ∪ΓO such thatI |=FOL q[x/t] for everyI ∈ semD(J )
(notice thatq[x/t] is a boolean UCQ, i.e., a FOL sentence).

4 Query answering

In this section, we sketch our query answering technique (more details can be found
in [10]). Consider a data integration systemJ = 〈G,S,M〉 and a databaseD for S.

We start with the following observation. Suppose we evaluate (overD) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground as-
sertions, that can be considered as aDL-Lite ABox, denoted byAM,D. It can be shown
that query answering overJ can be reduced to query answering over theDL-LiteA
knowledge base constituted by the TBoxG and the ABoxAM,D. However, due to the
materializion ofAM,D, the query answering algorithm resulting from this approach

4 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constants inΓV , but we do not deal with this issue here.
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would be polynomial in the size ofD. On the contrary, our idea is to avoid any ABox
materialization, but rather answerQ by reformulating it into a new query that can be
afterwards evaluated directly over the databaseD. This can be achieved by following
three steps, calledrewriting, unfoldingandevaluation.
Query rewriting. Given a UCQQ over a data integration systemJ = 〈G,S,M〉, and
a databaseD for S, the rewriting step computes a UCQQ′ overJ , where the assertions
of G are compiled in. It can be shown [10] thatQ′ is such thatans(Q′, 〈∅,S,M〉,D) =
ans(Q,J ,D), i.e. rewriting allows to get rid ofG. Moreover, the rewriting procedure
does not depend onD, runs in polynomial time in the size ofG, and returns a queryQ′
whose size is at most exponential in the size ofQ.
Unfolding. Given a UCQQ′ over J , this step computes, by using logic program-
ming technology, an SQL queryQ′′ over the source schemaS, that possibly re-
turns object terms. It can be shown [5, 10] thatQ′′ is such thatans(Q′′,D) =
ans(Q′, 〈∅,S,M〉,D), i.e. unfolding allows to get rid ofM. Moreover, the unfold-
ing procedure does not depend onD, runs in polynomial time in the size ofM, and
returns a queryQ′′, whose size is at most exponential in the size ofQ′.
Evaluation. The evaluation step consists in simply delegating the evaluation ofQ′′ to
the data federation tool managing the data sources. Formally, such a tool returns the set
ans(Q′′,D,), i.e. the set of tuples obtained from the evaluation ofQ′′ overD.

From the above discussion, we have the following:

Theorem 1. Let J = 〈G,S,M〉 be a MASTRO-I data integration system, andD a
database forS. Answering a UCQ overJ with respect toD can be reduced to the
evaluation of an SQL query overD, and isLOGSPACE in the size ofD.

Finally, we remark that we are implicitly assuming that the databaseD for S is
consistent with the data integration systemJ , i.e., semD(J ) is non-empty. Notably,
checking consistency can also be reduced to sending appropriate SQL queries to the
sources [5, 10].

5 Extending the data integration framework

In this section we study whether the data integration setting presented above can be
extended while keeping the same complexity of query answering. In particular, we in-
vestigate possible extensions for all the three components〈G,S,M〉 of the system.
Extensions toDL-LiteA. With regard to the logic used to express the global schemaG,
the results in [6] already imply that it is not possible to go beyondDL-LiteA (at least
by means of the usual DL constructs) and at the same time keep the data complexity
of query answering within LOGSPACE. Here we consider the possibility of removing
the unique name assumption (UNA), i.e., the assumption that, in every intepretation of
a data integration systemJ , both two distinct value constants, and two distinct object
terms denote two different domain elements. Unfortunately, this leads query answering
out of LOGSPACE. This result can be proved by a reduction fromGraph Reachability
to instance checking inDL-LiteF [6], i.e., query answering for a boolean query whose
body is a single instantiated atom, over a DL that is a subset of DL-LiteA.

Theorem 2. LetJ = 〈G,S,M〉 be aMASTRO-I data integration system extended by
removing the UNA, andD a database forS. Answering a UCQ overJ with respect to
D is NLOGSPACE-hard in the size ofD.
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Different source schemas.Although MASTRO-I is currently able to deal with rela-
tional sources only, it is not hard to see that all the resultspresented in this paper apply
also if we consider data at the sources structured accordingto a different data model
(e.g. XML). Obviously, depending on the specific data model,we have to resort to a
suitable query language for expressing the source queries appearing in the mapping as-
sertions. To adhere to our framework, the only constraint onthis language is that it is
able to extract tuples of values from the sources, a constraint that is trivially satisfied by
virtually all query languages used in practice.
Extensions to the mapping language.As for the language used to express the mapping
M, we investigate the extension of the mapping language to allow for GLAV assertions,
i.e., assertions that relate CQs over the sources to CQs overthe global schema. Such
assertions are therefore an extension of both GAV and LAV mappings. The result we
present is that, even with LAV mappings only, instance checking and query answering
are no more in LOGSPACE wrt data compexity.

Theorem 3. Let J = 〈G,S,M〉 be a MASTRO-I data integration system extended
with LAV mapping assertions, andD a database forS. Answering a UCQ overJ with
respect toD is NLOGSPACE-hard in the size ofD.

The above result can be proved again by a reduction from GraphReachability to in-
stance checking inDL-LiteF .
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Abstract. In this work we propose an alternative approach to inference in DL-
Lite, based on a reduction to reasoning in an extension of function-free Horn
Logic (EHL). We develop a calculus for EHL and prove its soundness and com-
pleteness. We also show how to achieve decidability by means of a specific strat-
egy, and how alternative strategies can lead to improved results in specific cases.
On the one hand, we propose a strategy that mimics the query-answering tech-
nique based on first computing a query rewriting and then evaluating it. On the
other hand, we propose strategies that allow one to anticipate the grounding of
atoms, and that might lead to better performance in the case where the size of the
TBox is not dominated by the size of the data.

1 Introduction

The description logics (DLs) of the DL-Lite family [1, 2] have been proposed recently
as DLs providing a good compromise between expressive power and computational
complexity of inference. Indeed, DL-Lite and its variants are able to capture the funda-
mental features of conceptual modeling formalisms, while still keeping the basic rea-
soning polynomial in the size of the whole DL knowledge base (KB), and LOGSPACE
in the size of the data. Notably, such reasoning services include answering conjunc-
tive queries (CQs) formulated over a KB. Moreover, techniques have been developed
to perform query answering by leveraging database technology: the ABox is actually
stored in a relational database (DB), and (after suitable pre-processing) the query is
answered by exploiting the relational DB engine. This approach ensures scalability of
query answering over DL KBs to billions of data items. More precisely, the approach
for query answering proposed in [1] is actually divided in three phases: (1) Consistency
of the knowledge base w.r.t. functionality and (pre-processed) disjointness assertions in
the TBox is verified by posing appropriate queries to the DB (i.e., the ABox) only (and
independently on the actual query); (2) The user query is rewritten into a new query
using the inclusion assertions in the TBox; (3) The rewritten query is shipped to the
DB, and the returned tuples constitute the answer returned to the user.

In this work, we still rely on Phase (1), but take a closer look at Phases (2) and (3),
and at the underlying formal properties of DL-Lite. Specifically, we exploit the simi-
larity of TBox inclusion assertions and of ABox membership assertions to clauses in
an extension of function-free Horn Logic (which we call EHL), in which existentially

? Research supported by the EU FET project TONES (Thinking ONtologiES, contract FP6-
7603), and by the PRIN 2006 project NGS (New Generation Search), funded by MIUR.

Proceeding of DL2007 - Regular Papers 235



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 236 — #246 i
i

i
i

i
i

quantified variables may appear in the clauses. We develop a sound and complete cal-
culus for EHL that bears similarity to resolution [3], but is equipped with a specific
rule to handle existentially quantified variables. In three cases, we show how to obtain
complete algorithms for query answering by imposing control strategies on the calcu-
lus. The general algorithm ensures termination by using loop detection, exploiting the
fact that the number of non-isomorphic clauses that can be generated from a query goal
using the knowledge base is bounded. A second control strategy mimics the perfect re-
formulation algorithm in [4], by strictly separating the derivation steps that correspond
to operations in Phases (2) and (3). Finally, the third algorithm prunes the search space
in a way that is analogous to SLD-resolution in Logic Programming. Moreover, the
third algorithm prunes the space by detecting failure derivations in advance.

We obtained the results for DL-LiteF only. However, similar results can be obtained
for other DLs in the DL-Lite family, such as DL-LiteR [2].

2 DL-LiteF
Syntax, Semantics of DL-LiteF and Queries. Let AC = {A1, . . . , A|AC|} be a set of
atomic concepts, AR = {R1, . . . , R|AR|} a set of atomic roles, and Const a countable
set of constants. We inductively define DL-LiteF concepts in the following way: basic
concept B −→ A | ∃R | ∃R−, (general) concept C −→ B | ¬B | C1 u C2, where
A ∈ AC, R ∈ AR. With R− we denote the inverse of the role R. In the following, A
denotes an atomic concept, B a basic concept, C a concept, and R an atomic role.

A DL-LiteF knowledge base (KB) K is constituted by a TBox (denoted as T ) and
an ABox (denoted as A). Each DL-Lite TBox consists of inclusion assertions of the
form B v C and functionality assertions of the form (funct R) or (funct R−). An
ABox consists of membership assertions of the form A(a), R(a, b), where and a, b are
constants. Note that negation can occur only on the right side of inclusion assertions,
and that an inclusion assertion B v C1 u C2 can be rewritten as a pair of inclusion
assertions B v C1 and B v C2. Therefore, in the following, we will assume w.l.o.g.,
that conjunction does not occur in the TBox, and we denote with Pos(K) the set of all
inclusion assertions in K without negation on the right hand side.

The semantics of DL-LiteF is defined in the usual way for DLs, by resorting to in-
terpretations I = (∆, ·I) over a fixed infinite countable domain ∆. We just remark that
(funct R) is interpreted as functionality of role R. We assume that there is a bijection
between Const and ∆ (i.e., we have standard names). Hence, we do not distinguish
between the alphabet of constants Const and the domain ∆. We define models for
assertions and KBs in the usual way and say that a KB is satisfiable if it has a model.

We use the following rule based notation for defining conjunctive queries (CQs):

q(x)← ∃y body(x; y),

where ∃y body(x; y) (also denoted as body(q)) is a formula of the form ∃yR1(t1, t′1)∧
· · ·∧Rn(tn, t′n)∧A1(t′′1)∧· · ·∧Ak(t′′k), where allRi are binary andAi unary predicate
symbols, all ti are either variables or constants and each variable that occurs in the
conjunction is from x or y. The vectors x and y are called the distinguished and non-
distinguished variables of q, respectively. If x is empty, we call the query boolean. We
denote as True the boolean query with no atoms in its body.
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We denote the set of all constants that occur in K as adom(K). We say that q is
a query over a KB K if all the predicate symbols occurring in body(q) also occur in
K and the constants are from adom(K). For a given KB K, model I of K and query
q(x) ← ∃y body(x; y) over K, the set q(I) of answers of q over I is defined as:
q(I) = {γx | I |= ∃y body(γx; γy), γ : Var → ∆}.

The definition above says how to answer a query over a given model of a KB. Now
we define how to answer a query over a KB itself. For this purpose we use the so-called
certain answers semantics, i.e., for a given query q and a KB K, the set q(K) of certain
answers (or the answer set) of q over K is defined as

q(K) = {c | c ∈ adom(K)|c| and c ∈ q(I), for every model I of K}.

Reasoning. Here we define query answering and discuss ways to perform it.
Conjunctive query (CQ) answering for a CQ q and a KB K = 〈T ,A〉 is the task of

finding q(K). One can easily see that CQ answering is equivalent to finding all tuples c
of constants from adom(K) such that the entailment K |= ∃y body(c; y) holds. It turns
out (see the separation theorem in [4]) that K |= ∃y body(c; y) holds if and only if K is
satisfiable and A ∪ Pos(K) |= ∃y body(c; y) holds. In order to check satisfiability of
K it is enough to verify that the minimal model of A (the intersection of all models of
A) satisfies all functional assertions of K and all negative inclusion assertions entailed
by K [4].

In order to decideA∪Pos(K) |= ∃y body(c; y), one needs to check that all models
of the premises satisfy the conclusion. It turns out there may be infinitely many (pos-
sibly infinite) “different” models of K [5]. Hence, at a first glance, it is not clear at all
whether query answering is decidable.

It turns out [5] that any satisfiable DL-LiteF KB meets the so-called universal model
property. That is, there exists a model UI (called a universal model) of K that can be
homomorphically embedded in any another model of K. Due to this fact, the entail-
ment checking for A ∪ Pos(K) |= ∃y body(c; y) is equivalent to model checking for
UI |= ∃y body(c; y). For instance, a chase [6] of the minimal model ofAwith Pos(K)
“produces” a universal model of K (denoted as chase(K)). The constructive nature of
chase(K) allows one to model check chase(K) |= ∃y body(c; y) in finite time, even if
chase(K) is infinite [1]. In [1] an algorithm is presented (called perfect reformulation)
to decide whether chase(K) |= ∃y body(c; y) holds.

Perfect reformulation allows one even more, while deciding whether chase(K) |=
∃x.y body(x; y) holds, it returns all the vectors c from the answer set q(K). The algo-
rithm works in two stages as follows: (1) it rewrites a CQ ∃y body(x; y) to a set S of
CQs using assertions from Pos(K) and (2) it evaluates S overA stored as an RDB. The
evaluation returns precisely q(K).

In this work we propose an orthogonal (proof theoretical) approach for deciding
the entailment A ∪ Pos(K) |= ∃y body(c; y), based on a deductive system (calculus).
Moreover, while verifying the entailment K |= ∃x.y body(x; y), the calculus allows
one to construct deductions that return precisely q(K). We will show later that the per-
fect reformulation algorithm can be obtained from the calculus by putting a specific
control strategy over it.
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3 DL-LiteF vs Extended Horn Logic

The idea to make a deductive system for CQ answering has arisen from the observation
that DL-LiteF in fact is a syntactic variation of a fragment of slightly extended Horn
Clause Logic, such that existentially quantified variables are allowed to occur in positive
literals of Horn clauses (heads of horn rules). Using this observation we adopted the
resolution calculus in order to deal with the extension to Horn Logic. In this section we
present the extension of Horn Logic and the calculus.

Extended Horn Logic. In Extended Horn Logic (EHL) formulas (called e-clauses) are
of the form

∀x ∃y (L1(x,y) ∨ · · · ∨ Lm(x,y)),

where each Li is a literal overAC∪AR, the vectors x and y contain all variables occur-
ring in L1, . . . , Lm, and at most one literal is positive. As usual we use the terms goal
and fact to refer to e-clauses with no positive literal and no negative literal, respectively.

In [7], natural translations πy and π respectively from SHIQ concepts and asser-
tions to FOL were presented. In fact π maps positive inclusion and membership asser-
tions of DL-Lite to EHL. We extend π to conjunctive queries and present both πy and π
in the following table. The variable y in πy(B, x) indicates that an implicit existential
variable in the the DL expression B will be explicitly denoted as y in the FOL version.

πy(A, x) = A(x) πy(∃R, x) = ∃yR(x, y)
πy(∃R−, x) = ∃yR(y, x)

π(A(a)) = A(a) π(B v B′) = πy(B′, x) ∨ ¬πz(B, x)
π(R(a, b)) = R(a, b) π(∃y body(x; y)) = ¬body(x; y)

where A ∈ AC; R ∈ AR; a, b are constants; B, B′ are basic concepts;
We call CQ goal a goal corresponding to a CQ. We say that x is the vector of distin-

guished variables of a CQ goal Γ if Γ = π(∃y body(x; y)). Note, that CQ goals do not
contain existential variables and e-clauses that correspond to membership assertions are
facts.

The following are examples of applying πy and π: π(A v ∃R) = πy(∃R, x) ∨
¬πz(A, x) = ∃yR(x, y)∨¬A(x), and π(∃R− v ∃R′) = πy(∃R′, x)∨¬πz(∃R−, x) =
∃yR′(x, y) ∨ ¬∃zR(z, x), and π(True) = ⊥.

Calculus for Extended Horn Logic. Our calculus consists of three rules. Rules should
be read from top to bottom. We assume that the order of literals in the goals is irrelevant.

1. Factorization Rule:
fr:

Γ ∨ L1 ∨ L2

Γθ ∨ L1θ
[θ]

where the literals L1 and L2 are unifiable, and θ is an mgu that is the identity on
distinguished variables. If L1 = L2, then θ = id.

2. ∃-resolution rule:

erl :
Γ ∨ ¬πx(B, t) πv(B, y) ∨ ¬πz(B′, y)

Γ ∨ ¬πw(B′, t)
[id ]
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where x is a non-distinguished variable that occurs only once in Γ ∨¬πx(B, t) and
w is a fresh variable.

3. Resolution rule:
rl :

Γ ∨ L D

Γθ
[θ]

whereD is a ground atom of the fromA(a) orR(a, b), i.e., a membership assertion,
and θ is an mgu of the literals L and ¬D.

We say that in the derivation rules fr, erl and rl, the literals L2, ¬πx(B, t) and L
are the leading ones, respectively. Since each time a derivation step is performed the
leading literal is either eliminated or substituted with another literal, we say the leading
literal is processed by the derivation rule with the e-clause on the right in the premisses
of the rule (which is assumed to be ⊥ in the case of the fr rule).

Note, that each time a derivation step is performed the leading literal is either elim-
inated or substituted with another literal. Because of this reason we say that the leading
literal is processed by the derivation rule with the e-clause that occurs on the right in
the premisses of the rule (in the case of the fr rule the e-clause is assumed to be ⊥).

As usual, we say that a goal Γ ′ is directly derived from a goal Γ and an e-clause g
by a rule r with a substitution θ, denoted as Γ `g,θ Γ ′, if r is either an fr, or an erl, or
an rl rule, Γ and g are respectively on the left and on the right in the premisses of r, Γ ′

is in the conclusion of r, and θ participates in r (it occurs in r). If a sequence Γ1 · · ·Γn
of goals is such that for each i < n the direct derivation Γi `gi,θi

Γi+1 holds, then we
say that Γn is derived from Γ1 with the substitution Θ = θ1 ◦ · · · ◦ θn−1 and the set of
e-clauses L = {g1, . . . , gn−1}, and denote it as Γ1 `∗L,Θ Γn.

We say that a query q′ is derived from a query q and a KB K with a substitution θ,
denoted as q `∗K,θ q′, if there is a derivation of a CQ goal π(q′) from π(q) with θ and
a set of e-clauses L, where each l ∈ L corresponds either to an assertion from Pos(K)
or to a membership assertion of K.

4 CQ Answering as Deduction in EHL

We motivated the e-calculus as a general instrument to answer conjunctive queries over
satisfiable DL-LiteF knowledge bases. In this section we state several formal properties
of the general calculus and of some control strategies for it. The proofs are contained in
a forthcoming technical report [8].

As a first result, we can show that the calculus can be used to verify that a boolean
CQ is entailed by a satisfiable knowledge base.

Theorem 1 (Soundness and Completeness). Let K be a satisfiable KB, and q() ←
∃y body(y) a boolean CQ over K. Then q is entailed by K, i.e., K |= ∃y body(y), if
and only if there exists a derivation from π(body(q)) to the boolean query True.

As a consequence of this theorem, we can use the calculus to verify that a tuple of
constants c is a certain answer of a CQ q(x) ← ∃y body(x; y), since c ∈ q(K) if and
only if K |= ∃y body(c; y). The next theorem shows that the calculus can be used to
generate all certain answers.
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Theorem 2 (Answer Completeness). LetK be a satisfiable KB, q(x)← ∃y body(x; y)
a CQ over K, and c a vector of constants. Then c is in the answer set of q over K, that
is c ∈ q(K), if and only if there is a derivation from π(body(q)) to the boolean query
True with the substitution θ such that xθ = c.

General Algorithm. We are now in a position to formulate a non-deterministic algo-
rithm to compute the answer set q(K). For the algorithm, we specify the states of the
computation, transitions between such states, and the subset of final states.

Let x be the vector of distinguished variables of q. A granule is a pair Γ .σ, where
Γ is a CQ goal and σ is a substitution that maps the variables in x to constants or to
themselves. The states of the computation are sets of granules, denoted by the letter G.
When computing q(K), the initial state is the set {π(body(q)).id}.

Suppose a goal Γ is derived from π(body(q)) by our calculus. Then, in addition
to x, the goal Γ may contain non-distinguished variables and new variables that are
introduced by the erl -rule. We refer to both these new and non-distinguished variables
as the existential variables of Γ . We say that two granules Γ.σ and Γ ′.σ′ are similar if
σ = σ′ and if Γ and Γ ′ are identical up to renaming of their existential variables.

In order to define the transition between states, we first need to slightly extend our
calculus so that it operates on granules. A granule Γ ′.σ′ is derived from Γ.σ if Γ ′ is
derived from Γ with θ and σ′ = σ ◦ θ. There is a transition from a state G to a state
G′ = G ∪ {G′} if G′ is not similar to any granule in G and there is a G ∈ G such that
G′ can be derived from G. In this case we say that the transition processes G. A state G
is final if no transition from G is possible.

We note that there are only finitely many different atomic concepts, atomic roles,
and constants occurring in the KB. Hence, for a given maximal length of goals and set
of distinguished variables, it is only possible to form finitely many non-similar granules.
We also note that the rules of our calculus never increase the length of a goal. Hence,
for a given granule, we can only derive finitely many non-similar granules.

The following theorem states that all certain answers of a CQ over a satisfiable KB
can be obtained by computing a final state and collecting substitutions from granules
with empty goals.

Theorem 3. Let q be a CQ with distinguished variables x over a satisfiable KB K.
Then every sequence of transitions starting from s = {π(body(q)).id} and using K
terminates. Moreover, if G is a final state reached from s, then q(K) = {σx | (⊥.σ) ∈
G}.

Perfect Reformulation Algorithm. In our framework, we can also show the soundness
and completeness of the perfect reformulation algorithm [4]. In fact, an execution of this
algorithm corresponds to a sequence of transitions where initially only such transitions
are performed that employ the factorization and the ∃-resolution rules of our calculus.
When no transitions of this kind are possible any more, then transitions corresponding
to resolution steps are performed. It follows from Theorem 1 that such a strategy leads
in fact to certain answers. To show completeness, we need an extra argument. This is
provided by the following proposition, which shows that resolution steps can always be
postponed until the end of a derivation.

240 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 241 — #251 i
i

i
i

i
i

Proposition 1 (Resolution Commutes). Suppose that from Γ ∨ L we can obtain Γ ′

by first applying the resolution rule to the leading literal L with substitution θ and
then another rule r to some leading literal Mθ. Then we can obtain Γ ′ as well by first
applying r to Γ ∨L with the leading literal M and substitution δ, and then to the result
the resolution rule with leading literal Lδ. That is,

Γ∨L `g,θ Γθ `g′,θ′ Γ
′ implies Γ∨L `g′,δ (Γ ′′δ∨Lδ) `g,δ′ Γ ′ and θ◦θ′ = δ◦δ′.

Live-Only Algorithm. In our calculus, it is possible to construct several different deriva-
tions from a goal Γ to another goal Γ ′ and the transition-based algorithm will in fact
compute all such derivations. Another problem is that the algorithm is unable to detect
granules that will not lead to any answer and continues to process them. To avoid such
unnecessary computations, we introduce a criterion to recognize when a granule needs
no further processing.

We say a variable x is critical for a CQ goal Γ , if x occurs more than once in Γ .
A literal L in Γ is terminal if L is unary or if it is binary and does not have a critical
variable. Intuitively, if a literal L is terminal in Γ and no rules are applicable to L, then
no rule will ever become applicable to L in any Γ ′ derived from Γ .

We say that a granule Γ.σ is exhausted in G, if Γ contains a terminal literal L such
that the following holds: if Γ ′ is obtained from Γ by applying a rule of the calculus
with leading literal L and substitution θ, then (Γ ′.σ ◦ θ) is similar to some granule in
G. Intuitively, a granule is exhausted if it contains one terminal literal that has been
completely processed. A granule is live if it is not exhausted.

The Live-Only Algorithm is a variant of the general algorithm. It is different in
that transitions cannot process arbitrary granules, but only live granules. The Live-Only
Algorithm allows for a specific control strategy, which resembles SLD-Resolution in
Logic Programming. Under SLD-Resolution, an arbitrary literal in a goal is chosen and
resolved in all possible ways. After that, the goal is discarded. In our case, if we choose
a terminal literal and process it in all possible ways, then the granule becomes exhausted
and is blocked from any further rule application. We do not discard exhausted granules
from a state because their presence is needed to detect loops.

The completeness of the Live-Only Algorithm (and therefore also of the SLD-like
strategy) can be shown by an induction argument using the proposition below, which
states that in a derivation a rule application to a terminal literal commutes with all
preceding derivation steps.

Proposition 2. Let L be a terminal literal of Γ ∨ L. Suppose there is a derivation of
Γ ′ from Γ ∨ L where an instantiation of L is processed at the last step. Then there is
another derivation of Γ ′ from Γ ∨ L where L is processed at the first step. That is,

Γ∨L `∗G,θ1 (Γ1∨Lθ1) `g,θ2 Γ ′ implies Γ∨L `g,δ1 Γδ1 `∗G,δ2 Γ ′ and θ1◦θ2 = δ1◦δ2

5 Related Works and Conclusions

Using resolution for query answering over DL KBs was already considered by several
authors. In [7] Hustadt at al. adopted resolution for CQ answering over SHIQ KBs
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KSHIQ. They presented a way to decide whether c ∈ q(KSHIQ) holds, but they do
not propose any procedure for computing answer sets q(KSHIQ). Since, our procedure
for computing answer sets involves only positive inclusion and membership assertions,
i.e., a fragment of SHIQ, the results of our paper extend the ones in [7] for this frag-
ment. Another work on using resolution for query answering is [9], where a way is
proposed to check whether an EL KB implies a subsumption between two concepts
by posing atomic queries to the KB. This work does not consider CQs and computing
certain answers. To the best of our knowledge, our work is the first one that considers
computing answer sets for CQs over DL KBs in the framework of resolution.

We envisage that our work will facilitate the combination of DL-Lite with other
formalisms in data management tasks that are based on variants of Horn logic, such as
mappings in data integration [10] and dependencies in data exchange [11]. It remains
also to be investigated under which conditions the adoption of evaluation strategies for
the calculus that are different from the one underlying the rewriting approach, may lead
to improved performance. Specifically, such alternative strategies look promising for
those cases where the size of the TBox is not negligible w.r.t. the size of the ABox, and
the ABox may not be directly managed by a DBMS. In such cases, an approach based
on rewriting would generate very large queries to be shipped to the database, while
anticipating resolution with ground atoms may result in strong pruning.
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Abstract. We present a dynamic description logic D-ALCO@ for repre-
senting knowledge about dynamic application domains. D-ALCO@ is a
combination of a typical action theory and the description logic ALCO@,
in such a way that actions are treated as citizens of the logic. Actions of
D-ALCO@ are explicitly specified with the help of formulas, and are then
used in the construction of concepts and formulas. Based on a regression
operator introduced to deal with actions, we provide a tableau-based
decision algorithm for this logic.

1 Introduction

Description logics are successfully used for representing knowledge about static
application domains in a structured way. In order to describe knowledge about
dynamic application domains, temporal extension of description logics has been
extensively studied for more then ten years [2]. With a general temporal descrip-
tion logic, the concept Mortal can be described as Mortal = LivingBeing u
(LivingBeing U �¬LivingBeing), which states that a mortal is a living being
that eventually will not be alive any more. A temporal evolution is embodied in
this description, but actions that fulfilling the evolution are not referred.

In [9], Wolter proposed a dynamic description logic named PDLC, by com-
bining the description logic ALC with propositional dynamic logic PDL. With
PDLC, the concept Mortal can be described as Mortal = LivingBeingu <
die > ¬LivingBeing, in which actions that bring the change are presented.
Although atomic actions of PDLC can be combined using PDL-like operators,
these atomic actions are still short of descriptions. Moreover, efficient decision
algorithm for this logic is still an open problem

In this paper, we propose a dynamic description logic D-ALCO@, by combin-
ing a typical action theory with the description logic ALCO@. On the one hand,
actions are generated from atomic actions with the help of many constructs, and
each atomic action is specified by its preconditions P and conditional effects E,
where P and E are described with formulas. On the other hand, actions could be
used in the construction of concepts and formulas. Therefore, not only concepts
with dynamic meaning, but also actions happened in dynamic domains, can all
be described and reasoned with this formalism.
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We first define the syntax and semantics of D-ALCO@ in section 2, then
introduce a regression operator to deal with actions in section 3, and provide a
tableau based decision algorithm for a restricted form of the logic in section 4.
Section 5 concludes the paper.

2 Syntax and Semantics of Dynamic Description Logic

The primitive symbols of D-ALCO@ are a set NC of concept names, a set NR
of role names, and a set NI of individual names.

Concepts C, C ′ of D-ALCO@ are formed with the following syntax rules:

C,C ′ −→ D|@pC|C t C ′|∃R.C| < π > C (1)

D,D′ −→ Ci|{p}|@pD|¬D|D tD′|∃R.D
where Ci ∈ NC , p ∈ NI , R ∈ NR, π is an action. These syntax rules are designed
to ensure that no concepts of the form ¬ < π > C are constructed.

Formulas ϕ, ϕ′ of D-ALCO@ are formed with the following syntax rules:

ϕ,ϕ′ −→ φ|ϕ ∨ ϕ′| < π > ϕ (2)

φ, φ′ −→ C(p)|R(p, q)|¬φ|φ ∨ φ′

where C is a concept, p, q ∈ NI , R ∈ NR, and π is an action. These syntax rules
are designed to ensure that no formulas of the form ¬ < π > ϕ are constructed.

An atomic action of D-ALCO@ is a pair (P,E), where,

– P is a finite set of formulas, used for describing the so-called pre-conditions,
– E is a finite set of conditional effects of the form ψ/φ, where ψ is a formula,
φ is of form A(p), ¬A(p), R(p, q), or ¬R(p, q), with A ∈ NC , R ∈ NR, and
p, q ∈ NI ,

– let P={ϕ1, . . ., ϕn} and E={ψ1/φ1, . . . , ψm/φm}, then P and E subject to
the constraint that ϕ1 ∧ . . . ∧ ϕn → ¬φk for all k with 1 ≤ k ≤ m.

Actions π, π′ of D-ALCO@ are formed with the following syntax rule:

π, π′ −→ (P,E)|ϕ?|π ∪ π′|π;π′ (3)

where (P,E) is an atomic action, ϕ is a formula.
Before introducing the semantics for this logic, we will give some intuitive

examples. Firstly, we describe an atomic action named load as ({Gun(a), ¬
loaded(a)}, {>(a)/loaded(a)}), where > is an abbreviation of C t ¬C for any
concept C. The description tells that the action could happen in the case that a
is an unloaded gun, and the only change brought about by this action is that a
is loaded. Similarly, an atomic action named shoot is described as ({Gun(a),
LivingBeing(b)}, {loaded(a)/¬LivingBeing(b)}), the conditional effect of it
means that in the case a is loaded, b will be not alive after the execution of
shoot.
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These two atomic actions can then be used to form a formula < load ; shoot >
(¬ LivingBeing(b)), which asserts that b might be not alive after the sequential
execution of load and shoot. Furthermore, we can also construct a concept <
shoot > LivingBeing to describe these individuals that might be alive after the
execution of shoot.

A model of D-ALCO@ is a pair M=(W, I), where W is a set of states, I
associates with each state w ∈ W an interpretation I(w) = (4I , CI(w)

0 , . . .,
R
I(w)
0 , . . ., pI(w)

0 , . . .), with CI(w)
i ⊆ 4I for each Ci ∈ Nc, RI(w)

i ⊆ 4I ×4I for
each Ri ∈ NR, and p

I(w)
i ∈ 4I for each pi ∈ NI ; furthermore, for any pi ∈ NI

and any u, v ∈ W , we have pI(u)
i = p

I(v)
i . Based on the interpretations of all

these states, each action π is interpreted as a binary relation πI ⊆ W ×W .
Given a D-ALCO@ model M=(W, I) and a state w ∈W , the value CI(w) of a

concept C, the truth-relation (M,w) |= ϕ (or simply w |= ϕ if M is understood)
for a formula ϕ, and the relation πI for an action π are defined inductively as
follows:
(1) {p}I(w) = {pI(w)};
(2) If pI(w) ∈ CI(w) then (@pC)I(w) = 4I , else (@pC)I(w) = {};
(3) (¬C)I(w) = 4I − CI(w);
(4) (C tD)I(w) = CI(w) ∪DI(w);
(5) (∃R.C)I(w) = {x|∃y.((x, y) ∈ RI(w) ∧ y ∈ CI(w))};
(6) (< π > C)I(w) = {p|∃w′ ∈W.((w,w′) ∈ πI ∧ p ∈ CI(w′))};
(7) (M,w) |= C(p) iff pI(w) ∈ CI(w);
(8) (M,w) |= R(p, q) iff (pI(w), qI(w)) ∈ RI(w);
(9) (M,w) |= ¬ϕ iff (M,w) |= ϕ not holds;
(10) (M,w) |= ϕ ∨ ψ iff (M,w) |= ϕ or (M,w) |= ψ;
(11) (M,w) |=< π > ϕ iff ∃w′ ∈W.((w,w′) ∈ πI ∧ (M,w′) |= ϕ);
(12) Let S be a formula set, then, (M,w) |= S iff (M,w) |= ϕi for all ϕi ∈ S;
(13) Let (P,E) be an atomic action with E={ψ1/φ1, . . ., ψm/φm}, then, (P,E)I

= {(w1, w2) ∈W×W | (M,w1) |= P , CI(w2) = CI(w1)∪C+−C− for each concept
name C ∈ NC , and RI(w2) = RI(w1) ∪ R+ − R− for each role name R ∈ NR},
where,
C+={ pI(w1) | ψ/φ ∈ Eα, φ = C(p), and (M,w1) |= ψ},
C−={ pI(w1) | ψ/φ ∈ Eα, φ = ¬C(p), and (M,w1) |= ψ},
R+= { (pI(w1), qI(w1)) | ψ/φ ∈ Eα, φ = R(p, q), and (M,w1) |= ψ},
R−= { (pI(w1), qI(w1)) | ψ/φ ∈ Eα, φ = ¬R(p, q), and (M,w1) |= ψ};
(14) (ϕ?)I = {(w1, w1) ∈W ×W | (M,w1) |= ϕ};
(15) (π ∪ π′)I = πI ∪ π′I ;
(16) (π;π′)I = πI ◦ π′I .

The interpretation of atomic actions follows the possible models approach[8],
and adopts the style introduced in[4].

A formula ϕ (or a formula set S) is satisfiable if and only if there is a model
M = (W, I) and a state w ∈W with (M,w) |= ϕ (or (M,w) |= S ).

The goal of the following sections is to develop an algorithm for checking the
satisfiability of D-ALCO@ formulas. For simplicity, we take the unique name
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assumption (UNA), i.e., pI(w)
i 6= p

I(w)
j for any pi, pj ∈ NI with pi 6= pj . Further-

more, we don’t take into account TBoxes that composed of concept definitions[3].

3 Regression Operator

In this section we introduce a regression operator to deal with actions.

Definition 1 (Regression). For a formula of the form < π > ϕ, ψ is the
result of regressing < π > ϕ, in symbols Regress(< π > ϕ) = ψ, if
(1) no actions occurred in ψ, i.e., ψ is an ALCO@ formula;
(2) < π > ϕ |= ψ, i.e., for any model M = (W, I) and any state w ∈ W : if
(M,w) |=< π > ϕ, then (M,w) |= ψ;
(3) for any model M = (W, I) and any state w ∈W : if (M,w) |= ψ, then we can
construct a model M ′ = (W ′, I ′) by introducing a world w′, with the constraint
that W ′ = W ∪ {w′}, I ′(wi) = I(wi) for each wi ∈ W , (w,w′) ∈ πI

′
, and

(M ′, w′) |= ϕ; therefore we have (M ′, w) |=< π > ϕ.

Before presenting algorithms for the regression operator, we introduce an-
other operator named ABox updating triggered by atomic action.

An ABox is a finite set of individual assertions of the form C(p), R(p, q), and
¬R(p, q), where C is a concept, R ∈ NR, and p, q ∈ NI . An ABox A entails a
formula ϕ (written A |= ϕ) if and only if for any model M = (W, I) and any
state w ∈ W : (M,w) |= A implies (M,w) |= ϕ. An ABox A entails a formula
set S (written A |= S) if and only if A |= ϕ for any formula ϕ ∈ S.

Definition 2 (ABox updating triggered by atomic action). Let A, A′ be
ABoxes, (P,E) be an atomic action. Then, A′ is the result of updating A with
(P,E), in symbols A ∗ (P,E)=A′, if
(1) A |= P ;
(2) For any model M = (W, I) and any states w,w′ ∈ W : if (w,w′) ∈ (P,E)I

and (M,w) |= A, then (M,w′) |= A′;
(3) For any model M = (W, I) and any state w in W : if (M,w) |= A′, then
we can construct a model M ′ = (W ′, I ′) by introducing a world w′, with the
constraint that W ′ = W ∪ {w′}, I ′(wi) = I(wi) for each wi ∈ W , (w′, w) ∈
(P,E)I

′
and (M ′, w′) |= A.

This operator is similar to the ABox updating introduced by Liu et al[6].
Therefore, based on the ABox update algorithm by Liu et al[6], we develop the
following algorithm to calculate A∗ (P,E), by adding step (1) to decide whether
the action is executable on A, adding step (2) to select these changes that will
take place, and adding the seventh case in step (3) to calculate (< π > C)Ea for
concepts of the form < π > C.

Algorithm 1 (A ∗ (P,E)) Let A be an ABox, (P,E) be an atomic action with
E = {ψ1/φ1, . . . , ψm/φm}. Construct an ABox A′ with the following steps:
(1) If A |= P not holds, exit the algorithm with the result “(P,E) is not executable
on A”;
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(2) Construct a set Eff(A, E):={φ | ψ/φ ∈ E and A |= ψ}; If Eff(A, E) is empty,
return the ABox A′:= A, exit the algorithm;
(3) Let ObjE(A, E) be all the individual names occurred in Eff(A, E); Construct
an ABox AE := {CE(p) | C(p) ∈ A} ∪ {R(p, q) | R(p, q) ∈ A and ¬R(p, q) /∈
Eff(A, E)} ∪ {¬R(p, q)|¬R(p, q) ∈ A and R(p, q) /∈ Eff(A, E)}, where CE is
constructed inductively as follows:

– For concept name Ci, CEi := Ci t
⊔

¬Ci(p)∈Eff(A,E)

{p} u d
Ci(p)∈Eff(A,E)

¬{p};

– {p}E := {p};
– (@pD)E := @pD

E;
– (¬D)E := ¬DE;
– (D1 tD2)E := DE

1 tDE
2 ;

– (∃R.D)E := (
d

p∈ObjE(A,E)

¬{p} u ∃R.DE)

t (
⊔

p∈ObjE(A,E)

{p} u ∃R.( d
q∈ObjE(A,E)

¬{q} u DE))

t ⊔
p,q∈ObjE(A,E),R(p,q)/∈Eff(A,E),¬R(p,q)/∈Eff(A,E)

({p} u ∃R.({q} u DE))

t ⊔
¬R(p,q)∈Eff(A,E)

({p} u @qD
E);

– (< π > D)E :=< ({}, {φ1/¬φ1, . . . , φm/¬φm});π > C, where ({}, {φ1/¬φ1,
. . ., φm/¬φm}) is an atomic action constructed according to the elements of
E;

(4) Return the ABox A′ := AE ∪ Eff(A, E).

In this algorithm, rules used for constructing CE are technically designed to
guarantee the following property:

Property 1. Let M = (W, I) be a D-ALCO@ model, w,w′ ∈ W , and (w,w′) ∈
(P,E)I . Then, for any D-ALCO@ concept C and any individual name x, w′ |=
CE(x) if and only if w |= C(x).

Since xI(w
′) = xI(w), we only need to demonstrate (CE)I(w

′) = CI(w), by struc-
tural induction on C. In these cases that C is Ci, {p}, @pD, ¬D, D1 tD2, and
∃R.D, the proof is similar to those given in[5]. In the case that C is < π > D, we
have ((< π > D)E)I(w

′) = (< ({}, {φ1/¬φ1, . . . , φm/¬φm}) ;π > D)I(w
′) = {p

|∃w1 ∈ W.( (w′, w1) ∈ (({}, {φ1/¬φ1, . . . , φm/¬φm}) ;π)I ∧ p ∈ DI(w1))} = {p
|∃w1 ∈ W. ∃w2 ∈ W.( (w′, w2) ∈ ({}, {φ1/¬φ1, . . . , φm/¬φm})I ∧ (w2, w1) ∈ πI
∧ p ∈ DI(w1))}. According to the semantics of D-ALCO@ actions, I(w2) and
I(w) are equivalent and (w′, w) ∈ ({}, {φ1/¬φ1, . . . , φm/¬φm})I , therefore we
can continue these equations as ((< π > D)E)I(w

′) = {p |∃w1 ∈W. ((w,w1) ∈ πI
∧ p ∈ DI(w1))} = (< π > D)I(w).

The following property is an easy consequence:

Property 2. Algorithm 1 is terminable, the returned A′ satisfies A ∗ α= A′.
Utilizing the algorithm of A ∗ (P,E), we develop the following algorithm for

the regression operator:

Proceeding of DL2007 - Regular Papers 247



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 248 — #258 i
i

i
i

i
i

Algorithm 2 (Regress(< π > ϕ)) Let π be an action, ϕ be a formula. Calcu-
late Regress(< π > ϕ) recursively with the following steps:
(1) If ϕ contains a subformula of the form < πi > ϕi, then replace all the oc-
currence of < πi > ϕi in ϕ with Regress(< πi > ϕi); Repeat this step, until no
such subformulas contained in ϕ;
(2) If π is an atomic action (P,E) with E={ψ1/φ1, . . ., ψm/φm}, then,

(i) Construct an atomic action α′= ({}, {φ1/¬φ1, . . ., φm/¬φm});
(ii) Translate ϕ into a disjunction normal form ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕk, where

each ϕi is a conjunction of individual assertions;
(iii) For each ϕi, let it be ϕi1 ∧ ϕi2 ∧ . . . ∧ ϕim, construct an ABox Ai:=

{ϕi1, ϕi2, . . ., ϕim}, and construct the ABox A′i that satisfying Ai ∗ α′= A′i;
(iv) Return the formula (Set2F(A′1) ∨ . . . ∨ Set2F(A′k)) ∧ Set2F(P ), where

Set2F(S) represents the conjunction of all the elements of S, e.g., if S = {ϕ1,
. . ., ϕn}, then Set2F(S) := ϕ1 ∧ . . . ∧ ϕn.
(3) If π is φ?, then return the formula φ ∧ ϕ;
(4) If π is π1 ∪ π2, then return Regress(< π1 > ϕ) ∨ Regress(< π2 > ϕ);
(5) If π is π1 ; π2, then return Regress(< π1 > Regress(< π2 > ϕ)).

Property 3. Algorithm 2 is terminable, the returned formula ψ satisfiesRegress(
< π > ϕ) = ψ.

This property can be proved with three steps. Firstly, in the case that π is
an atomic action and ϕ is a formula containing no subformulas of the form
< πi > ϕi, it is obvious that the algorithm will terminate, it is also easy to
demonstrate that the returned formula ψ satisfies Regress( < π > ϕ) = ψ.
Secondly, we relax the π to be any actions, and demonstrate the same results
by structural induction on π. Finally, we relax the ϕ to be any formulas and
demonstrate the property. Due to space limitation, we omit the details here.

4 Tableau Algorithm

Based on the regression operator, we can develop a tableau-based procedure for
deciding the satisfiability of D-ALCO@ formulas.

Algorithm 3 (Deciding the satisfiability of a D-ALCO@ formula) For a
D-ALCO@ formula ϕ, decide its satisfiability with the following steps:
(1) Construct a formula set S′ := {ϕ}. If S′ contains clash, exit the algorithm
with the result “ϕ is unsatisfiable”.
(2) Construct a set SS := {S′};
(3) Take out an element S from SS, apply one of the rules in table 1 to S; For
every new generated formula set, if it contains no clash, then add it into SS;
(4) Repeat step (3), until SS is empty or no rules can be applied to the for-
mula set S that taken out from SS, in the former case return the result “ϕ is
unsatisfiable”, in the latter case return the result “ϕ is satisfiable”.

A clash in a formula set S is one of the following cases: (1) ϕ ∈ S and
¬ϕ ∈ S for a formula ϕ; (2) C(p) ∈ S and (¬C)(p) ∈ S for a concept C and an
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individual name p; (3) {q}(p) ∈ S for two different individual names p and q;
(4) (¬{p})(p) ∈ S for an individual name p.

Table 1. Tableau rules for D-ALCO@

Rules on concepts:

R@: If (@qC)(x) ∈ S and C(q) /∈ S, then S1:= {C(q)} ∪ S;
R¬@: If (¬@qC)(x) ∈ S and (¬C)(q) /∈ S, then S1:= {(¬C)(q)} ∪ S;
Rt: If (C1 t C2)(x) ∈ S, C1(x) /∈ S and C2(x) /∈ S,

then S1:=C1(x) ∪ S, S2:= C2(x) ∪ S;
R¬t: If (¬(C1 t C2))(x) ∈ S, and (¬C1)(x) /∈ S or (¬C2)(x) /∈ S,

then S1:= {(¬C1)(x), (¬C2)(x)} ∪ S;
R∃: If (∃R.C)(x) ∈ S, there is no y such that R(x, y) ∈ S and C(y) ∈ S,

then S1:={C(z), R(x, z)} ∪ S, where z is a new individual name;
R¬∃: If (¬(∃R.C))(x) ∈ S, then S1:={(¬C)(y)|R(x, y) ∈ S, (¬C)(y) /∈ S};
R<>c: If (< π > C)(x) ∈ S, and Regress(< π > C(x)) /∈ S,

then S1:={Regress(< π > C(x))} ∪ S
R¬¬c: If (¬(¬C))(x) ∈ S, and C(x) /∈ S, then S1:= {C(x)} ∪ S;

Rules on formulas:

R∨: If ϕ ∨ ψ ∈ S, ϕ /∈ S, and ψ /∈ S, then S1:= {ϕ} ∪ S, S2:= {ψ} ∪ S
R¬∨: If ¬(ϕ ∨ ψ) ∈ S, and ¬ϕ /∈ S or ¬ψ /∈ S, then S1:= {¬ϕ,¬ψ} ∪ S;
R<>f : If < π > ϕ ∈ S and Regress(< π > ϕ) /∈ S, then S1:= {Regress(< π > ϕ)}∪S;
R¬¬f : If ¬(¬ϕ) ∈ S and ϕ /∈ S, then S1:= {ϕ} ∪ S.

It is easy to demonstrate that this algorithm holds the following properties:

– (Termination) The algorithm is terminable;
– (Soundness) For the set SS, let SS′ be the result of executing step (3), then,

there is a satisfiable formula set S ∈ SS if and only if there is a satisfiable
formula set S′ ∈ SS′.

– (Completeness) For any finite formula set S ∈ SS, if no rules can be applied
to S and S contains no clash, then S is satisfiable.

5 Discussion

TBoxes composed of concept definitions are not taken into account in previous
sections. In fact, if a TBox is referred, the set NC could be divided into two
disjoined sets NCD and NCP , where NCD is the set of defined concept names,
NCP is the set of primitive concept names [3]. In this case, adopting the idea
of [4], we will add a constraint to the description of atomic actions: for every
conditional effect ψ/φ, φ must be of form A(p), ¬A(p), R(p, q), or ¬R(p, q), with
A ∈ NCP . Then, if the TBox is acyclic and contains no general concept inclusion
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axioms(GCIs), our algorithms are still effective, by adding processes to replace
each occurrence of defined concept names with their corresponding definitions.

As actions are treated as citizens in D-ALCO@, reasoning problems about
actions could be introduced into this formalism, such as the executability, projec-
tion, and subsumption problems[1][4][7]. We think that the regression operator
is useful for these reasoning tasks. For example, in order to decide that whether
a formula ϕ is a consequence of applying a sequence of actions π1, . . . , πk in an
ABox A, we can calculate the formula ψ:= ¬Regress(< π1; . . . ;πk > ¬ϕ) and
check A |= ψ.

Another future work is to alleviate these syntactic restrictions posed on this
logic, so that concepts of the form ¬ < π > C, formulas of the form ¬ < π > ϕ,
and actions of the form π∗ can be constructed.
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Abstract. To make ABox reasoning scalable for large ABoxes in de-
scription logic (DL) knowledge bases, we develop a method for partition-
ing the ABox so that specific kinds of reasoning can be performed sep-
arately on each partition and the results trivially combined can achieve
complete answers. Our method applies to SHIQ(D) knowledge bases.
It first converts a DL knowledge base KB to a plain datalog program
H(KB), and then computes the least fixpoint of the definite part of
H(KB) while generating ABox partitions. Its time data complexity is
polynomial in the ABox size, under some general assumption on con-
crete domains. Experimental results further demonstrate the advantages
of our method.

1 Introduction

ABox reasoning (e.g., query answering) in DL knowledge bases is a great chal-
lenge, due to high complexity of reasoning in expressive DL languages [2] and
the resource limitations (e.g., physical memory) for handling large ABoxes. As
[3] pointed out, there are two approaches towards scalable ABox reasoning. One
approach is to partition the ABox so that some kinds of reasoning can be per-
formed separately on each partition [3, 5]. Another approach is to convert DL
to disjunctive datalog and use deductive databases to reason over the ABox [7].
Based on [7], Motik et al. [8] propose a resolution based algorithm which evalu-
ates non-ground queries in one pass so that the efficiency of the query answering
is further improved. However, the algorithm requires exponential space in the
worst case, thus it is particularly important to partition the ABox to cut down
memory consumption.

In this paper, we present a new method for partitioning the ABox. For a
SHIQ(D) knowledge base KB, we first reduce KB to an equisatisfiable dis-
junctive datalog program DD(KB), using the methods in [7]. Then, we convert
DD(KB) to a plain datalog program H(KB) by replacing disjunctions with def-
inite implications, and compute the least fixpoint of the definite part of H(KB).
During the fixpoint computation, we put sets of assertions that (indirectly) trig-
ger rules in H(KB) to the same part and keep track of the triggering information
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on each assertion. At last, we adjust parts to partitions according to the tracking
data. The time data complexity of our method is polynomial in the ABox size,
assuming a polynomial oracle for reasoning with concrete domains and a con-
stant bound on the arity of the concrete domain predicates. Our method always
produces a disjoint and independent partitioning, such that each assertion over
atomic concepts or simple roles is entailed by the whole knowledge base if and
only if it is independently entailed by some partition.

2 Reducing SHIQ(D) to Disjunctive Datalog

A SHIQ(D) [7] knowledge base KB = (KBT ,KBR,KBA) consists of a TBox
KBT , an RBoxKBR and an ABoxKBA.KBT is a finite set of concept inclusion
axioms. KBR is a finite set of transitivity axioms and role inclusion axioms.
KBA is a set of concept and role membership assertions (¬)A(a), R(a, b), T (a, c),
and (in)equality assertions a = b, a 6= b, where A is an atomic concept, R
an abstract role, T a concrete role, c a concrete individual, a and b abstract
individuals.

In [7], a resolution framework is proposed to reduce a SHIQ(D) knowl-
edge base KB to a disjunctive datalog program DD(KB) = Γ (KBT ,KBR) ∪
KBA∪∆KB . Γ (KBT ,KBR) is a positive disjunctive datalog program computed
regardless of KBA and consists of rules of the form

A1 ∨ . . . ∨Am ← B1, . . . , Bn (m ≥ 0, n > 0) .

A1, . . . , Am, B1, . . . , Bn are all positive atoms which can be over the equality
predicate =, (possibly inverse) roles, original atomic concepts or new atomic
concepts introduced during the structural transformation. In addition, a body
atom can also be a concrete domain atom, an atom of the form HU(x) which
makes the rule safe, or an atom of the form Sf (x, xf ) which is introduced for
eliminating the function symbol f . ∆KB is made up of HU(a), HU(af ) and
Sf (a, af ), instantiated for each individual a and each function symbol f .

To enable equality reasoning in disjunctive datalog, the equality predicate
= is interpreted as a congruence relation and treated as an ordinary predi-
cate, with required properties axiomatized explicitly [7, 8]. A disjunctive datalog
program P with equality is thus transformed into a disjunctive datalog pro-
gram P= without equality, by stating that = is reflexive, symmetric, and transi-
tive, and by appending replacement rules of the form “R(x1, . . . , yi, . . . , xn) ←
R(x1, . . . , xi, . . . , xn), xi = yi”, instantiated for each distinct predicate R and
each position i. In what follows, we assume that = has been treated as an ordi-
nary predicate in DD(KB), and with |=c we denote the cautious entailment in
positive disjunctive datalog programs.

Theorem 1 ([7]). For KB a SHIQ(D) knowledge base, (1) KB is unsat-
isfiable if and only if DD(KB) is unsatisfiable; (2) KB |= α if and only if
DD(KB) |=c α for each assertion α of the form A(a) or S(a, b), where A is an
atomic concept and S a simple role.
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3 Partitioning the ABox

With the reduction, DD(KB), of a SHIQ(D) knowledge base KB, we can
reduce the reasoning on KB to the reasoning on DD(KB). In what follows, a
ground atom is also called an assertion; an atom (or assertion) is called basal
if it is over concrete domain predicates or the predicates in ∆KB ; an atom (or
assertion) is called normal if it is not basal. A set S of assertions is said to
trigger a rule R if S = Body(Rσ) for some ground substitution σ. A set S of
assertions is said to indirectly trigger a rule R in logic program Π if there is a
set S′ of assertions such that S ∪Π |= S′ and S′ triggers R. An assertion a is
said to participate in the (indirect) triggering of R (in Π) if there is a set S of
assertions such that a ∈ S and S (indirectly) triggers R (in Π). If Π is clear from
the context, it is omitted. Consider Π0 in Example 1. We say {b, c, d} triggers
r1, {e, c, d} indirectly triggers r1, and e participates in the indirect triggering
of r1. If the logic program contains rules with disjunctions, such as r3 in Π0,
the indirect triggering is nondeterministic. We say a set S of assertions might
indirectly trigger R in Π if S indirectly triggers R in a Horn logic program Π ′

which is converted from Π by replacing disjunctions with definite implications.
Continue with Example 1, we say {b, g, d} might indirectly trigger r1 in Π0.

Example 1. Let Π0 be a logic program consisting of the following ground rules.

r1 : a← b, c, d . r2 : b← e . r3 : c ∨ f ← g .

r4 : c . r5 : d . r6 : e . r7 : g .

We intend to partition KBA so that the subsequent reasoning on DD(KB)
can be performed separately on each of its partitions. So we should avoid commu-
nication between partitions during reasoning on DD(KB). Consider Example
1. {c, d, e} should be placed in the same partition, otherwise a cannot be in-
dependently entailed over any partition of {c, d, e, g}. This shows that sets of
assertions that (might) indirectly trigger rules should be placed in the same par-
tition. However, this intuition is too rough. Consider Example 1 again. {d, e, g}
might indirectly triggers r1, but we need not put g to the same partition where
{d, e} locates, since {c, d, e} need be placed in the same partition and then a can
be independently entailed over {c, d, e}. The intuition behind such case is that
for two sets of assertions S1 and S2, when S1∪S2 (might) indirectly trigger R in
logic program Π, i.e., there exists S′ such that S1 ∪S2 ∪Π |= S′ and S′ triggers
R, S1 need not be placed in the same partition where S2 locates, if S2∪Π |= S′.

To exploit above intuitions, we first convert DD(KB) to a plain datalog pro-
gramH(KB) by replacing disjunctions with conjunctions and adding constraints
for negative atoms. That is, a rule of the form “A1∨ . . .∨Am ← B1, . . . , Bn(m >
0, n > 0)” in DD(KB) is converted to “A1 ∧ . . . ∧ Am ← B1, . . . , Bn” and
other rules in DD(KB) remain. In addition, we treat negative atoms in H(KB)
as positive ones by adding constraints of the form “← a,¬a” to H(KB) if
¬a ∈ H(KB). We then separate H(KB) into the definite part H1(KB), which
consists of rules with heads, and the constraint part H0(KB), which consists of
rules without heads, for different treatments.
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Our partitioning algorithm is shown in Figure 1. Some tracking data are used.
For each normal assertion a, we use marked(a) to store whether a is marked. We
mark a, i.e., set marked(a) to true, if and only if a participates in triggering rules
in H(KB). Secondly, we use parts(a) to store the set of identifiers of the parts
where a locates, i.e., parts(a) = {id(p)|a ∈ p}. Besides we put a to the merged
part when a participates in triggering rules, we might put a to a part p if there
is some b ∈ p supporting a through rule r ∈ ground(H(KB), i.e., a ∈ Head(r)
and b ∈ Body(r), according to the intuition that a set of assertions indirectly
triggering rules should be placed in the same partition. However, as another
intuition shows, when a is entailed over one of its parts, a need not be placed in
the parts where its supporters locate. So parts(a) is unchanged in such case. We
can see that the set of marked assertions in

⋃
id(p)∈parts(a) p approximates the

support closure of a. Thirdly, we use entailed(a) to store whether a is entailed
by DD(KB), i.e., DD(KB) |=c a. For efficiency, we use a simple recursive
evaluation of entailed(a), which is sound but incomplete. That is, if there exists a
definite rule r ∈ ground(DD(KB)) such that Head(r) = {a} and entailed(b) =
true for all b ∈ Body(r), we set entailed(a) to true.

There are some remarks on the merging procedure MergeParts. First, we
merge parts instead of assertions for efficiency. Second, only when a participates
in triggering rules can marked(a) be set to true. After marked(a) is set to true,
parts(a) remains a single set. Third, for all a ∈ SH with entailed(a) = false,
parts(a) is updated for enlarging the support closure of a: the support closures
of all b ∈ SB (approximated with id(p′)) are appended to the support closure of
a, by adding id(p′) to parts(a), and a to p′ correspondingly.

Our proposed method will always produce a disjoint and independent par-
titioning of the ABox (Theorem 2), which ensures that a query over atomic
concepts or simple roles can be performed separately on each generated parti-
tion and the results trivially combined yield complete answers. Another benefit
of our method is the ability to filter unmarked assertions to the unique unmarked
partition pU (other partitions are called marked partitions correspondingly). Un-
marked assertions do not participate in triggering rules in DD(KB), and thus
the reasoning over pU can be performed on a fragment of DD(KB) consisting
of a kind of rules whose body has no normal atoms. This implies that reasoning
over pU is trivial.

Lemma 1. Let KB be a SHIQ(D) knowledge base such that (KBT ,KBR,
∅) is consistent, KBA,1, . . . ,KBA,n the parts returned by PartitionABox(KB).
Then (1) {KBA,1, . . . ,KBA,n} is a disjoint partitioning of KBA; (2)

⋃n
i=1Mi

is a model of DD(KB) = Γ (KBT ,KBR) ∪KBA ∪∆KB if for all i = 1, . . . , n,
Mi is a minimal model of DD(KB)i = Γ (KBT ,KBR) ∪KBA,i ∪∆KB.

Proof Sketch. (1) For all assertions a ∈ KBA, if a is marked in PartitionABox,
it is placed in a unique part, otherwise it is moved to the unmarked partition.
So KBA,1, . . . ,KBA,n is a disjoint partitioning of KBA.

(2) Let C be the set of all satisfiable basal assertions, D = {a ∈ lfp(H1(KB))|
entailed(a) = true} the set of all entailed normal assertions in the least fix-
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MergeParts(SH , SB ,P)
1. for each h ∈ SH with parts(h) undefined do

2. parts(h) := ∅; marked(h) := false; entailed(h) := false;

3. if SH = {h} then entailed(h) :=
∧

b∈SB
entailed(b);

4. merge :=
⋃

b∈SB
parts(b) ∪⋃

h∈SH ,marked(h)=true
parts(h);

5. p′ :=
⋃

id(p)∈merge
p; P := P ∪ {id(p′)} −merge;

6. for each b ∈ SB do marked(b) := true;

7. for each h ∈ SH with marked(h) = false do

8. parts(h) := parts(h) ∪ {id(p′)} −merge; p′ := p′ ∪ {h};
9. for each a ∈ p′ do

10. if marked(a) = true then parts(a) := {id(p′)};
11. else parts(a) := parts(a) ∪ {id(p′)} −merge;
PartitionABox(KB)
Input: a SHIQ(D) knowledge base KB such that (KBT ,KBR, ∅) is consistent.

Output: the set of partitions of KBA.

1. for each a ∈ KBA do

2. pa := {a}; parts(a) := {id(pa)}; marked(a) := false; entailed(a) := true;

3. P :=
⋃

a∈KBA
parts(a); Compute the least fixpoint MA of H1(KB);

4. Meanwhile for each rule r ∈ ground(H1(KB)) such that all concrete domain atoms
of Body(r) are satisfiable and all abstract domain atoms of Body(r) are in MA do

5. MergeParts({h ∈ Head(r)|entailed(h) = false}, {b ∈ Body(r)|parts(b) is defined},P);

6. for each rule r ∈ ground(H0(KB)) such that all concrete domain atoms of Body(r)
are satisfiable and all abstract domain atoms of Body(r) are in MA do

7. MergeParts(∅, {b ∈ Body(r)|parts(b) is defined},P);

8. pU := KBA ∩
⋃

id(p)∈P{a ∈ p|marked(a) = false};
9. for each part p such that id(p) ∈ P do p := KBA ∩ {a ∈ p|marked(a) = true};
10. return {p 6= ∅|id(p) ∈ P} ∪ pU ;

Fig. 1. An algorithm for partitioning the ABox

point of H1(KB), p1, . . . , pN all parts generated before line 8 in Partition-
ABox. W.l.o.g., we assume that KBA,n is the unmarked partition, and KBA,i =
KBA ∩ {a ∈ pi|marked(a) = true} for all i < n. For all i < n, we show that
Mi can be divided into layers L1, . . . , Lm such that L1 = KBA,i ∪ (Mi ∩ C) and
each assertion in Lk+1 is supported by a set of assertions in

⋃k
j=1 Lj . Then, we

show that Mi ⊆ pi ∪ C ∪D by using induction on the layers of Mi, according to
a fact that if there exists a rule r ∈ ground(DD(KB)) such that a ∈ Head(r)
and Body(r) ⊆ pi ∪ C ∪ D, either a ∈ D or a is put to pi in MergeParts.
Now, suppose M =

⋃n
i=1Mi is not a model of DD(KB). There must be a rule

r ∈ ground(DD(KB)) such that Body(r) ⊆ M and Head(r) ∩ M = ∅. Let
b1, . . . , bm be all the normal assertions in Body(r). Since Mn is a subset of the
least fixpoint of the fragment of DD(KB) consisting of a kind of rules whose
body has no normal atoms, any bi cannot be in Mn and thus is marked in Par-
titionABox. On the other hand, since different parts do not together participate
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in triggering rules, b1, . . . , bm are all in the same part, say pk. Then, each bi must
be in Mk ∪ D, otherwise there is Mj (j 6= k) such that bi ∈ Mj − C − D ⊆ pj ,
contradicting that bi is marked. In case bi ∈ D, bi is entailed over pk and thus
bi is in every model of DD(KB)k. This implies that each bi is in Mk and thus
Hear(r) ∩Mk 6= ∅, contradicting that Head(r) ∩M = ∅. ut
Theorem 2 (independent partitioning). Let KB be a SHIQ(D) knowledge
base such that (KBT ,KBR, ∅) is consistent, {KBA,1, . . . ,KBA,n} the disjoint
partitioning of KBA returned by PartitionABox(KB), and KBi = (KBT ,KBR,
KBA,i) for all i = 1, . . . , n. Then (1) KB is consistent if and only if KBi is
consistent for all i = 1, . . . , n; (2) KB |= α if and only if there exists KBi such
that KBi |= α for each assertion α of the form A(a) or S(a, b), where A is an
atomic concept and S a simple role.

Proof. (1) The (⇒) direction is trivial. For the (⇐) direction, by Theorem 1,
DD(KB)i = Γ (KBT ,KBR) ∪KBA,i ∪ ∆KB is satisfiable for all i = 1, . . . , n.
DD(KB)i is positive and thus has minimal models. Let Mi be a minimal model
of DD(KB)i. By Lemma 1,

⋃n
i=1Mi will be a model of DD(KB). So KB is

consistent by Theorem 1. (2) The (⇐) direction is trivial. For the (⇒) direc-
tion, we have DD(KB) |=c α by Theorem 1. Suppose there is no KBi such
that KBi |= α. Let DD(KB)i = Γ (KBT ,KBR) ∪KBA,i ∪∆KB . By Theorem
1, there exist minimal models M1, . . . ,Mn of DD(KB)1, . . . , DD(KB)n respec-
tively such that α /∈ Mi for all i = 1, . . . , n. By Lemma 1, M =

⋃n
i=1Mi is a

model of DD(KB). That α /∈M contradicts that DD(KB) |=c α. ut
Regarding the complexity, we consider the data complexity, which is mea-

sured in |KBA| only, under the assumption that |KBT R| = |KBT |+ |KBR| is
bounded by a constant. In addition, we assume that there is a polynomial oracle
for reasoning with concrete domains and a constant bound on the arity of the
concrete domain predicates. Since the number of rules and the number of atoms
in each rule in Γ (KBT ,KBR), and the computation time of Γ (KBT ,KBR)
are all bounded by exponential of |KBT R| [7], the number of different variables
in each rule in H(KB) is bounded by a constant and the number of rules in
ground(H(KB)) is polynomial in |KBA|. Hence, PartitionABox runs in poly-
nomial time in |KBA|.

4 Experimental Evaluation

We tested our partitioning method on top of the ontologies available on the
KAON2 Web Site3 and the Lehigh University Benchmark (LUBM) [6]. The
implementation of the proposed method is based on secondary storage so as to
handle large ABox data. Specifically, we used MySQL as the back-end DBMS.
The input ABox data and the tracking data in run time are maintained in the
database. We implemented the partitioning method in GNU C++, used the
KAON2 system for the ontology reduction and performed testing on a 3.2GHz
Pentium 4 CPU 2GB RAM machine running Windows XP.
3 http://kaon2.semanticweb.org/download/test_ontologies.zip
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Table 1. Test results on the partition time and granularity

Partition #filtered (i.e., Avg. marked Max. marked
Test Set #assertions Time unmarked)

#marked
partition size partition size

(hh:mm:ss) assertions
partitions

(#assertions) (#assertions)

Wine-0 496 00:02:29 78 43 9.72 336
Vicodi-0 53,653 00:05:58 0 53,653 1.00 1

Semintec-0 65,240 00:07:06 4,552 48,166 1.26 2
LUBM-1 100,543 00:03:02 22,418 45,931 1.70 2,190
LUBM-10 1,273 K 02:00:24 285,844 575,703 1.71 2,362

Table 1 shows the test results. In the table, all ontologies except Wine-0 are in
a Horn fragment, i.e., their reductions are plain datalog programs. The partition
granularity on these Horn-fragment ontologies is fine: the average size of marked
partitions is very small, and the maximum size of marked partitions is so small
that all partitions can be easily manipulated in physical memory. The ontology
Wine-0 is rather complex, whose reduction is a disjunctive datalog program
with more than 500 rules. The partition granularity on Wine-0 is not so fine as
others, but still acceptable, since the submaximum size of marked partitions is
21 (without shown in Table 1) and the average size of marked partitions is small.

5 Related Work and Conclusion

Guo and Heflin [5] develop a set of tableau rules for partitioning the ABox in
SHIF knowledge bases. Their partitioning method uses an intuition that as-
sertions in the antecedent of an inference rule should be placed in the same
partition. To estimate implicit inference in polynomial time, [5] uses some ap-
proximate tableau rules, such as C1 v C2 for all concepts C1 and C2. To reduce
partition size, [5] generates overlapped parts instead of partitions which need
be disjoint. Though the overlapped parts preserve the independent partitioning
property as ours, the performance of the subsequent reasoning may be impaired
due to introducing many duplicated assertions. For example, with 1,311K input
LUBM data, [5] generates 396,197 parts with average size 21.2 and maximum size
1,141. The number of duplicated assertions are about 7,000K. As a comparison,
with 1,273K input data (LUBM-10), our method generates smaller partitions
in average (see in Table 1). Though the largest marked partition generated by
our method is near two times larger than the largest one in [5], no partitions
generated by our method overlap.

Fokoue et al. [3] develop some role filtering techniques for partitioning the
(summary) ABox in SHIN knowledge bases. Their partitioning method filters
role assertions whose absence will not affect the outcome of a consistency check,
and then places assertions sharing individual names in the same partition. Due to
different focuses, the partitioning method in [3] is rather restricted, it filters role
assertions only, while our proposed method filters all kinds of assertions. More-
over, the filtering techniques proposed in [3] do not guarantee a subsequent inde-
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pendent partitioning. As an example, consider a DL knowledge base KB, where
KBT = {A v≤1 R}, KBR = ∅ and KBA = {A(a), R(a, b), R(a, c), S(a, b)}.
S(a, b) will be filtered using the method in [3]. Then, any generated partition
cannot entail S(a, c) independently, while S(a, c) can be entailed by KB.

Grau et al. [4] propose E-Connections as a formalism for representing com-
binations of OWL knowledge bases and an algorithm for decomposing an OWL
knowledge base into connected components. Amir and McIlraith [1] present a
greedy algorithm for decomposing a first-order logic theory into partitions and
message passing algorithms for reasoning with the partitioned theory. Due to
different goals, the partitioning produced by either [4] or [1] may not have the
independent partitioning property. This is because both [4] and [1] generate
partitions with potential links and the subsequent reasoning may require com-
munication between partitions through the links.

We have presented a method for partitioning the ABox of a SHIQ(D) knowl-
edge base, based on a conversion from SHIQ(D) to plain datalog. The primary
advantage of our method is that it always produces a disjoint and independent
partitioning, while all existing methods in the related work may not. For future
work, we will continue to improve the performance of our partitioning method,
conduct more investigations on handling nominals and complex roles, and extend
the method to an incremental one for dealing with knowledge base updates.
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Abstract. We present cq-programs, which enhance nonmonotonic de-
scription logics (dl-) programs by conjunctive queries (CQ) and union
of conjunctive queries (UCQ) over Description Logics knowledge bases,
as well as disjunctive rules. dl-programs had been proposed as a pow-
erful formalism for integrating nonmonotonic logic programming and
DL-engines on a clear semantic basis. The new cq-programs have two
advantages: First, they offer increased expressivity by allowing general
(U)CQs in the body. And second, this combination of rules and ontolo-
gies gives rise to strategies for optimizing calls to the DL-reasoner, by
exploiting (U)CQ facilities of the DL-reasoner. To this end, we discuss
some equivalences which can be exploited for program rewriting. Exper-
imental results for a cq-program prototype show that this can lead to
significant performance improvements.

1 Introduction

Rule formalisms that combine logic programming with other sources of knowl-
edge, especially terminological knowledge expressed in Description Logics (DLs),
have gained increasing interest in the past years. This process was mainly fos-
tered by current efforts in the Semantic Web development of designing a suitable
rules layer on top of the existing ontology layer. Such combinations of DLs and
logic programming can be categorized in systems with (i) strict semantic inte-
gration and (ii) strict semantic separation, which amounts to coupling heteroge-
neous systems [1–4]. In this paper, we will concentrate on the latter, considering
ontologies as external information with semantics treated independently from
the logic program. Under this category falls [5, 2], which extends the answer-set
semantics to so-called dl-programs (L,P ), which consist of a DL part L and a
rule part P that may query L. Such queries are facilitated by a special type
of atoms, which also permit to enlarge L with facts imported from the logic
program P , thus allowing for a bidirectional flow of information.

Since the semantics of logic programs is usually defined over a domain of
explicit individuals, this approach may fail to derive certain consequences, which
are implicitly contained in L. Consider a simplified version of an example from [6]:
? This work has been partially supported by the EC NoE REWERSE (IST 506779)

and the Austrian Science Fund (FWF) project P17212-N04.
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L = {father v parent ,∃father .∃father−.{Remus}(Romulus), father(Cain,Adam),
father(Abel ,Adam), hates(Cain,Abel), hates(Romulus,Remus)},

P = {BadChild(X)← DL[parent ](X,Z),DL[parent ](Y,Z),DL[hates](X,Y )}.
Apart from the explicit facts, L states that each father is also a parent

and that Romulus and Remus have a common father. The single rule in P
specifies that an individual hating a sibling is a BadChild . From this dl-program,
BadChild(Cain) can be concluded, but not BadChild(Romulus), though it is
implicitly stated that Romulus and Remus have the same father.

The reason is that, in a dl-program, variables must be instantiated over
their Herbrand base (containing the individuals in L and P ), and thus unnamed
individuals like the father of Romulus and Remus, are not considered. In essence,
dl-atoms only allow for building CQs that are DL-safe [6], which ensure that all
variables in the query can be instantiated to named individuals. While this was
mainly motivated by retaining decidability of the formalisms, unsafe CQs are
admissible under certain conditions [1]. We thus pursue the following.

• We extend dl-programs by (U)CQs to L as first-class citizens in the language.
In our example, to obtain the desired conclusion BadChild(Romulus), we may
use P ′ = {BadChild(X)← DL[parent(X,Z), parent(Y, Z), hates(X,Y )](X,Y )},
where the body of the rule is a CQ {parent(X,Z), parent(Y,Z), hates(X,Y )}
to L with distinguished variables X and Y .

Example 1. Both r = BadParent(Y ) ← DL[parent ](X,Y ),DL[hates](Y,X) and
r′ = BadParent(Y ) ← DL[parent(X,Y ), hates(Y,X)](X,Y ) equivalently pick
(some of) the bad parents. Here, in r the join between parent and hates is
performed in the logic program, while in r′ it is performed on the DL-side.

Since DL-reasoners including RACER, KAON2, and Pellet increasingly support
answering CQs, this can be exploited to push joins between the rule part and
the DL-reasoner, eliminating an inherent bottleneck in evaluating cq-programs.
• We present equivalence-preserving transformation rules, by which rule bodies
and rules involving cq- or ucq-atoms can be rewritten.
• We report on some experiments with a prototype implementation of cq-prog-
rams using dlvhex and RACER. They show the effectiveness of the rewriting
techniques, and that significant performance increases can be gained. These
results are interesting in their own right, since they shed light on combining
conjunctive query results from a DL-reasoner.

2 dl-Atoms with Conjunctive Queries

We assume familiarity with Description Logics (cf. [7]), in particular SHIF(D)
and SHOIN (D).3 A DL-KB L is a finite set of axioms in the respective DL.
We denote logical consequence of an axiom α from L by L |= α.

As in [5, 2], we assume a function-free first-order vocabulary Φ of nonempty
finite sets C and P of constant resp. predicate symbols, and a set X of variables.
As usual, a classical literal (or literal), l, is an atom a or a negated atom ¬a.
3 We focus on these DLs because they underly OWL-Lite and OWL-DL. Conceptually,

cq-programs can be defined for other DLs as well.
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Syntax A conjunctive query (CQ) q( ~X) is an expression { ~X | Q1( ~X1), Q2( ~X2),
. . . , Qn( ~Xn)}, where each Qi is a concept or role expression and each ~Xi is a
singleton or pair of variables and individuals, and where ~X ⊆ ⋃ni=1 vars( ~Xi) are
its distinguished (or output) variables. A union of conjunctive queries (UCQ)
q( ~X) is a disjunction

∨m
i=1 qi( ~X) of CQs qi( ~X). Where it is clear from the

context, we omit ~X from (U)CQs.
Example 2. In our opening example, cq1(X,Y ) = {parent(X,Z), parent(Y,Z),
hates(X,Y )} and cq2(X,Y ) = {father(X,Y ), father(Y, Z)} are CQs with dis-
tinguished variables X,Y , and ucq(X,Y ) = cq1(X,Y ) ∨ cq2(X,Y ) is a UCQ.

We now define dl-atoms α of form DL[λ; q]( ~X), where λ = S1 op1 p1, . . . ,
Sm opm pm, m ≥ 0, is a list of expressions Si opi pi, where each Si is either a
concept or a role, opi ∈ {], −∪, −∩}, and pi is a predicate symbol matching Si’s
arity, and where q is a (U)CQ with output variables ~X (in this case, α is called
a (u)cq-atom), or q( ~X) is a dl-query. Each pi is an input predicate symbol ;
intuitively, opi = ] increases Si by the extension of pi, while opi = −∪ increases
¬Si; opi = −∩ constrains Si to pi.

Example 3. The cq-atom DL[parent ] p; parent(X,Y ), parent(Y,Z)](X,Z) with
output X,Z extends L by adding the extension of p to the property parent , and
then joins parent with itself.

A cq-rule r is of the form a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn,
where every ai is a literal and every bj is either a literal or a dl-atom. If n = 0
and k > 0, then r is a fact. A cq-program KB = (L,P ) consists of a DL-KB L
and a finite set of cq-rules P .

Semantics For any CQ q( ~X) = {Q1( ~X1), Q2( ~X2), . . . , Qn( ~Xn)}, let φq( ~X) =
∃~Y ∧ni=1Qi( ~Xi), where ~Y are the variables not in ~X, and for any UCQ q( ~X) =∨m
i=1 qi( ~X), let φq( ~X) =

∨m
i=1 φqi

( ~X). Then, for (U)CQ q( ~X), the set of answers
of q( ~X) on L is the set of tuples ans(q( ~X), L) = {~c ∈ C| ~X| | L |= φq(~c)}.

Let KB = (L,P ) be a cq-program. Given the semantics of (U)CQs on L,
defining the semantics of cq- and ucq-atoms w.r.t. a Herbrand interpretation I
of the predicates in P (using constants from C) in the same way as for dl-atoms
is straightforward. We recall that a ground dl-atom a = DL[λ;Q](~c) is satisfied
w.r.t. I, denoted I |=L a, if L ∪ λ(I) |= Q(~c), where λ(I) =

⋃m
i=1Ai and

– Ai(I) = {Si(~e) | pi(~e) ∈ I}, for opi = ];
– Ai(I) = {¬Si(~e) | pi(~e) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(~e) | pi(~e) ∈ I does not hold}, for opi = −∩.

Now, given a ground instance a(~c) of a (u)cq-atom a( ~X) = DL[λ; q]( ~X)
(i.e., all variables in q( ~X) are replaced by constants), I satisfies a(~c), denoted
I |=L a(~c), if ~c ∈ ans(q( ~X), L ∪ λ(I)). The notion of model and (strong) answer
set of KB is then defined as usual (cf. [5, 2]).

Example 4. Let KB = (L,P ), where L is the well-known wine ontology4 and P
is as follows (P uses only atomic queries and may launch our rewritings):
4 http://www.w3.org/TR/owl-guide/wine.rdf
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v(L) ∨ ¬v(L)← DL[WhiteWine](W ),DL[RedWine](R),DL[locatedIn](W,L),

DL[locatedIn](R,L),not DL
ˆ
locatedIn(L,L′)

˜
(L).

← v(X), v(Y ), X 6= Y. c← v(X). ← not c.

del(W )← DL[hasF lavor](W,wine:Delicate).

del r(W )← v(L), del(W ),DL[locatedIn](W,L).

Informally, the first rule picks a largest region in which both red and white
wine grow, and the next three rules make sure that exactly one such region is
picked. The last rules choose the delicate wines in the region selected for visit.

KB has the following 3 strong answer sets (only positive facts from predi-
cates del r and v are listed): {del r(MountadamRiesling), v(AustralianRegion),
. . . }, {del r(LaneTannerPinotNoir), del r(WhitehallLanePrimavera), v(USReg-
ion), . . . }, and {del r(StonleighSauvignonBlanc), v(NewZealandRegion), . . . }.

The example in the introduction shows that cq-programs are more expres-
sive than dl-programs in [5, 2]. Furthermore, answer set existence for KB and
reasoning from the answer sets of KB is decidable if (U)CQ-answering on L is
decidable, which is feasible for quite expressive DLs including SHIQ and frag-
ments of SHOIN , cf. [8–10]. Rosati’s well-known DL+log formalism [11, 1], and
the more expressive hybrid MKNF knowledge bases [12, 13] are closest in spirit
to dl- and cq-programs, since they support nonmonotonic negation and use con-
structions from nonmonotonic logics. However, their expressiveness seems to be
different from dl- and cq-programs. It is reported in [12] that dl-programs (and
hence also cq-programs) can not be captured using MKNF rules. In turn, the
semantics of DL+log inherently involves deciding containment of CQs in UCQs,
which seems to be inexpressible in cq-programs.

3 Rewriting Rules for cq- and ucq-Atoms

As shown in Ex. 1, in cq-programs we might have different choices for defining
the same query. Indeed, the rules r and r′ are equivalent over any DL-KB L.
However, r′ performs the join on the DL side in a single call to the DL-reasoner,
while r performs the join on the logic program side, over the results of two calls
to the DL-reasoner. In general, making more calls is more costly, and thus r′

may be computationally preferable. Furthermore, the result transferred by the
single call in r′ is smaller than the results of the two calls.

Towards exploiting such rewriting, we present some transformation rules for
replacing a rule or a set of rules in a cq-program with another rule or set of rules,
while preserving the semantics of the program (see Table 1). By (repeated) ap-
plication of these rules, the program can be transformed into another, equivalent
program. Note that ordinary dl-atoms DL[λ;Q](~t), may be replaced by equiva-
lent cq-atoms DL[λ;Q(~t)]( ~X), where ~X = vars(~t), to facilitate rewriting.

Query Pushing (A) By this rule, cq-atoms DL[λ; cq1]( ~Y1) and DL[λ; cq2]( ~Y2) in
the body of a rule (A1) can be merged. In rule (A2), cq′1 and cq′2 are constructed
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Query Pushing
r : a1 ∨ · · · ∨ ak ←DL[λ; cq1]( ~Y1),DL[λ; cq2]( ~Y2), B. (A1)

r′ : a1 ∨ · · · ∨ ak ←DL
ˆ
λ; cq′1 ∪ cq′2

˜
( ~Y1 ∪ ~Y2), B. (A2)

where B = b1, . . . , bm,not bm+1, . . . ,not bn.

(In)equality Pushing

r : a1 ∨ · · · ∨ ah ←DL[λ; cq](~Y ), Yi1 6= Yi2 , . . . , Yi2k−1 6= Yi2k , (B1)

Yi2k+1 = Yi2k+2 , . . . , Yi2l−1 = Yi2l , B.

r′ : a1 ∨ · · · ∨ ah ←DL
ˆ
λ; cq′ ∪ ˘Yi1 6= Yi2 , . . . , Yi2k−1 6= Yi2k

¯˜
(~Y ), B. (B2)

where each Yij ∈ ~Y for 1 ≤ j ≤ 2l, and B = b1, . . . , bm,not bm+1, . . . ,not bn.

Fact Pushing

P̄ =


f(~c1), f(~c2), . . . , f(~cl),

a1 ∨ · · · ∨ ak ← DL
ˆ
λ;
Wr

i=1 cqi

˜
(~Y ), f( ~Y ′), B.

ff
(C1)

P̄ ′ =

(
f(~c1), f(~c2), . . . , f(~cl),

a1 ∨ · · · ∨ ak ← DL
h
λ;
Wr

i=1

“Wl
j=1 cqi ∪ { ~Y ′ = ~cj}

”i
(~Y ), B.

)
(C2)

~c1,. . . , ~cl are ground tuples, ~Y ′ ⊆ ~Y , and B = b1, . . . , bm,not bm+1, . . . ,not bn.

Unfolding

P̄ =

(
r1 : a1 ∨ · · · ∨ ai ← a′(~Y ), B1.

r2 : H ′ ∨ a′( ~Y ′)← B2.

)
(D1)

P̄ ′ = P̄ ∪ ˘ r′1 : H ′θ ∨ a1θ ∨ · · · ∨ aiθ ← B2θ,B1θ.
¯

(D2)

H ′ = a′1 ∨ · · · ∨ a′j , and θ is the mgu of a′(~Y ) and a′(~Y ′) (thus a′(~Y θ) = a′(~Y ′θ));

Where a′(~Y ) is not unifiable with a′(~Z) ∈ H(r1) ∪H ′, alternatively P̄ ′ = {r′1, r2}.
Table 1. Equivalences

by renaming variables in cq1 and cq2 as follows. Let ~Z1 and ~Z2 be the non-
distinguished (i.e., existential) variables of cq1 resp. cq2. Rename each X ∈ ~Z1

occurring in cq2 and each X ∈ ~Z2 occurring in cq1 to a fresh variable.
Query Pushing can be similarly done when one or both of cq1, cq2 is a UCQ

ucq1 resp. ucq2; here, we simply distribute the subqueries and form a single UCQ.

Pushing of (In)equalities (B) If the DL-engine is used under the unique
name assumption and supports (in)equalities in the query language, we can
easily rewrite rules with equality (=) or inequality (6=) in the body by pushing it
to the cq-query. A rule of form (B1) can be replaced by (B2), where the CQ cq′

results from cq by collapsing variables according to the equalities Yi2k+1 = Yi2k+2 ,
. . . , Yi2l−1 = Yi2l

.
Example 5. Consider rule r = bigwinery(M)← DL[Wine](W1), DL[Wine](W2),
W1 6= W2, DL[hasMaker ](W1,M), DL[hasMaker ](W2,M). Here, we want to
know all wineries producing at least two different wines. We can rewrite r, by
Query and Inequality Pushing, to the rule r′

r′ : bigwinery(M)←DL
[

Wine(W1),Wine(W2),W1 6= W2

hasMaker(W1,M), hasMaker(W2,M)

]
(M,W1,W2).

A similar rule works for a ucq-atom DL[λ;ucq](~Y ) in place of DL[λ; cq](~Y ).
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Fact Pushing (C) Suppose we have a program with “selection predicates”, i.e.,
facts which serve to select a specific property in a rule. We can push such facts
into a ucq-atom and remove the selection atom from the rule body.

Example 6. Consider the program P , where we only want to know the children
of joe and jill: P = {f(joe), f(jill), fchild(Y )← DL[isFatherOf ](X,Y ), f(X).}
We may rewrite the program to a more compact one with the help of ucq-atoms:

P ′ =
{

fchild(Y )← DL
[ {isFatherOf (X,Y ), X = joe} ∨
{isFatherOf (X,Y ), X = jill}

]
(X,Y ).

}
Such a rewriting makes sense in situations were isFatherOf has many tuples

and thus would lead to transfer all known father child relationships.

Unfolding (D) Unfolding rules is a standard-method for partial evaluation of
ordinary logic programs under answer set semantics. It can be also applied in
the context of cq-programs, with no special adaptation. After folding rules with
(u)cq-atoms in the body into other rules, subsequent Query Pushing might be
applied. In this way, inference propagation can be shortcut.

The following results state that the rewritings preserve equivalence. Let P ≡L
Q denote that (L,P ) and (L,Q) have the same answer sets.

Theorem 1. For an X ∈ {A,B} let r and r′ be rules of form (X1) and (X2),
respectively. Let (L,P ) be a cq-program with r∈P . Then, P ≡L (P \ {r})∪{r′}.
Theorem 2. Let P̄ be a set of cq-rules of form (C1) (resp. (D1)) and P̄ ′ be a
set of cq-rules of form (C2) (resp. (D2)). Then, P̄ ≡L P̄ ′. For any set of cq-rules
P such that P̄ ⊆ P , P ≡L (P \ P̄ ) ∪ P̄ ′, where for (D2) P̄ ′ = {r1, r2, r′1}.

Based on these rules, we have developed an optimization algorithm, described
in the extended version of this paper.5 Further, more general rewriting rules (e.g.,
incorporating cost models) can be conceived, which we omit for space reasons.

4 Experimental Results

We have tested the rule transformations using the prototype implementation of
the DL-plugin for dlvhex,6 a logic programming engine featuring higher-order
syntax and external atoms (see [14]), which uses RACER 1.9 as DL-reasoner (cf.
[15]). To our knowledge, this is currently the only implemented system for such
a coupling of nonmonotonic logic programs and Description Logics.

The tests were done on a P4 3GHz PC with 1GB RAM under Linux 2.6. As
an ontology benchmark, we used the testsuite described in [16]. The experiments
covered particular query rewritings (see Table 2) and version of the region pro-
gram (Ex. 4) with the optimizations applied. We report only part of the results,
shown in Fig. 1. Missing entries mean memory exhaustion during the evaluation.

In most of the tested programs, the performance boost using the aforemen-
tioned optimization techniques was substantial. Due to the size of the respective
5 http://www.kr.tuwien.ac.at/staff/roman/papers/dlopt-ext.pdf
6 http://www.kr.tuwien.ac.at/research/dlvhex/
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vicodi program: (Fact Pushing)

Pv = {c(vicodi:Economics), c(vicodi:Social), v(X)← DL[hasCategory ](X,Y ), c(Y ).}
semintec query: (Query Pushing)

Ps2 =


s2(X,Y, Z)← DL[Man](X),DL[isCreditCard ](Y,X),DL[Gold ](Y ),

DL[livesIn](X,Z),DL[Region](Z)

ff
semintec costs: (Query Pushing, Functional Property)

Pl = {l(X,Y )← DL[hasLoan](X,Y ),DL[Finished ](Y ).}
hasLoan is an inverse functional property and |hasLoan| = 682(n + 1), |Finished | =
234(n+ 1), where n is obtained from the ontology instance semintec n.

Table 2. Some test queries

ontologies, in some cases the DL-engine failed to evaluate the original dl-queries,
while the optimized programs did terminate with the correct result.

In detail, for the region program (upper left graph), we used the ontologies
wine 0 through wine 9. There is a significant speedup, and in case of wine 9 only
the optimized program could be evaluated. Most of the computation time was
spent by RACER. We note that the result of the join in the body of the first rule
had a size merely linear in the number of top regions L; a higher performance
gain may be expected for ontologies with larger joins.

The vicodi test series revealed the power of Fact Pushing (see the upper
right graph). While the unoptimized Pv could be evaluated only with vicodi 0
and 1, all ontologies vicodi i, 0≤ i≤ 4, could be handled with the optimized
program.

The semintec tests dealt with Query Pushing and show a significant evalua-
tion speedup (see lower row of Fig. 1). Ps2 is from one of the benchmark queries
in [16], while Pl tests the performance increase when pushing a query to a func-
tional property. In both cases, we used the ontologies semintec i, 0≤ i≤ 4, but
could only complete the tests of the optimized programs on all semintec n. The
performance gain for Pl is in line with the constant join selectivity.

Future work will be to compare to realizations of cq-programs based on other
DL-engines which host CQs, such as Pellet and KAON2, and to enlarge and refine
the rewriting techniques.
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OntoVQL: A Graphical Query Language for OWL 
Ontologies 
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Abstract. The database usability experience has shown that visual query 
languages tend to be superior to textual languages in many aspects.  By 
applying this principle in the context of ontologies, we present OntoVQL, a 
graphical query language for OWL-DL ontologies.  OntoVQL maps 
diagrammatic queries to DL based query languages such as nRQL, which is 
offered by the OWL-DL reasoner Racer.  OntoVQL hides the complexity of the 
DL query language from users and allows them to query OWL ontologies with 
less difficulty.  A visual query system equipped with this language has been 
implemented and is now available.  This tool enables users to formulate queries 
incrementally by having more than one query simultaneously available for 
getting combined or broken down into new queries.  Giving instant feedback in 
the form of result cardinality is another important feature of the tool that helps 
guiding users into building meaningful queries.   

Keywords: ontology, owl, graphical query language. 

1   Introduction 

Ontologies occupy an increasingly important role in the domain of knowledge 
management and information systems.  Although critical work in ontology editing 
and visualization has been done to assist the ontology engineer, not much has been 
accomplished for the domain expert or naïve user, i.e. someone who is expert in his 
domain of study but naïve in the sense of lacking the necessary logical background or 
technical skills for querying an ontology.  Note that ontology querying in this article 
consists of ABox retrieval.  Intuitively, this type of user would like to easily design 
meaningful queries. However, the actual state of the art translates into submitting a 
DL-query, written in a query language with a Lisp based syntax, to a DL-reasoner.  
OntoIQ [7] represents an attempt of solving this issue by providing a query interface 
offering the basic functionalities of nRQL [6] through some query patterns.  Although 
the latter aids in the querying process, its predefined queries limits the querying 
power of the user.   
The importance of an effective and easy to use query system has been recognized in 
the database area.  In fact, “the database area has proved to be particularly fruitful for 
applying visual techniques specifically in accessing stored data.” [8].  Since 
ontologies can be considered as an extended and more powerful way of representing 
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knowledge than databases, it naturally follows that whatever usability experience was 
gained from database visual querying would be relevant in the context of ontologies.  
There has been an extensive work done in that field and many visual query systems 
(VQS) employing various visual representations and interaction strategies have been 
proposed in the literature.  A VQS is composed of a visual query language (VQL) for 
pictorially expressing queries and of some functionality for facilitating the human-
computer interaction [8].  A VQL is a subclass of Visual Languages that serves for 
data extraction from databases.  Historically, database interfaces have moved from 
being textual (ex. SQL) to form-based, diagrammatic (ex. Gql [12]) and iconic.  Many 
VQLs took advantage of the graph representation of databases to express queries 
since queries are graph patterns that are searched in the database graph [13].  There 
exists some work that has been done towards visually querying ontologies but these 
attempts are not designed for querying OWL ontologies and they are not readily 
available for use.  However, there exists some work done for ontology based 
information seeking.  For instance, some visual query interfaces (ex. SEWASIE [14]) 
were developed to allow information retrieval from heterogeneous data sources 
through an integrated ontology.  This paper presents OntoVQL, a formal graphical 
query language for OWL ontologies that is an effort to apply the principles of a 
formal VQL.  This work is an extension to our previous work, GLOO [2] which 
mainly consisted of a design study but due to some practical implementation/time 
constraint issues along with a few design imperfections, some of its properties were 
dropped and others modified and thus OntoVQL emerged as a new better version of 
GLOO. 

2   Presenting the VQL 

2.1   Visual Notations 

Since VQLs are mainly based on the idea of directly manipulating database 
visualization as a graph by selecting the parts that are to be included in the query, then 
by analogy, given that the TBox of an ontology can also be visually represented by a 
graph, it is logical to consider that in order to formulate a query for ABox retrieval, 
one has to select “parts” of the TBox, i.e. concepts and roles, as components of the 
query.  The query is thus composed of graph components and therefore can be 
formulated as a graph on its own.  This would be one way of understanding the 
logistics behind viewing an ABox query as a graph.  The other way is based on the 
nature of ABox querying itself.  For instance, the starting point for ABox retrieval is 
the extraction of all instances of a concept.  Then, one step further from getting a set 
of individuals based on a concept name is to learn how these individuals are related 
with other individuals by the mean of edges.  In that sense, it is natural to construct 
query constraints in the form of a graph. 
The visual notations of the basic elements of OntoVQL illustrated in Table 1 partially 
follow the conventions described in [1].  Concepts are represented by their name 
inside of a filled oval whereas individuals are represented by their name inside of a 
filled rectangle.  The oval with ‘?’ is called an “unknown concept” and is equivalent 
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to owl:Thing? from the OWL language since it represents the instances that are not 
restricted to belong to a specific concept and can be of any type.  Roles are most 
conveniently represented by the role name and an arrow going from one entity to 
another.  Note that what is at stake in this representation is only the shape whereas the 
color is of no importance.  

Table 1.  Visualization of the basic elements of OntoVQL. 

<concept> 
 

<unknown concept>  
<individual>  

<role> 
 

 
The operators used for assembling building blocks into a query are intersection and 
union. There are two kinds of intersection and union operators: AND/OR groups and 
AND/OR nodes.  A group is represented by a circle labeled with the AND/OR 
keyword and encloses the intersected or unified concepts.  In Figure 1, the union 
operator represented by the OR node is connected with directed edges to AND groups 
in order to symbolize the union of intersected concepts.  Similarly, intersection can be 
applied on OR groups by connecting them to an AND node.  The alternation between 
union and intersection operators takes the form of a tree where the root is a AND/OR 
node and the leaves are AND/OR groups.   
 

Fig. 1. Alternation of AND/OR operators. 

2.2   Visual Syntax 

In linguistics and computer science, a generative grammar is a formal grammar that 
provides a precise description of a formal language.  The grammar is composed by a 
set of rules dictating the syntax of the language, i.e., expressing how strings in a 
language are generated.  We have adapted this principle in the context of generating a 
visual language instead of a textual one in order to generate OntoVQL by a formal 
grammar or more precisely by an adjusted version of a formal grammar.  As a result, 
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since OntoVQL can be generated by a formal grammar and is also semantically and 
syntactically unambiguous, it can be viewed as a formal visual query language. 
What is of primary importance that has a direct impact on the semantics of OntoVQL 
resides in its “connectivity syntax”, i.e., the way its components are linked together.  
This visual syntax can be expressed in terms of rules adopting the same form as a 
production rule in a formal grammar.  Thus, similar to what a typical formal grammar 
is composed of, our grammar has a finite set of non-terminal symbols: {<Query>, 
<ROLE>, <AND GROUP>, <OR GROUP>, <AND NODE>, <OR NODE>, <entity>}, a finite 
set of terminal symbols: {<concept>, <individual>, <unknown concept>, 

<role>}, each of which has its visual equivalence as shown in Table 1, and a finite set 
of production rules that are listed below.   
The rules dictate how the visual entities are allowed to be connected together by 
directed connection edges and roles.  The first rule in the grammar below indicates 
that a query can simply be a concept or consists of more complex components.  
Among these components, the role is described in the second rule as a binary 
component where the domain and range are entities that can be expanded to any of the 
elements listed in the third rule.  It is important to mention for the second rule that if a 
query has the shape of tree as in Figure 1, no role can link any of the query elements 
under a distinct “branch” of the tree. For example, none of the AND groups in Figure 
1 can be linked by a role.  The fourth and fifth rules illustrate the AND/OR group 
containing one or more concepts that are either intersected or unified.  Note that an 
XML like syntax is used for representing the notion of a group by having a start and 
end tag enclosing one or more concept element.  From rule 6, an AND node can be 
connected to an OR group and/or to an OR node and/or to an unknown concept that is 
linked to a role.  A directed connection edge whose source is the AND/OR node and 
target is the AND/OR group or the unknown concept links the domain and range 
entities together.   
 
Grammar generating OntoVQL: 

(1) <Query> -> <concept> | 
     <ROLE> | 
     <AND GROUP> | 
       <AND NODE> | 
     <OR GROUP> | 
     <OR NODE> 
(2) <ROLE> -> <entity> <role> <entity>  
(3) <entity> -> <concept> | 
     <unknown concept>  

   <individual> |  
   <AND GROUP> | 
   <OR GROUP> | 
   <AND NODE> | 
   <OR NODE> 

(4) <AND GROUP> -> <and group> <concept>* </and group> 
(5) <OR GROUP> -> <or group> <concept>* </or group> 
(6) <AND NODE> -> <and node>(<OR GROUP>* | <OR NODE>* | 

          (<unknown concept><role><entity>)*) 
(7) <OR NODE> -> <or node>(<AND GROUP>* | <AND NODE>* | 

      (<unknown concept><role><entity>)*) 
 

As an illustrative example of how the above grammar describes the visual syntax 
of OntoVQL, consider the query in Figure 2.  The query is composed of an OR node 
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that links an AND group with and unknown concept related to another unknown 
concept by a role R1.  Note that the query’s visual syntax corresponds to the 7th rule. 

 
Fig. 2. An example query generated by the 7th rule of the grammar. 

2.3   Mapping the VQL to the nRQL Language 

The expressive power of OntoVQL can be informally described as being able to 
formulate queries on DL Abox elements (concepts and role assertions) and make use 
of conventional operators (union, intersection) for building up more complex, refined 
queries.  Our proposed VQL is designed independently of any OWL query language 
and offers basic functionalities for querying OWL-DL ontologies.  This means that 
there is not a one-to-one mapping between the visual components of OntoVQL and 
the elements of an OWL query language.  Note that a number of these elements have 
no visual counterpart and therefore, OntoVQL does not match the full expressive 
power of OWL query languages.  For instance, datatypes and negation are features 
that are not available in OntoVQL but are provided by the textual query language we 
are mapping to, nRQL.  Even though OntoVQL is less expressive, for the simple 
queries mostly asked by the naïve user, the OntoVQL version of the query exhibits a 
lower complexity by mainly getting rid of the textual syntax and hiding the query 
variables of the OWL query.  In that sense, we claim that OntoVQL is less complex 
than an OWL query language.   

Table 2.  Example of a graphical query and its equivalence in nRQL. 

 
(retrieve ( $?x2 $?x3 $?x1 ) 
              (and  ($?x2 |http://cohse.semanticweb.org/ontologies/people#animal|) 
                       ($?x1 |http://cohse.semanticweb.org/ontologies/people#animal|) 
                       (or ($?x3 |http://cohse.semanticweb.org/ontologies/people#woman|) 
                             ($?x3 |http://cohse.semanticweb.org/ontologies/people#man|))  
                       ($?x3 $?x1 |http://cohse.semanticweb.org/ontologies/people#has_pet|) 
                       ($?x3 $?x2 |http://cohse.semanticweb.org/ontologies/people#likes|))) 
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It is possible to translate the visually expressed query semantics into a written version 
using the query language of your choice.  In our case, the translation is done using 
nRQL.  nRQL, its syntax is implemented by an optimized OWL-DL query processor 
known to be highly effective and efficient.  A nRQL query is composed of a query 
head and of a query body.  The query body consists of the query expression.  The 
query head corresponds to the projected variables, that is, variables that are mentioned 
in the body and will be bound to the result.  A tag number in brackets visually 
represents this variable projection.  For instance, from the above query, there are three 
variables in the head that correspond to the three tag numbers.  This “tagging” is not 
inherently part of OntoVQL as such but is provided for the purpose of integrating the 
projection feature into the VQS. Note that the “tagging” process is not up to the user 
and is automatically taken care of by the system. 
    Although no AND operator is present in the visual query, all the elements in the 
corresponding nRQL query are intersected.  This is an implicit conjunction in contrast 
to the explicit one that is visualized by an AND node/group.  Therefore, outgoing 
roles from an entity as well as domain and range specification for a role requires the 
use of conjunction in nRQL.   
    In order to be able to combine or break down queries, it must be possible to 
visualize more than one query simultaneously, each query having its own scope of 
variables.  When mapping to nRQL, each concept must be mapped to a unique 
variable.  In the case of AND/OR groups, the concepts inside the group must be 
mapped to the same variable.  Therefore, in the nRQL translation, the concepts inside 
the OR group are both mapped to x3 whereas the animal concepts are mapped to 
different variables x1 and x2.  
    The reason why concepts involved in an AND/OR operation must be mapped to the 
same variable is because this has a direct impact on the result.  For example if 
concepts C3 and C2 were intersected, then the nRQL query body will include (and 
(x1 C3) (x1 C2)) which results into binding x1 to those individuals who are C3 and 
C2.  If distinct variables were used instead, then the answer would be those 
individuals who are C3, plus those individuals who are C2 but not already mentioned 
for C3.  Hence, the semantics changes into adding up C2 and C3 individuals instead 
of intersecting them.  This is why variable mapping is crucial when translating the 
visual query into nRQL.    

2.5   Presenting the visual query system 

Having an actual implementation of OntoVQL helps to evaluate its usefulness.  
Figure 2 shows a screenshot of the system’s main window that is split into two parts, 
the information tabs and the query tabs.  The information tabs allow viewing the list 
of concepts, roles and individuals whereas the query tabs provide the query 
formulation pane, the query translation as well as the results.    

Before starting to use the system for querying, the user must load some OWL 
ontology.  Once the OWL file is loaded, the user can drag and drop concepts, roles or 
individuals into the query pane.  Each dropped element becomes a distinct query and 
these simple queries can then be combined by using roles, connection edges, 
AND/OR groups and nodes.  Only permitting those connections that follow the 
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grammar rules enforces the connectivity syntax.  Thus, the user can only formulate 
legal queries.  Deleting connection edges and roles allows breaking down complex 
queries into simple ones.  The undo/redo pattern is implemented to facilitate query 
formulation.  It is also possible to save queries into an XML file and load them later 
for further use. 

Each query in the system is identified by a query number that uniquely 
distinguishes it from the others.  One important aspect of the tool is the query preview 
that indicates the number of tuples returned in the result.  The number next to the 
query identifier indicates the result cardinality.  Whenever a new query is created, it is 
instantly evaluated and its preview set to the obtained number of tuples.  Giving 
instant feedback plays a significant role in guiding the user into formulating 
meaningful queries.  For instance, it would be pointless to combine concepts in an 
AND group when their preview is zero. 

Fig 
Fig. 2. Screenshot of the actual implementation of OntoVQL. 

 

3   Conclusion  

In conclusion, we proposed OntoVQL as a visual query language for OWL-DL 
ontologies and have implemented a tool for its practical use. OntoVQL is meant to be 
a better alternative over the traditional OWL query languages for the naïve user.  In 
fact, it provides numerous advantages over a textual query language such as nRQL by 
eliminating its textual syntax with visual simplification, not allowing syntactic errors 
through the user interface (UI); simplifying the breaking down and merging of 
queries; and assisting users in the querying process through the system features such 
as providing immediate feedback with result cardinalities. The implementation of the 
UI has been completed and is available for download 
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(http://users.encs.concordia.ca/~f_amineh/).  A usability test for evaluating the tool’s 
efficiency is underway and its results should be posted as soon as they are ready.     
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Abstract. Many activities related to semantically annotated resources can be en-
abled by a notion of similarity among them. We propose a method for defin-
ing a family of semi-distances over the set of individuals in a knowledge base
which can be used in these activities. In the line of works on distance-induction
on clausal spaces, the family is parameterized on a committee of concepts. Hence,
we also present a method based on the idea of simulated annealing to be used to
optimize the choice of the best concept committee.

1 Introduction

Recently, a growing interest is being committed to alternative inductive procedures ex-
tending the scope of the methods that can be applied to concept representations. Some
are based on a notion of similarity such as case-based reasoning [6], retrieval [5, 7],
inductive generalization [10] and conceptual clustering [8] or ontology matching [16].

As pointed out in a seminal paper [2] concerning similarity in Description Log-
ics (DL), most of the existing measures focus on the similarity of atomic concepts
within simple hierarchies. Besides, alternative approaches are based on related notions
of feature similarity or information content (see also [14]). All these approaches have
been specifically aimed at assessing concept similarity. In the perspective of crafting
similarity-based inductive methods for DL , the need for a definition of a semantic sim-
ilarity measure for individuals arises, that is a problem that so far received less attention
in the literature.

Recently, some dissimilarity measures for individuals in specific DL representations
have been proposed which turned out to be practically effective for the targeted induc-
tive tasks (e.g. the nearest-neighbor approach applied to retrieval [5]). Although these
measures ultimately rely on the semantics of primitive concepts as elicited from the
ABox, still they are partly based on structural criteria (a notion of normal form coupled
with a most specific concept operator [1]) which determine also their main weakness:
they are hardly scalable to deal with standard languages used in the current knowl-
edge management frameworks. For example, in [5] the most specific concepts w.r.t.
the ABox of individuals are first computed (or their approximations in a normal form)
as expressed in ALC, then a structural measure assesses the similarity of the resulting
AND-OR trees, where, ultimately, the computation is based on the extensions of the
primitive concepts in the leaves.
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Therefore, we have devised a new family of dissimilarity measures for semantically
annotated resources, which can overcome the aforementioned limitations. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces induced by means of
a proper method developed in the context of multi-relational learning [15]. Another
source of inspiration was rough sets theory [13] which aims at the formal definition of
vague sets (concepts) by means of their approximations determined by an indiscerni-
bility relationship.

Namely, the measures are based on the degree of discernibility of the input indi-
viduals with respect to a committee of features, which are represented by concept de-
scriptions expressed in DL. One of the advantages of these measures is that they do
not rely on a particular language for semantic annotations. As such, these new mea-
sures are not absolute, since they depend on both the choice (and cardinality) of the
features committee and the knowledge base they are applied to. Rather, they rely on
statistics on individuals that are likely to be maintained by knowledge base management
systems [9, 4], which can determine a potential speed-up in the measure computation
during knowledge-intensive tasks. Furthermore, we also propose a way to extend the
presented measures to the case of assessing concept similarity by means of the notion
of medoid [11], i.e., in the DL context, the most centrally located individual in a concept
extension w.r.t. a given metric.

Experimentally, it may be shown that the measures induced by large committees
(e.g. including all primitive and defined concepts) can be sufficiently accurate (i.e. prop-
erly discriminating) when employed for classification tasks even though the committee
of features employed were not the optimal one or if the concepts therein were partially
redundant. Nevertheless, this has led us to investigate on a method to optimize the com-
mittee of features that serve as dimensions for the computation of the measure. To this
purpose, the employment of genetic programming and randomized search procedures
was considered. Finally we opted for an optimization procedure based on simulated an-
nealing [3], a randomized approach that can overcome the problem of the local minima,
i.e. finding a good solution w.r.t. the fitness function that is not globally optimal.

The remainder of the paper is organized as follows. The definition of the family of
measures is proposed in Sect. 2, where we prove them to be semi-distances. In Sect. 3,
we illustrate and discuss the method for optimizing the choice of concepts for the com-
mittee of features which induces the measures. Possible developments are finally exam-
ined in Sect. 4.

2 A Family of Semi-distances for Individuals

In the following, we assume that resources, concepts and their relationship may be
defined in terms of a generic DL language endowed with the standard descriptive se-
mantics (see the handbook [1] for a thorough reference).

For the measure definition, we simply consider a knowledge base K = 〈T ,A〉
containing a TBox T and an ABox A. The set of the individuals occurring in A will be
denoted with Ind(A).

As regards the inference services, our measures require (non)membership queries
performing ABox lookups or instance-checking [1]. The complexity depends on the
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DL of choice, however much of the computational effort can be saved by means of
pre-computation (see projection functions below).

2.1 A Family of Measures for Individuals

We focus on the problem of assessing the semantic similarity (or dissimilarity) of indi-
viduals in the context of a knowledge base expressed in DL. To the best of our knowl-
edge, only few measures tackle this problem so far [5]. Following some ideas borrowed
from machine learning [15], a family of totally semantic distance measures for individ-
uals can be defined in the context of a knowledge base.

It can be observed that individuals lack a syntactic structure that may be exploited
for a comparison. However, on a semantic level, similar individuals should behave simi-
larly with respect to the same concepts, i.e. similar assertions should be shared by them.
Therefore, we introduce novel dissimilarity measures for individuals, whose rationale
is the comparison of their semantics w.r.t. a fixed number of dimensions represented by
DL concept descriptions. Namely, individuals are compared on the grounds of their be-
havior w.r.t. a reduced (yet not necessarily disjoint) committee of features, represented
by a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which stands as a
group of discriminating features expressed in the language taken into account.

In its simple formulation, a family of semi-distance functions for individuals, in-
spired by Minkowski’s metrics, can be defined as follows:

Definition 1 (family of measures). Let K = 〈T ,A〉 be a knowledge base. Given a
set of concept descriptions F = {F1, F2, . . . , Fm}, a family {dF

p}p∈IN of functions dF
p :

Ind(A)× Ind(A) 7→ [0, 1] is defined as follows:

∀a, b ∈ Ind(A) dF
p(a, b) :=

1
m

[
m∑
i=1

| πi(a)− πi(b) |p
]1/p

where ∀i ∈ {1, . . . ,m} the i-th projection function πi is defined by:

∀a ∈ Ind(A) πi(a) =

 1 K |= Fi(a)
0 K |= ¬Fi(a)
1
2 otherwise

The superscript F will be omitted when the set of features is fixed.
As an alternative, especially when a good number of assertions are available in the

ABox, the measures can be approximated by defining the projection functions based on
a simple ABox look-up:

∀a ∈ Ind(A) πi(a) =

 1 Fi(a) ∈ A
0 ¬Fi(a) ∈ A
1
2 otherwise

Proceeding of DL2007 - Regular Papers 277



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 278 — #288 i
i

i
i

i
i

2.2 Discussion

It is easy to prove that these functions have the standard properties for semi-distances:

Proposition 1 (semi-distance). For a fixed feature set and p > 0, function dp is a
semi-distance.

Proof. In order to prove the thesis, given any three individuals a, b, c ∈ Ind(A) it must
hold that:
1. dp(a, b) ≥ 0 (positivity)
2. dp(a, b) = dp(b, a) (symmetry)
3. dp(a, c) ≤ dp(a, b) + dp(b, c) (triangular inequality)
Now, we observe that:

1. trivial, by definition
2. trivial, for the commutativity of the operators involved
3. the property follows for the properties of the power function:

dp(a, c) =
1
m

[
m∑
i=1

| πi(a)− πi(c) |p
]1/p

=
1
m

[
m∑
i=1

| πi(a)− πi(b) + πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑
i=1

| πi(a)− πi(b) |p + | πi(b)− πi(c) |p
]1/p

=
1
m

[
m∑
i=1

| πi(a)− πi(b) |p +
m∑
i=1

| πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑
i=1

| πi(a)− πi(b) |p
]1/p

+
1
m

[
m∑
i=1

| πi(b)− πi(c) |p
]1/p

= dp(a, b) + dp(b, c)

As such, these are only a semi-distances. Namely, it cannot be proved1 that dp(a, b) =
0 iff a = b. This is the case of indiscernible individuals with respect to the given set of
features F.

The underlying idea for the measure is that similar individuals should exhibit the
same behavior w.r.t. the concepts in F. Here, we make the assumption that the feature-
set F may represent a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals.

It could be criticized that the subsumption hierarchy has not been explicitly in-
volved. However, this may be actually yielded as a side-effect of the possible partial
redundancy of the various concepts, which has an impact on their extensions and thus

1 In case the unique names assumption were made, a further projection function can be intro-
duced π0, such that |π0(a)− π0(b)| = 1 iff a 6= b.
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on the related projection function. A tradeoff is to be made between the number of
features employed and the computational effort required for computing the related pro-
jection functions.

Compared to other distance (or dissimilarity) measures [2, 5], the presented func-
tions do not depend on a specific language. Note that the computation of projection
functions πi (i = 1, . . . ,m) on the individuals can be performed in advance (with the
support of KBMS [9, 4]) thus determining a speed-up in the actual computation of
the measure. This is very important for the measure integration in algorithms which
massively use this distance, such as case-based reasoning and all other instance-based
methods including clustering algorithms.

Following the rationale of the average link criterion used in agglomerative clustering
[11], the measures can be extended to the case of concepts, by recurring to the notion
of medoids. The medoid of a group of individuals is the individual that has the highest
similarity w.r.t. the others. Formally. given a group G = {a1, a2, . . . , an}, the medoid
is defined:

medoid(G) = argmin
a∈G

n∑
j=1

d(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups of
individuals obtained by retrieval Ri = {a ∈ Ind(A) | K |= Ci(a)}, and their resp.
medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure dF

p (for some p > 0 and
committee F). Then we can define the function for concepts as follows:

dF
p(C1, C2) := dF

p(m1,m2)

3 Feature Set Optimization

Experimentally, we obtained satisfactory results2 by testing the measure on distance-
based classification. Nevertheless, various optimizations of the measures can be fore-
seen as concerns their parametric definition. Specifically, the choice of the concepts to
be included in the committee – feature selection – will be examined. Among the pos-
sible committees, those that are able to better discriminate the individuals in the ABox
ought to be preferred:

Definition 2 (good feature set). Let F = {F1, F2, . . . , Fm} be a set of concept de-
scriptions. We call F a good feature set for the knowledge base K = 〈T ,A〉 iff ∀a, b ∈
Ind(A), a 6= b : ∃i ∈ {1, . . . ,m} : πi(a) 6= πi(b).

Note that, when the function defined above adopts a good feature set, it has the proper-
ties of a metric on the related instance-space.

Since the function strongly depends on the choice of concepts included in the com-
mittee of features F, two immediate heuristics can be derived:

2 Results omitted for lack of space. They are available in technical reports and papers to appear.
See http://lacam.di.uniba.it:8000/people/nicola.html.
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1. controlling the number of concepts of the committee (which has an impact also on
efficiency), including especially those that are endowed with a real discriminating
power;

2. finding optimal sets of discriminating features of a given cardinality, by allowing
also their composition employing the specific constructors made available by the
DL language of choice.

Both these heuristics can be enforced by means of suitable machine learning tech-
niques especially when knowledge bases with large sets of individuals are available.
Namely, part of the entire data can be drawn in order to induce optimal F sets, in ad-
vance with respect to the application of the measure for all purposes. The adoption of
genetic programming has been considered for constructing optimal sets of features. Yet
these algorithms are known to suffer from being possibly caught in local minima. An
alternative may consist in employing a different probabilistic search procedure which
aims at a global optimization. Thus a method based on simulated annealing [3] has been
devised, whose algorithm is reported in Fig. 1.

Essentially the algorithm searches the space of all feature sets starting from an initial
guess (determined by MAKEINITIALFS(K)) based on the concepts (both primitive and
defined) currently referenced in the knowledge base. The loop controlling the search
is repeated for a number of times that depends on the temperature which gradually
decays to 0, when the current feature committee can be returned. Meanwhile, this set is
iteratively refined calling a suitable procedure RANDOMSUCCESSOR(). Then the fitness
of the new feature set is compared to that of the current one determining the increment
of energy ∆E. If this is positive then the candidate committee replaces the current one.
Otherwise it will (less likely) be replaced with a probability that depends on ∆E.

As regards the heuristic FITNESSVALUE(F), it can be computed as the average dis-
cernibility factor [13] of the individuals w.r.t. the feature set. For example, given a set
of individuals IS = {a1, . . . , an} ⊆ Ind(A) (the whole or just a sample of Ind(A) used
to induce an optimal measure) the fitness function may be defined:

FITNESSVALUE(F) = k ·
∑

1≤i<j≤n

|F|∑
k=1

| πk(ai)− πk(aj) |

where k is a normalization factor which may be set to: (1/m) (n · (n− 1)/4− n),
which depends on the number of couples of different individuals that really determine
the fitness measure.

As concerns finding candidates to replace the current committee, the function RAN-
DOMSUCCESSOR() can be implemented by recurring to simple transformations of the
feature set:

– adding (resp. removing) a concept C: nextFS← currentFS ∪ {C}
(resp. nextFS← currentFS \ {C})

– randomly choosing one of the current concepts from currentFS, say C;
replacing it with one of its refinements C ′ ∈ REF(C)

Refining concept descriptions is language-dependent. For the case ofALC logic, refine-
ment operators have been proposed in [12, 10]. Complete operators are to be preferred
to ensure exploring the whole search-space
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FeatureSet OPTIMIZEFEATURESET(K, ∆T )
input K: Knowledge base

∆T : function controlling the decrease of temperature
output FeatureSet
static currentFS: current Feature Set

nextFS: next Feature Set
Temperature: controlling the probability of downward steps

begin
currentFS← MAKEINITIALFS(K)
for t← 1 to∞ do

Temperature← Temperature−∆T (t)
if (Temperature = 0)

return currentFS
nextFS← RANDOMSUCCESSOR(currentFS,K)
∆E ← FITNESSVALUE(nextFS)− FITNESSVALUE(currentFS)
if (∆E > 0)

currentFS← nextFS
else // replace FS with given probability

REPLACE(currentFS, nextFS, e∆E)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure.

Given a suitable cooling schedule, the algorithm is known to find an optimal solu-
tion. To control the complexity of the process alternate schedules may be preferred that
guaratee the construction of suboptimal solutions in polynomial time [3].

4 Conclusion and Extensions

We have proposed the definition of a family of semi-distances over the individuals in
a DL knowledge base. The measures are not language-dependent yet they are param-
eterized on a committee of concepts. Therefore, we have also presented a randomized
search method to find optimal committees. One of the advantages of the measures is
that they are not language-dependent differently from previous proposals [5]. As pre-
viously mentioned, the subsumption relationships among concepts in the committee is
not explicitly exploited in the measure for making the relative distances more accurate.
The extension to the case of concept distance may also be ameliorated.

The measure may have a wide range of application of distance-based methods to
knowledge bases. They have been integrated in an instance-based learning system im-
plementing a nearest-neighbor learning algorithm: an experimentation on performing
semantic-based retrieval proved the effectiveness of the new measures, compared to the
outcomes obtained adopting other measures [5]. The next step concerns exploiting the
measures in a conceptual clustering algorithm where clusters will be formed by group-
ing instances on the grounds of their similarity, possibly triggering the induction of new
emerging concepts, as in [8].
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1 Introduction

The majority of formalisms for distributed ontology integration based on the p2p archi-
tecture providemapping languagesable to express semantic relations between concepts
of different ontologies. These formalisms can express thata conceptC in Ontology 1 is
equivalent (less/more general than) a conceptD in Ontology 2 (see [13] for a survey).
Few mapping languages allow also to express semantic relations between properties [8,
6], and thus state that a relationR in Ontology 1 is equivalent (less/more general than)
a relationS in Ontology 2. These mappings, hereafter calledhomogeneous mappings,
are able to cope with a large, but not the totality of heterogeneities between ontologies.

Assume, for instance, that a knowledge engineer builds an ontology of family unions
containing the binary relationsmarriedWith andpartnerOf between two per-
sons. Suppose also that a second ontology engineer, asked todesign a ontology for the
same purpose, defines a conceptMarriage, whose instances are the actual civil or
religious marriages, and the conceptcivilUnion, whose instances are all the civil
unions. We can easily see that while the first ontology prefers to model unions as rela-
tions, the second represents them as concepts. Despite thisdifference of style in mod-
elling, the conceptMarriage and the relationmarriedWith represent the same (or
a very similar) real world aspect, and similarly withpartnerOf andcivilUnion.
To reconcile heterogeneous representations of this sort (which are instances of so-called
schematic differences. See [2]) we need a mapping language that allows to map con-
cepts of one ontology into relations of another ontology.

Motivated by these observations, we have illustrated in [9]the need of rich map-
ping languages that incorporate homogeneous andheterogeneous mappings, such as
mappings between concepts and relations. [9] contains a preliminary investigation on
how to define such rich mapping language in Distributed Description Logics (DDL)
[12], and [8] presents a logic and an algorithm for the representation and reasoning
with homogeneous mappings in DDL.

Here we address the task of representing and reasoning with both homogeneous and
heterogeneous mappings. In particular, we extend the semantics of DDL to deal with
heterogeneous mappings. The idea behind this is the abilityto relate triples of the form
〈object 1, relation name, object 2〉 in one ontology with objects in the domain of
another ontology. We provide a sound and complete axiomatization of the effects of all
mappings from a source ontology to a target ontology. This isthe crucial step towards
the axiomatization for an arbitrary network of ontologies as shown in [12].
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2 A rich language for mappings

Distributed Description Logic (DDL) [12] is anaturalgeneralisation of the Description
Logic (DL) framework designed to formalise multiple ontologiespairwise linked by
semantic mappings. In DDL, ontologies correspond to description logic theories (T-
boxes), while semantic mappings correspond to collectionsof bridge rules(B).

Given a non empty setI of indexes, used to identify ontologies, let{DLi}i∈I be a
collection of description logics3. For eachi ∈ I let us denote a T-box ofDLi asTi. In
this paper, we assume that eachDLi is description logic weaker or at most equivalent to
ALCQIb, which corresponds toALCQI with role union, conjunction and difference
(see [15]). Because of lack of space, we omit the precise description ofALCQIb, and
we assume that the reader is familiar with DDL as described in[12].

We indicate with{Ti}i∈I a family of T-Boxes indexed byI. Intuitively,Ti is the DL
formalisation of thei-th ontology. To make every description distinct, we will prefix it
with the index of ontology it belongs to. For instance, the conceptC that occurs in the
i-th ontology is denoted asi : C. Similarly, i : C ⊑ D indicates that the axiomC ⊑ D
is being considered in thei-th ontology.

Semantic mappings between different ontologies are expressed via collections of
bridge rules. In the following we useA,B,C and D as place-holders for concepts
andR,S, P andQ as place-holders for roles. We instead useX andY to denote both
concepts and roles.

An homogeneous bridge rulefrom i to j is an expression defined as follows:

i : X
⊑−→ j : Y (into bridge rule) (1)

i : X
⊒−→ j : Y (onto bridge rule) (2)

whereX andY are either concepts ofDLi andDLj respectively, or roles ofDLi and
DLj respectively. Anheterogeneous bridge rulefrom i to j is as follows:

i : R
⊑−։ j : C (role-into-concept bridge rule) (3)

i : R
⊒−։ j : C (role-onto-concept bridge rule) (4)

i : C
⊑−։ j : R (concept-into-role bridge rule) (5)

i : C
⊒−։ j : R (concept-onto-role bridge rule) (6)

whereR is a role andC is a concept. Adistributed T-box(DTB) T = 〈{Ti}i∈I ,B〉
consists of a collection{Ti}i∈I of T-boxes, and a collectionB = {Bij}i6=j∈I of bridge
rules between them.

Bridge rules (3) and (4) state that, from thej-th point of view the roleR in i is less
general, resp. more general, than its local conceptC. Similarly, bridge rules (5) and
(6) state that, from thej-th point of view the conceptC in i is less general, resp. more
general, than its local roleR. Thus, the bridge rule

i : marriedInChurchWith
⊑−։ j : Marriage

3 We assume familiarity with Description Logic and related reasoning systems,described in [1].
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expresses the fact that, according to ontologyj, the relationmarriedInChurchWith
in ontologyi is less general than its local conceptMarriage, while

i : civilUnion
⊑−։ j : partnerOf i : civilUnion

⊒−։ j : partnerOf

say that, according to ontologyj, the conceptcivilUnion in ontologyj is equivalent
to its local relationpartnerOf.

In this paper we require that for every (into or onto) bridge rule between rolesi :
P −→ j : R in Bij , alsoi : inv(P ) −→ j : inv(R) is in Bij (whereinv(X) is the
inverse ofX). This to simplify the notation of the rules defined in Section 3.

The semantic of DDL assigns to each ontologyTi a local interpretation domain.
The first component of an interpretation of a DTB is a family ofinterpretations{Ii}i∈I ,
one for each T-boxTi. EachIi is called alocal interpretationand consists of apossibly
emptydomain∆Ii and a valuation function·Ii , which maps every concept to a subset of
∆Ii , and every role to a subset of∆Ii×∆Ii . The interpretation on the empty domain is
used to provide a semantics for distributed T-boxes in whichsome of the local T-boxes
are inconsistent. The reader interested in this aspect of DDL can refer to [12].

The second component of the DDL semantics are families of domain relations. Do-
main relations define how the different T-box interact and are necessary to define the
satisfiability of bridge rules.

Definition 1. A domain relationrij from i to j is a subset of∆Ii ×∆Ij . We userij(d)
to denote{d′ ∈ ∆Ij | 〈d, d′〉 ∈ rij}; for any subsetD of ∆Ii , we userij(D) to denote⋃

d∈D rij(d); for any R ⊆ ∆Ii × ∆Ii we userij(R) to denote
⋃
〈d,d′〉∈R rij(d) ×

rij(d′).

A domain relationrij represents a possible way of mapping the elements of∆Ii

into its domain∆Ij , seen fromj’s perspective. The domain relation is used to interpret
homogeneous bridge rules.

Definition 2. The domain relationrij satisfies a homogeneous bridge rule w.r.t.,Ii and
Ij , written as〈Ii, rij , Ij〉 |= br, when

〈Ii, rij , Ij〉 � i : X
⊑−→ j : Y if rij(XIi) ⊆ Y Ij (7)

〈Ii, rij , Ij〉 � i : X
⊒−→ j : Y if rij(XIi) ⊇ Y Ij (8)

whereX andY are either two concepts or two roles.

Domain relations do not provide sufficient information to interpret heterogeneous
mappings. Intuitively, an heterogeneous bridge rule between a relationR and a con-
cept C connects a pair of objects related byR with an object which is inC. This
suggests that, to evaluate heterogeneous bridge rules fromroles in i to concepts inj
we need a relation that maps triples of the form〈object 1, relation name, object 2〉
from ontologyi into objects of∆Ij . As an example we would like to map the triple
〈John, marriedWith, Mary〉 of the first ontology into the marriagem123 of the sec-
ond ontology, with the intuitive meaning thatm123 is the marriage which correspond
to the married couple composed ofJohn andMary. We first formally introduce the
triples〈object 1, relation name, object 2〉 for a given ontologyi.
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Given a local interpretationIi we consider the set of triples “induced” by the inter-
pretation as the set ofadmissible triplesΣIi . LetIi be a local interpretation

〈
∆Ii , ·Ii

〉
forDLi, andR be the set of all atomic relations relations ofDLi. We indicate withΣIi

the set of all triples〈x1,X, x2〉 such thatx1, x2 ∈ ∆Ii ; X ∈ R; and(x1, x2) ∈ XIi .
Intuitively, 〈John, marriedWith, Mary〉 is an admissible triple inΣIi if John is

married withMary, or more formally if the pair(John, Mary) belongs to the interpre-
tation ofmarriedWith in Ii.

Definition 3. A concept-role domain relationcrij from i to j is a subset of∆Ii ×ΣIj .
A role-concept domain relationrcij from i to j is a subset ofΣIi ×∆Ij .

The domain relationrcij represents a possible way of mapping pairs ofRIi into ele-
ments ofCIj , seen fromj’s perspective. Concept-role and role-concept domain rela-
tions are used to interpret heterogeneous mappings.

Definition 4. Therole-concept domain relationrcij satisfies a role-(into/onto)-concept
bridge rule w.r.t.,Ii andIj , written〈Ii, rcij , Ij〉 |= br, when

1. (Ii, rcij , Ij) |= i : R
⊑−։ j : C if for all (x1, x2) ∈ RIi and for all pairs

((x1,X, x2), x) ∈ rcij with XIi ⊆ RIi , we have thatx ∈ CIj

2. (Ii, rcij , Ij) |= i : R
⊒−։ j : C if for all x ∈ CIj there is a pair((x1,X, x2), x) ∈

rcij , such thatXIi ⊆ RIi .

Theconcept-role domain relationcrij satisfies a concept-(into/onto)-role bridge rule
w.r.t.,Ii andIj , written〈Ii, crij , Ij〉 |= br, when

3. (Ii, crij , Ij) |= i : C
⊑−։ j : R if for all x ∈ CIi , and for all pairs(x, 〈x1,X, x2〉) ∈

crij , it is true thatXIj ⊆ RIj ;

4. (Ii, crij , Ij) |= i : C
⊒−։ j : R if for all (x1, x2) ∈ RIj there is a pair

(x, 〈x1,X, x2〉) ∈ crij , such thatXIj ⊆ RIj andx ∈ CIi .

Satisfiability of a role-into-concept bridge rule forces the role-concept domain rela-
tion crij to map pair of elements(x1, x2) which belong toRIi into elementsx in CIj .
Note that, from the definition of role-concept domain relation two arbitrary objectsy1

andy2 could occur in a pair(〈y1,X, y2〉 , y) with X different fromR itself but such
thatXIi ⊆ RIi , Thus also this pair(y1, y2) belongs toRIi and we have to force alsoy
to be inCIj . In other words, we can say that satisfiability of a role-into-concept bridge
rule forces the role-concept domain relation to map pairs ofelements(x1, x2) which
belong toR, or to any of its atomic subrolesX, into elementsx in CIi .

A distributed interpretationI of a DTBT consists of the 4-tuple

〈{Ii}i∈I , {rij}i6=j∈I , {crij}i6=j∈I , {rcij}i6=j∈I〉 .
I satisfiesthe elements of a DTBT if, for every i, j ∈ I:

1. I � i : A ⊑ B, if Ii � A ⊑ B
2. I � Ti, if I � i : A ⊑ B for all A ⊑ B in Ti

3. I � Bij , if
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– 〈Ii, rij , Ij〉 satisfies all the homogeneous bridge rules inBij ,
– 〈Ii, crij , Ij〉 satisfies all the concept-to-role bridge rules inBij ,
– 〈Ii, rcij , Ij〉 satisfies all the role-to-concept bridge rules inBij

4. I � T, if for every i, j ∈ I, I � Ti andI � Bij

Entailment and satisfiability of a single concept are definedin the usual way by means
of the above satisfiability of a distributed T-Box (e.g. see [12]).

3 The effects of bridge rules

Bridge rules can be thought of as inter-theory axioms, whichconstrain the models of the
theories representing the different ontologies. An important characteristic of mappings
specified by DDL bridge rules is that they are directional, inthe sense that they are
defined from a source ontologyOs to a target ontologyOt, and they allow to transfer
knowledge only fromOs to Ot, without any undesired back-flow effect. In this section
we show that the semantic of mappings defined in the previous Section fulfills this
requirement. Furthermore we characterize the effects of the bridge rules in terms of the
knowledge they allow to propagate fromOs to Ot.

We start by characterizing the effects of mappings of a simple DTB 〈Ti, Tj ,Bij〉,
composed of two T-boxesTi andTj and a set of bridge rulesBij from i to j. The first
important property we prove isdirectionality:

Proposition 1. 〈Ti, Tj ,Bij〉 |= i : X ⊑ Y if and only ifTi |= X ⊑ Y

The proof can be found in [7]. According to Proposition 1, bridge rules fromi to j
affect only the logical consequences inj, and leave the consequences ini unchanged.
In the following we characterise the knowledge propagated from i (the source) toj (the
target) using a set ofpropagation rulesof the form:

axioms ini
bridge rules fromi to j
axiom inj

which must be read as: ifTi entails all the axioms ini, andBij contains the bridge rules
from i to j, then〈Ti, Tj ,Bij〉 satisfies axioms inj.

Propagation rules for homogeneous mappings.Simple propagation rules which de-
scribe the effects of the homogeneous mappings are:

i : A ⊑ B

i : A
⊒−→ j : C

i : B
⊑−→ j : D

j : C ⊑ D

(9)

i : P ⊑ Q,

i : P
⊒−→ j : R

i : Q
⊑−→ j : S

j : R ⊑ S

(10)

i : ∃P.⊤ ⊑ B

i : P
⊒−→ j : R

i : B
⊑−→ j : D

j : ∃R.⊤ ⊑ D

(11)

Rule (9) describes a simple propagation of the concept hierarchy forced by bridge
rules between concepts, and is widely described in [12]. This rule says that ifA ⊑ B

is a fact of the T-boxTi, then the effect of the bridge rulesi : A
⊒−→ j : C and

i : B
⊑−→ j : D is thatC ⊑ D is also a fact inTj . An analogous effect concerns the
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propagation of the role hierarchy due to bridge rules between roles, and is described by
rule (10) whereP,Q,R andS is either a role or an inverse role.4 The effect of the com-
bination of mappings between roles and mappings between concepts is the propagation
of domain and range among relations linked by role-onto-role mappings. Propagation
rule (11) describes a simple effect of these mappings, whereP,R are roles andB,D are
concepts. Rule (11) says that if the domain ofP is contained inB and the appropriate
bridge rules hold, then we can infer that the domain ofR is contained inD. A similar
rule allows to obtainj : ∃R−.⊤ ⊑ D from i : ∃P−.⊤ ⊑ B and the same bridge rules,
thus expressing the propagation of the range restriction.

The general form of propagation rules (9)–(11) is given in Figure 1. Note that rule
(10) can be obtained from rule (b) in Figure 1 by settingl = 1, p = 0,m = 0, while
rule (11) can be obtained by settingl = 0, p = 0,m = 1. Analogously the rule for
range restriction can be obtained by settingl = 0, p = 1,m = 0.

Propagation rules for heterogeneous mappings.The effects of the heterogeneous bridge
rules is the propagation of the role hierarchy into the concept hierarchy and vice-versa.
The simplest forms of these rules are:

i : P ⊑ Q

i : P
⊒−։ j : C

i : Q
⊑−։ j : D

j : C ⊑ D

(12)

i : A ⊑ B

i : A
⊒−։ j : R

i : B
⊑−։ j : S

j : R ⊑ S

(13)

The general form of these rules is given in Figure 1. The expression
⊔n

k=1 Sk with
n = 0 in rule (d) represents the empty roleR⊥, which is obtained with the axiom
⊤ ⊑ ∀R⊥⊥.

Given a set of bridge rulesBij from DLi to DLj , we have defined four different
rules, shown in Figure 1, which take as input a T-boxTi inDLi and produce a T-boxTj

in DLj . Starting from these rules we define an operatorBij(·), taking as inputTi and
producing a T-boxTj , enriched with the conclusions of rules (a)–(d) in Figure 1.

Theorem 1 (Soundness and Completeness ofBij(·)). Let Tij = 〈Ti, Tj ,Bij〉 be a
distributed T-box, whereTi andTj are expressed in theALCQIb descriptive language.
ThenTij |= j : X ⊑ Y ⇐⇒ Tj ∪Bij(Ti) |= X ⊑ Y .

The proof can be found in [7]. The generalisation of the axiomatization for an arbitrary
network of ontologies can be obtained following the technique used in [12].

As a final remark we can notice that the combination of homogeneous and hetero-
geneous bridge rules does not generate any effect in the logic proposed in this paper.
This because the domain relation and the concept-role and role-concept domain rela-
tions do not affect each other. The investigation of more complex heterogeneous bridge
rules, which can lead to this sort of interaction is left for future work. An additional
open point concerns the extension of our framework in order to account for transitive
roles. It is well known that the unrestricted interaction between number restriction and
transitivity is a source of indecidability; moreover, the bridge rules may infer additional
subsumption relations among the roles. Therefore, guaranteeing appropriate restrictions
to ensure decidability is no longer a matter of analysing the“static” role hierarchy (e.g.,
a in the case ofSHIQ).

4 The formulaR ⊑ S is a shorthand for∃(R ⊓ ¬S).⊤ ⊑ ⊥.
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i : A ⊑ Fn
k=1 Bk

i : A
⊒−→ j : C

i : Bk
⊑−→ j : Dk, for 1 ≤ k ≤ n

j : C ⊑ Fn
k=1 Dk

(a) Generalisation of rule (9).

i : ∃(P ⊓ ¬(
Fl

h=0 Qh)).
`¬Fp

h=0 Ah

´ ⊑ `Fm
h=0 Bh

´
i : P

⊒−→ j : R

i : Qh
⊑−→ j : Sh, for 1 ≤ h ≤ l

i : Ah
⊑−→ j : Ch, for 1 ≤ h ≤ p

i : Bh
⊑−→ j : Dh, for 1 ≤ h ≤ m

j : ∃(R ⊓ ¬(
Fl

h=1 Sh)).
`¬Fp

h=1 Ch

´ ⊑ `Fm
k=1 Dk

´
(b) Generalisation of rules (10) and (11).

i : P ⊑ Q

i : P
⊒−։ j : C

i : Q
⊑−։ j : D

j : C ⊑ D

i : P ⊑ ⊥R

i : P
⊒−։ j : C

j : C ⊑ ⊥

(c) Generalisation of rule (12).

i : A ⊑ Fn
k=1 Bk

i : A
⊒−։ j : R

i : Bk

⊑−։ j : Sk, for 1 ≤ k ≤ n
j : R ⊑ Fn

k=1 Sk

(d) Generalisation of rule (13).

Fig. 1.General version of propagation rules.

4 Related Work and Concluding Remarks

Recently, several proposals go in the direction of providing semantic mapping among
different ontologies (e.g. [14, 12, 3]). However, to the best of our knowledge there is
no specific work on heterogeneous mappings as described in this paper. This in spite
of the fact that there are several attempts at providing somesort of mappings relating
non-homogeneous elements. For example in [6], it is possible to express the mapping
∀x.(∃y.R(x, y) → C(x)); while, in the original version of DDL (see [12]), an analo-

gous mappings can be established by means of the formula1 : ∃R.⊤ ⊑−→ 2 : C. Note
that both cases cannot be considered heterogeneous mappings because they relates the
domain of the relationR with the conceptC; which are both concepts.

The work presented in this paper is clearly connected to the well known modelling
process ofreification (akaobjectification) adopted in UML or ORM (see [10, 11]). As
described in [10], this corresponds to think of certain relationship instances as objects.
In UML this is supported by means ofassociation classes, while in Entity-Relationship
diagram this is often mediated by means ofweak entities. Note that these modelling
paradigms do not support rich inter-schema axioms in the spirit of ontology mappings
as described in [14].

There are other modelling formalisms which enable the bridging between rela-
tions and classes in the context of Description Logics. In particular, the work onDLR
(see [4]), specifically w.r.t. the technique for encoding n-ary relations within a standard
Description Logic, and [5]. The advantage of our approach lies in the fact that the lo-
cal semantics (i.e. the underlying semantics of the single ontology languages) does not
need to be modified in order to consider the global semantics of the system. Specifically,
there is no need to provide an explicit reification of relations since this is incorporated
into the global semantics.
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The language and the semantics presented in this paper constitute a genuine con-
tribution in the direction of the integration of heterogeneous ontologies. The language
proposed in this paper makes it possible to directly bind a concept with a relation in a
different ontology, and vice-versa. At the semantic level we have introduced a domain
relation that maps pairs of object appearing in a relation into objects and vice-versa.
This also constitute a novelty in the semantics of knowledgeintegration. Finally we
have proved soundness and completeness of the effects of themappings and we leave
the study of decidability and the definition of a reasoning algorithm for future work.
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Krzysztof Goczyła, Aleksander Waloszek, Wojciech Waloszek

Gdańsk University of Technology, Department of Software Engineering,
ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland

{kris,alwal,wowal}@eti.pg.gda.pl

Abstract. In the paper we propose a method of structuring a knowl-
edge base into hierarchically related contexts and present how this ar-
rangement influences the structure of TBox and ABox. We introduce a
possibility to attach to a single TBox many ABoxes describing differ-
ent parts of a domain and we show how to interpret such an ontology.
Practical application of the method offers very interesting possibilities,
like shortening the time of inference or storing mutually contradictory
pieces of information in a single knowledge base. We analyse how such a
structure changes purpose and mechanisms of reasoning, and we discuss
their soundness and completeness. We also describe some related work
about contexts.

1 Introduction

Contextualizing knowledge bases is an approach to make reasoning process more
effective and to avoid inconsistencies in large ontologies. There are many types of
relationships between contexts. In our approach we try to distinguish a group of
relationships similar to inheritance. This kind of relation can be applied to both
TBox and ABox. In case of TBox we separate axioms into groups that in the top
of hierarchy define more general notions while passing down the hierarchy more
specific and specialized concepts. In case of ABox every subset of assertions is
attached to a particular context (i.e. a particular group of axioms). Moreover,
this subset may also be divided into smaller groups called context instances. This
subdivision limits the flow of conclusions and enables us to store inconsistent
statements in one knowledge base.

The limited space in this paper does not allow us to present full spectrum of
possible applications of a knowledge base organized according to our proposal.
Our aim is to enable such tasks like modelling space-time situations, possibilities,
believes or intentions, processes or even logical metalevels, i.e. such contexts
where ABox contains description of ABox and TBox of another context. We
realize that described method does not fulfil all of these requirements and it needs
further development. But even now with its simple rules it has big potential of
practical applications.

Section 2 presents formal definition of contextualized knowledge base. Sec-
tion 3 contains description of reasoning problems in contextual knowledge bases.
In Section 4 we try to review shortly another works on contexts. Section 5 sum-
marizes the paper.
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2 Formal definition of contextualized ontology

Our main goal was to introduce a kind of arrangement into large ontologies. We
strive to allow for:

– introducing a hierarchical arrangement into large ontologies in order to de-
scribe various fragments of knowledge at different level of detail,

– holding contradictory assertions if they describe the same problem from dif-
ferent points of view,

– making it possible to integrate information from different points of view at
a desired level of generality.

We propose a way of reaching these goals by introducing a notion of context
into the knowledge base. First of all, we introduce contextualized TBox (contex-
tualized terminology) that can be composed of several parts. These parts (being
standard DL TBoxes), called contexts, remain with each other in a relation of
generalization/specialization (inheritance, see Fig. 1 for an example).

Definition 1. A contextualized TBox T = ({Ti}i∈I , E) consists of a set of
TBoxes whose elements are called contexts, and a generalization relation
E ⊆ I × I which is a partial order established over the set of indexes I. The
poset (I, E) is a tree containing the least element m. We also introduce the fol-
lowing notions:

Tm called the root context of the contextualized TBox T,
Ti generalizes Tj iff i E j,
Ti specializes Tj iff j E i.

The idea behind such hierarchical arrangement of contexts was to allow for
constrained interactions between parts of terminology. The general rule here
is that more specialized terminologies may “see” more general ones, but more
general terminologies are unaware of the existence of more specialized ones.

Introduced contexts encompass only terminology. To deal with assertional
part of the knowledge base we allow for creation of many ABoxes for one termi-
nology. We call these ABoxes context instances.

Definition 2. A contextualized ABox A = ({Aj}j∈J , inst,�) of contextualized
TBox T = ({Ti}i∈I , E) is a triple consisting of:

1. A set of ABoxes {Aj}j∈J , each of which is called an instance of context,
2. The function inst : J → I relating each ABox from {Aj}j∈J with TBox from
{Ti}i∈I ,

3. The aggregation relation � ⊆ J × J , which is a partial order established
over the set of indexes J . We require that:
a. The poset (J,�) is a tree containing the least element n,
b. inst(n) = m, where m is the least element of the relation E,
c. For each j � k such that j 6= k holds inst(j) E inst(k) and inst(j) 6=

inst(k).
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We also say that:

An is called the root context instance of the contextualized ABox A,
Aj is an instance of the context Ti iff inst(j) = i,
Aj aggregates Ak iff j � k,
Aj is aggregated by Ak iff k � j,
Aj is an aggregating context instance iff ∃k : j � k.

The idea of assigning several ABoxes to a single TBox (like in Fig. 1 where
the context instances A7, A8, and A9 are assigned to the context T5) gives
us distinctive opportunities: different ABoxes may contain different (consistent
locally but possibly inconsistent with other ABoxes) sets of assertions.

It is worth noting that in a contextualized ABox a context instance aggre-
gating all other context instances appears (in Fig. 1 it is A1). The consequence
of this fact is that all context instances have to be consistent with each other at
the highest (defined in a contextual TBox) level of generality. This fact justifies
calling the pair of contextualized TBox and ABox the contextualized knowledge
base.

Definition 3. A contextualized knowledge base K = (T,A) consists of a con-
textualized TBox T and a contextualized ABox A of T.

Contextualized knowledge base is given the interpretation in a specific way:
each context instance is given its own interpretation. Such an approach gives
some level of locality within context instances.

Definition 4. A contextualized interpretation I of contextualized knowledge
base K = (T,A) where T = ({Ti}i∈I , E) and A = ({Aj}j∈J , inst,�), is a
set of interpretations {Ij} where j ∈ J .

The next definition specifies what conditions the local interpretations have to
satisfy in order to make the global interpretation a model of a knowledge base.

Definition 5. A contextualized interpretation I = {Ij} of a contextual knowl-
edge base K = (T,A) where T = ({Ti}i∈I , E) and A = ({Aj}j∈J , inst,�), is a
model of the knowledge base K iff:

1. For every individual name a, there do not exist two interpretations Ij , Ik ∈ I
such that aIj 6= aIk ,

2. For every context instance Aj:
a. Ij |= Aj ,
b. Ij |=

⋃
i∈{i:iEinst(j)} Ti,

c. for every k such that j � k:
i. ∆Ik ⊆ ∆Ij ,
ii. for every concept C from

⋃
i∈{i:iEinst(j)} Ti: CIj ∩∆Ik = CIk ,

iii. for every role R from
⋃

i∈{i:iEinst(j)} Ti: RIj ∩ (∆Ik ×∆Ik) = RIk .
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Fig. 1. An example of contextualized knowledge base. Relationships between context
instances and between context instances and contexts are depicted in the form of graph,
e.g. the instance A4 aggregates instances A8 and A9. For the sake of clarity only the
transitive reductions of generalization and aggregation relations have been depicted

The rules in the above definition may be divided into several categories.
Rules 2.a and 2.b are called local conformance rules. They ensure that each
interpretation satisfies the ABox and the TBox of the context instance it is
assigned to and all TBoxes being its ancestors. An immediate corollary from
this is the fact that terminologies that have any context instances assigned to
cannot contradict any of their ancestors.

Other rules introduce the desired level of interaction between interpretations.
Rule 1 is called uniformity of names. This rule was introduced to facilitate
gathering pieces of information about one individual from various context in-
stances (without necessity of defining mappings) during reasoning.

Rules 2.c (aggregation conformance rules) establish relations between
aggregating context instance and context instances being aggregated. Rule 2.c.i
introduces aggregation conformance of domains and states that the do-
main of the interpretation of the aggregating context must cover domains of
interpretations of all context instances being aggregated.

Rules 2.c.ii and 2.c.iii establish aggregation conformance of denotation.
They state that within the limited domain of the context instance Ak being
aggregated by Aj , at the level of generality of the terminology Ti (inst(j) = i),
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Fig. 2. An example of the aggregation conformance of denotation. Here we have three
contexts: T1 that describes general notions of WOMAN and MAN, T2 that specializes T1

towards description of voices in a choir, and T3 that also specializes T1 but towards
description of social relations. Context instance A1 aggregates context instances A2 and
A3. Although A1 is empty, according to the rule 2.c.ii, interpretation I1 in order to be
a model of the knowledge base has to assign Mary to the concept WOMAN (i.e. MaryI1 ∈
WOMANI1). As a consequence of this, the same rule enforces that in the interpretation I3

Mary is assigned to the concept WIFE (i.e. MaryI3 ∈ WIFEI3), as the information about
Mary being a woman “flows” down the aggregation relationships

all the concepts and roles must be interpreted in Aj in the same way (have
the same extensions) as in Ak. These rules ensure flow of conclusions between
aggregating context instance and the context instances being aggregated. The
flow is bidirectional, as shown in the example from. Fig 2. An interpretation of
Aj must take into account all information from Ak, but due to the fact that
is attached to a more general TBox this information must be reinterpreted in
more general terms. This is also the way to avoid inconsistencies—to aggregate
instances containing contradictory statements on the level of generality where
the inconsistencies do not exist.

3 Reasoning in contextual knowledge bases

Reasoning in contextual knowledge bases is relevant to a single context instance.

Definition 6. Entailment in contextual knowledge base K = (T,A) where T =
({Ti}i∈I , E) and A = ({Aj}j∈J , inst,�):

1. C v D is entailed by K in the context Ti (denoted K |=i C v D) iff for
every contextual interpretation I = {Ij}j∈J that is a model of K for every
j such that inst(j) = i it is true that Ij |= C v D,

2. C(a) (and analogically R(a, b)) is entailed by K in the context instance Aj

(denoted K |=j C(a) and K |=j R(a, b), respectively) iff for every contextual
interpretation I = {Ij}j∈J that is a model of K it is true that Ij |= C(a)
(Ij |= R(a, b), respectively).
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To show the possibility of employment of known reasoning algorithms for
contextual knowledge bases we will use a method similar to the one exploited
by A. Borgida and L. Serafini in [1]. For the sake of brevity we assume that all
contexts and context instances use the same Description Logics DL. In [1] axioms
and assertions included in different Information Systems (ISs) are translated to
appropriate statements in a single global knowledge base. We will use similar
kind of translation to transfer the contents of a contextual knowledge base K to
the global non-contextual knowledge base K.

We perform the translation on context instance-by-context instance basis.
For each context instance Aj we have to establish a kind of separate space
allowing for interpretation of concepts and roles different than in its sibling
context instances. If Aj is aggregated by other context instance Ag (assume
that g is a direct predecessor of j, denoted g = π(j), i.e. g � j, g 6= j and
there is no l such that g � l � j), the space must embrace concepts and roles
from Ti where i E inst(j) and i 5 inst(g). We denote such a set of indexes
τ(j), and for the least element n of � we will assume that τ(n) = {inst(n)}.
Using this technique two assertions DOCTOR(John) and ¬DOCTOR(John) from two
context instances Aj and Ak (if e.g. John is a doctor in Poland but not in Great
Britain from the legal point of view) will be translated to j : DOCTOR(John) and
k : > u ¬k : DOCTOR(John), which will not generate inconsistency.

The mapping #(j, E) translating an expression E describing a concept/role
within the context instance Aj (or the context Tinst(j)) in K to an appropriate
expression in K is defined as follows:

– #(j,>) = j : >
– #(j,⊥) = ⊥
– #(j, A) = j : A, for atomic concept A introduced in Ti such that i ∈ τ(j)
– #(j, A) = j : > u#(π(j), A), for any other atomic concept A.
– #(j, R) = j : R, for atomic role R introduced in Ti such that i ∈ τ(j),
– #(j, R) = #(π(j), R), for any other atomic role R,
– #(j, ρ(E1, E2, . . . , En)) = j : >uρ(#(j, E1), #(j, E2), . . . , #(j, En)), for con-

cept constructor ρ taking n arguments (structural recursion)

Now we can define rules of transferring axioms and assertions from K to K:
For each j ∈ J do the following:

1. For each C v D included in Ti such that i ∈ τ(j), insert to K:
#(j, C) v #(j, D)

2. For each atomic concept A introduced in Ti such that i ∈ τ(j), insert to K:
#(j, A) v j : >

3. For each atomic role R introduced in Ti such that i ∈ τ(j) restrict their
domain and range in K:
> v ∀#(j, R).j : >
¬j : > v ∀#(j, R).⊥

4. If j is the least element of �, insert to K:
> v j : >
Otherwise, insert to K:
j : > v π(j) : >
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5. Copy all assertions of Aj to K in the following form:
#(j, C)(a) for each C(a) included in Aj

#(j, R)(a, b) for each R(a, b) included in Aj

Following a very similar line of argumentation as the one in [1] we can show
that for every DL in which every concept and role constructor is local1 (e.g.
SHIQ) the following holds: K |=i C v D iff for every j such that inst(j) = i
it is true that K |= #(j, C) v #(j, D). This result can be extended to ABox:
K |=j C(a) iff K |= #(j, C)(a) and K |=j R(a, b) iff K |= #(j, R)(a, b).

The above discussion was intended to show that reasoning from contextual
knowledge base is possible with use of existing tools. However the inference
algorithm derived directly from the sketched method of translation may turn
out to be inefficient. This is the reason why in practice, in the inference engine
KaSeA [8] being implemented by our group, we use other technique of reasoning
based on translating assertions from an aggregated context instance to the terms
appropriate for the aggregating context instance. This task is similar to finding
the most specific concept but within the constrained set of terms.

Besides reasoning problems discussed above the separation of ABoxes and
TBoxes gives us a possibility of defining a class of novel inference problems, e.g.:
“Find all context instances in which a given assertion is entailed by the contex-
tualized knowledge base” or: “Given a set of context instances {Aj}, find the
lowest level of generality (i.e. the most specific terminology Ti) at which they
are not inconsistent (i.e. that there might exist a context instance Ak aggregat-
ing all context instances {Aj} with inst(k) = i not making the contextualized
knowledge base inconsistent)”. Such problems might be interesting for Semantic
Web communities focusing on integration of knowledge. More comprehensive set
of similar problems and algorithms for solving them is under preparation.

4 Related work

Bouquet at al. in [2] divides the theories of context into two categories. The first
category, called divide-and-conquer (d-a-c), contains these theories which state
that contextualization is a mean of partitioning a global theory of the world.
The second category, called compose-and-conquer (c-a-c), contains those ones
which want to perceive a context as a local independent theory which can (but
not has to) be integrated with another one with particular integration rules.

Local Model Semantics/Multi-context Systems (LMS/MCS) published in
[5][7] form the theoretical basis for the c-a-c approach. There are several works
[1][3][9] concerning ontology decomposition in the field of Description Logic.
They are based on the foundation of bridge rules, a notion originally introduced
in [6]. Bridge rules are descriptions of mappings between two portions of informa-
tion. Although [1] does not use the notion of context (they are called information

1 in practice it means all DLs that do not have role constants and role construc-
tors other than conjunction, disjunction, inverse, composition, role hierarchies and
transitive roles; for the formal definition of locality see [1]
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sources - IS) it gives a method to describe data integration between ontologies.
In [9] contexts are called ontology modules and bridge rules are replaced by
ontology-based queries.

The theoretical basis for the d-a-c approach is the Propositional Logic of
Context (PLC) introduced by McCarthy and formalized by Buvač and Mason
[4]. A model M for PLC defines a function, called the vocabulary, that asso-
ciates formulae that are meaningful in a given context to this context. Contexts
are arranged hierarchically. Lifting axioms play similar role as bridge rules in
LMS/MCS.

Our work could be counted among those related with the d-a-c approach
but is based on and develops division of propositions between TBox and ABox
introduced by DL. By formulating some rules of relating contexts and their
instances we intend to eliminate the necessity of defining a significant group of
mappings.

5 Summary

In our paper we have shown our idea of contextualization of an ontology. We also
have proposed an idea of context instances. Then we have described reasoning
problems in such knowledge bases. Finally we have tried to place our approach
among another work on ontology contexts.
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Abstract. We show that global caching can be used with propagation
of both satisfiability and unsatisfiability in a sound manner to give an
EXPTIME algorithm for checking satisfiability w.r.t. a TBox in the ba-
sic description logic ALC. Our algorithm is based on a simple traditional
tableau calculus which builds an and-or graph where no two nodes of the
graph contain the same formula set. When a duplicate node is about to
be created, we use the pre-existing node as a proxy, even if the proxy is
from a different branch of the tableau, thereby building global caching
into the algorithm from the start. Doing so is important since it al-
lows us to reason explicitly about the correctness of global caching. We
then show that propagating both satisfiability and unsatisfiability via
the and-or structure of the graph remains sound. In the longer paper,
by combining global caching, propagation and cutoffs, our framework re-
duces the search space more significantly than the framework of [1]. Also,
the freedom to use arbitrary search heuristics significantly increases its
application potential.
A longer version with all optimisations is currently under review for a
journal. An extension for SHI will appear in TABLEAUX 2007.

Keywords: sound caching, decision procedures, optimal complexity.

1 Motivation, Notation and Semantics of ALC
We show that there is a simple way to use global caching and propagation to
achieve an EXPTIME decision procedure for ALC. Our algorithm is based on
a simple traditional tableau calculus. It builds an and-or graph, where an or-
node reflects the application of an “or” branching rule as in a tableau, while
an and-node reflects the choice of a tableau rule and possibly many different
applications of that rule to a given node of a tableau. We build caching into the
construction of the and-or graph by ensuring that no two nodes of the graph have
the same content. The status of a non-end-node is computed from the status of
its successors using its kind (and-node/or-node) and treating satisfiability w.r.t.
the TBox (i.e. sat) as true and unsatisfiability w.r.t. the TBox (i.e. unsat) as
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false. When a node gets status sat or unsat, the status is propagated to its
predecessors in a way appropriate to the graph’s and-or structure. With global
caching and the assumption that EXPTIME 6= PSPACE, depth-first search has
no advantages over other search strategies for our framework. That is, the naive
version of our EXPTIME algorithm can accept any systematic search strategy.

By combining global caching, propagation and cutoffs, our framework signif-
icantly reduces the search space when compared with the framework of Donini
and Massacci [1]. Furthermore, the freedom to use arbitrary search heuristics
significantly increases the application potential of our framework.

We use A for atomic concepts, use C and D for arbitrary concepts, and use R
for a role name. Concepts in ALC are formed using the following BNF grammar:

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | C v D | C .= D | ∀R.C | ∃R.C

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , the domain
of I, and a function ·I , the interpretation function of I, that maps every atomic
concept to a subset of ∆I and every role name to a subset of ∆I × ∆I . The
interpretation function is extended to complex concepts as usual.

An interpretation I satisfies a concept C if CI 6= ∅, and validates a concept
C if CI = ∆I . Clearly, I validates a concept C iff it does not satisfy ¬C.

A TBox (of global axioms/assumptions) Γ is a finite set of concepts: tradi-
tionally, a TBox is defined to be a finite set of terminological axioms of the form
C

.= D, where C and D are concepts, but the two definitions are equivalent.
An interpretation I is a model of Γ if I validates all concepts in Γ . We also use
X, Y to denote finite sets of concepts. We say that I satisfies X if there exists
d ∈ ∆I such that d ∈ CI for all C ∈ X. Note: satisfaction is defined “locally”,
and I satisfies X does not mean that I is a model of X.

We say that Γ entails C, and write Γ |= C, if every model of Γ validates C.
We say that C is satisfiable w.r.t. Γ if some model of Γ satisfies {C}. Similarly,
X is satisfiable w.r.t. (a TBox of global axioms/assumptions) Γ if there exists a
model of Γ that satisfies X. Observe that Γ |= C iff ¬C is unsatisfiable w.r.t. Γ .

Note: We now assume that concepts are in negation normal form, where .=
and v are translated away and ¬ occurs only directly before atomic concepts.

2 A Tableau Calculus for ALC
We consider tableaux with a fixed TBox of global axioms/assumptions Γ . The
numerator of each tableau rule contains one or more distinguished concepts
called the principal concepts. We write X;Y for X ∪ Y , and X;C for X ∪ {C}.
The calculus CALC for ALC consists of the tableau rules below:

(⊥)
X ; A ; ¬A

⊥ (u)
X ; C uD
X ; C ; D

(t)
X ; C tD

X ; C | X ; D

(∃R) Γ :
X ; ∃R.C

{D : ∀R.D ∈ X} ; C ; Γ
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The rules (⊥), (u), and (t) are static rules, while (∃R) is a transitional rule.
A CALC-tableau (tableau, for short) w.r.t. a TBox Γ for a finite set X of

concepts is a tree with root (Γ ;X) whose nodes carry finite sets of concepts
obtained from their parent nodes by instantiating a CALC-tableau rule with the
proviso that: if a child s carries a set Y and no rule is applicable to Y or Y has
already appeared on the branch from the root to s then s is an end node.

A branch in a tableau is closed if its end node carries only ⊥. A tableau is
closed if every one of its branches is closed. A tableau is open if it is not closed.

A finite set X of concepts is consistent w.r.t. a TBox Γ if every tableau w.r.t.
Γ for X is open. If some tableau w.r.t. Γ for X is closed then X is inconsistent
w.r.t. Γ . Calculus CALC is sound if for all finite sets Γ and X of concepts, X
is satisfiable w.r.t. Γ implies X is consistent w.r.t. Γ . It is complete if for all
finite sets Γ and X of concepts, X is consistent w.r.t. Γ implies X is satisfiable
w.r.t. Γ . A tableau rule is sound if, whenever the numerator is ALC-satisfiable
w.r.t. the TBox then one of the denominators is ALC-satisfiable w.r.t. the TBox.

Lemma 1. The calculus CALC is sound because all rules of CALC are sound.

Observe that every concept appearing in a tableau w.r.t. Γ for X is a sub-
formula of Γ ∪X ∪ {⊥}. Thus CALC thus has the analytic subformula property.

3 Completeness

A model graph is a tuple 〈∆, τ, C, E〉, where: ∆ is a finite set; τ is a distinguished
element of ∆; C is a function that maps each element of ∆ to a set of concepts;
and E is a function that maps each role name to a binary relation on ∆.

A model graph 〈∆, τ, C, E〉 is saturated if every x ∈ ∆ satisfies:

1. if C uD ∈ C(x) then {C,D} ⊆ C(x)
2. if C tD ∈ C(x) then C ∈ C(x) or D ∈ C(x)
3. if ∀R.C ∈ C(x) and E(R)(x, y) holds then C ∈ C(y)
4. if ∃R.C ∈ C(x) then there exists y ∈ ∆ with E(R)(x, y) and C ∈ C(y).

A saturated model graph 〈∆, τ, C, E〉 is consistent if no x ∈ ∆ has a C(x)
containing ⊥ or containing a pair A, ¬A for some atomic concept A.

Given a model graph M = 〈∆, τ, C, E〉, the interpretation corresponding to M
is the interpretation I = 〈∆, ·I〉 where AI = {x ∈ ∆ | A ∈ C(x)} for every
atomic concept A and RI = E(R) for every role name R.

Lemma 2. By induction on the structure of C we can show that if I is the
interpretation corresponding to a consistent saturated model graph 〈∆, τ, C, E〉,
then for every x ∈ ∆ and C ∈ C(x) we have x ∈ CI .

Given finite sets X and Γ of concepts, where X is consistent w.r.t. Γ , we
construct a model of Γ that satisfies X by constructing a consistent saturated
model graph 〈∆, τ, C, E〉 with X ⊆ C(τ) and Γ ⊆ C(x) for every x ∈ ∆.
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Algorithm 1
Input: a TBox Γ and a finite set X of concepts, where X is consistent w.r.t. Γ .
Output: a model graph M = 〈∆, τ, C, E〉.

1. For an arbitrary node name τ , let ∆ := {τ}, and E(R) := ∅ for every role name R.
Let C(τ) be a saturation of Γ ∪X and mark τ as unexpanded.

2. While ∆ contains unexpanded elements, take one, say x, and do:
(a) For every concept ∃R.C ∈ C(x):

i. Let Y = {D | ∀R.D ∈ C(x)}∪{C}∪Γ be the result of applying rule (∃R)
to C(x), and let Z be a saturation of Y .

ii. If there exists a (proxy) y ∈ ∆ with C(y) = Z then add pair (x, y) to E(R);
iii. Else add a new element y with C(y) := Z to ∆, mark y as unexpanded,

and add the pair (x, y) to E(R).
(b) Mark x as expanded.

Fig. 1. Constructing a Model Graph

Saturation The rules (u) and (t) do not carry their principal concept into their
denominators. For these rules, let (ρ′) be the version that carries the principal
concept into each of its denominators. Each new rule is clearly sound for ALC.

For a finite set X of concepts that is consistent w.r.t. a TBox Γ , a set Y of
concepts is called a saturation of X w.r.t. Γ if Y is a maximal set consistent
w.r.t. Γ that is obtainable from X (as a leaf node in a tableau) by applications
of the rules (u′) and (t′). A set X is closed w.r.t. a tableau rule if applying that
rule to X gives back X as one of the denominators.

Lemma 3. Let X be a finite set of concepts consistent w.r.t. a TBox Γ , and Y
a saturation of X w.r.t. Γ . Then X ⊆ Y ⊆ Sf(Γ ∪X) and Y is closed w.r.t. the
rules (u′) and (t′). Furthermore, there is an effective procedure that constructs
such a set Y from Γ and X.

Constructing Model Graphs Figure 1 contains an algorithm for constructing
a model graph. Algorithm 1 assumes that X is consistent w.r.t. Γ and constructs
a model of Γ that satisfies X. Algorithm 1 terminates because each x ∈ ∆ has
a unique finite set C(x) ⊆ Sf(Γ ∪ X), so eventually Step 2(a)ii always finds a
proxy. Note that Step 2(a)ii builds caching into the algorithm.

Lemma 4. Let Γ be a TBox, X be a finite set of concepts consistent w.r.t. Γ ,
M = 〈∆, τ, C, E〉 be the model graph constructed by Algorithm 1 for Γ and X, and
I be the interpretation corresponding to M . Then I validates Γ and satisfies X.

Theorem 1. The calculus CALC is sound and complete.

4 A Simple EXPTIME Decision Procedure for ALC
In Figure 2 we present an EXPTIME decision procedure for ALC which directly
uses the tableau rules of CALC to create an and-or graph as follows.
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Algorithm 2

Input: two finite sets of concepts Γ and X
Output: an and-or graph G = 〈V,E〉 with τ ∈ V as the initial node such that

τ.status = sat iff X is satisfiable w.r.t. Γ

1. create a new node τ with τ.content := Γ ∪X and τ.status := unexpanded;
let V := {τ} and E := ∅;

2. while τ.status /∈ {sat, unsat} and we can choose an unexpanded node v ∈ V do:
(a) D := ∅;
(b) if no CALC-tableau rule is applicable to v.content then v.status := sat

(c) else if (⊥) is applicable to v.content then v.status := unsat

(d) else if (u) is applicable to v.content giving denominator Y then
v.kind := and-node, D := {Y }

(e) else if (t) is applicable to v.content giving denominators Y1 and Y2 then
v.kind := or-node, D := {Y1, Y2}

(f) else
i. v.kind := and-node,
ii. for every ∃R.C ∈ v.content, apply (∃R) to v.content giving denominator
{D | ∀R.D ∈ v.content} ∪ {C} ∪ Γ and add this denominator to D;

(g) for every denominator Y ∈ D do
i. if some (proxy) w ∈ V has w.content = Y then add edge (v, w) to E
ii. else let w be a new node, set w.content := Y , w.status := unexpanded,

add w to V , and add edge (v, w) to E;
(h) if (v.kind = or-node and one of the successors of v has status sat)

or (v.kind = and-node and all the successors of v have status sat) then
v.status := sat, propagate(G, v)

(i) else if (v.kind = and-node and one of the successors of v has status unsat)
or (v.kind = or-node and all the successors of v have status unsat) then

v.status := unsat, propagate(G, v)
(j) else v.status := expanded;

3. if τ.status /∈ {sat, unsat} then
for every node v ∈ V with v.status 6= unsat, set v.status := sat;

Fig. 2. A Simple EXPTIME Decision Procedure for ALC

A node in the constructed and-or graph is a record with three attributes:

content: the set of concepts carried by the node
status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node}
To check whether a given finite set X is satisfiable w.r.t. the given TBox Γ ,
the content of the initial node τ with status unexpanded is Γ ∪ X. The main
while-loop continues processing nodes until the status of τ is determined to be
in {sat, unsat}, or until every node is expanded, whichever happens first.

Inside the main loop, Steps (2b) to (2f) try to apply one and only one of the
tableau rules in the order (⊥), (u), (t), (∃R) to the current node v. The set D
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Procedure propagate(G, v)
Parameters: an and-or graph G = 〈V,E〉 and v ∈ V with v.status ∈ {sat, unsat}
Returns: a modified and-or graph G = 〈V,E〉

1. queue := {v};
2. while queue is not empty do
3. (a) extract x from queue;

(b) for every u ∈ V with (u, x) ∈ E and u.status = expanded do

i. if (u.kind = or-node and one of the successors of u has status sat)
or (u.kind = and-node and all the successors of u have status sat) then

u.status := sat, queue := queue ∪ {u}
ii. else if (u.kind = and-node and one of the successors of u has status unsat)

or (u.kind = or-node and all the successors of u have status unsat) then
u.status := unsat, queue := queue ∪ {u};

Fig. 3. Propagating Satisfiability and Unsatisfiability Through an And-Or Graph

contains the contents of the resulting denominators of v. If the applied tableau
rule is (u) then v has one denominator in D; if the applied rule is (t) then v has
two denominators in D; otherwise, each concept ∃R.C ∈ v.content contributes
one appropriate denominator to D. At Step (2g), for every denominator in D, we
create the required successor in the graph G only if it does not yet exist in the
graph: this step merely mimics Algorithm 1 and therefore uses global caching.

In Algorithm 2, a node that contains both A and ¬A for some atomic concept
A becomes an end-node with status unsat (i.e. unsatisfiable w.r.t. Γ ). A node
to which no tableau rule is applicable becomes an end-node with status sat (i.e.
satisfiable w.r.t. Γ ). Both conclusions are irrevocable because each relies only
on classical propositional principles and not on modal principles. That is, we do
not need to undo either of these at any stage.

On the other hand, an application of (t) to a node v causes v to be an or-
node, while an application of (u) or (∃R) to a node v causes v to be an and-node.
Steps (2h) and (2i) try to compute the status of such a non-end-node v using
the kind (or-node/and-node) of v and the status of the successors of v, treating
unsat as irrevocably false and sat as irrevocably true.

If these steps cannot determine the status of v as sat or unsat, then its
status is set to expanded. But if these steps do determine the status of a node v
to be sat or unsat, this information is itself propagated to the predecessors of
v in the and-or graph G via the routine propagate(G, v), explained shortly.

The main loop ends when the status of the initial node τ becomes sat or
unsat or all nodes of the graph have been expanded. In the latter case, all nodes
with status 6= unsat are given status sat (effectively giving the status open to
tableau branches which loop). Again, caching is present at Step 2(g)i.

The procedure propagate used in the above algorithm is specified in Figure 3.
As parameters, it accepts an and-or graph G and a node v with (irrevocable)
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status sat or unsat. The purpose is to propagate the status of v through the
and-or graph and alter G to reflect the new information.

Initially, the queue of nodes to be processed contains only v. Then while the
queue is not empty: a node x is extracted; the status of x is propagated to each
predecessor u of x; and if the status of a predecessor u becomes (irrevocably)
sat or unsat then u is inserted into the queue for further propagation.

This construction thus uses both caching and propagation techniques.

Proposition 1. Algorithm 2 runs in EXPTIME.

Proof. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X
and n be the size of input, i.e. the sum of the lengths of the concepts of Γ ∪X.

Each v ∈ V has v.content ⊆ Sf(Γ ∪ X), hence v.content has size 2O(n).
For all v, w ∈ V , if v 6= w then v.content 6= w.content. Hence V contains 2O(n)

nodes.
Every v ∈ V is expanded (by Steps (2a)–(2j)) only once and every expansion

takes 2O(n) time units not counting the execution time of procedure propagate
since v.content contains 2O(n) concepts and we still have to search for proxies
amongst possibly 2O(n) nodes in V . When v.status becomes sat or unsat, the
procedure propagate executes 2O(n) basic steps directly involved with v, so the
total time of the executions of propagate is of rank 22.O(n). Hence Algorithm 2
runs in exponential time.

Lemma 5. It is an invariant of Algorithm 2 that for every v ∈ V :

1. if v.status = unsat then
– v.content contains both A and ¬A for some atomic concept A,
– or v.kind = and-node and there exists (v, w) ∈ E such that w 6= v and
w.status = unsat,

– or v.kind = or-node and for every (v, w) ∈ E, w.status = unsat;
2. if v.status = sat then

– no CALC-tableau rule is applicable to v.content,
– or v.kind = or-node and there exists (v, w) ∈ E with w.status = sat,
– or v.kind = and-node and for every (v, w) ∈ E, w.status = sat.

(If v.kind = or-node and (v, w) ∈ E then w 6= v since w.content 6= v.content.)

Lemma 6. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For every v ∈ V , if v.status = unsat then v.content is inconsistent w.r.t. Γ .

Proof. Using Lemma 5, we can construct a closed tableau w.r.t. Γ for v.content
by induction on the way v depends on its successors and by copying nodes to
ensure that the resulting structure is a (tree) tableau rather than a graph.

Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For v ∈ V with v.status = sat, we say that v0 = v, v1, . . . , vk with k ≥ 0 is a
saturation path of v in G if for each 1 ≤ i ≤ k, we have vi.status = sat, the edge
E(vi−1, vi) was created by an application of (u) or (t), and vk.content contains
no concepts of the form C uD nor C tD. By Lemma 5, if v.status = sat then
there exists a saturation path of v in G.
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Lemma 7. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For all v ∈ V , if v.status = sat then every tableau w.r.t. Γ for v.content is open.

Proof. Choose any v ∈ V with v.status = sat and let T be an arbitrary tableau
(tree) w.r.t. Γ for v.content.

We maintain a current node cn of T that will follow edges of T to pin-point
an open branch of T . Initially we set cn := v. We also keep a (finite) saturation
path σ of the form σ0, . . . , σk for some σ0 ∈ V and call σ the current saturation
path in G. At the beginning, set σ0 := v, so v is a node of both T and G and let
σ be a saturation path for σ0 in G: we know σ exists since v.status = sat.

We maintain the following invariant where cn.content is the set carried by cn:

Invariant: ∀C ∈ cn.content.∃i.0 ≤ i ≤ k, C ∈ σi.content.
Remark 1. Observe that if C ∈ σi.content for some 0 ≤ i ≤ k and C is of
the form A, ¬A, ∃R.D, or ∀R.D then C ∈ σk.content since the saturation
process does not affect concepts of these forms. By the definition of saturation
path, we know that σk.status = sat, hence the (⊥)-rule is not applicable to
σk.content. Hence, the invariant implies that cn.content does not contain a pair
A, ¬A for any atomic concept A, and thus the rule (⊥) is not applicable to cn.
Also, note that the universal quantification over C encompasses the existential
quantification over i, so each C can have a different σi in the invariant.

Clearly, the invariant holds at the beginning with i = 0 since σ0 = v = cn
is in σ. Depending upon the rule applied to cn in the tableau T , we maintain
the invariant by changing the value of the current node cn of T and possibly
also the current saturation path σ in G. By Remark 1, the branch formed by
the instances of cn is an open branch of T .

Theorem 2. Let G = 〈V,E〉 be constructed by Algorithm 2 for Γ and X, with
τ ∈ V as the initial node. Then X is satisfiable w.r.t. Γ iff τ.status = sat.

Corollary 1. Algorithm 2 is an EXPTIME decision procedure for ALC.
We have extended our method to SHI and also to regular RBoxes. It can also

be extended for checking consistency of an ABox w.r.t. a TBox in ALC.
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Abstract. There has been an increased interest in recent years to incor-
porate uncertainty in Description Logics (DLs), and a number of propos-
als have been put forward for modeling uncertainty in DL frameworks.
While much progress has been made on syntax, semantics, and query
processing issues, optimizing queries in this context has received little
attention. In this paper, we study query processing for a tableau-based
DL framework with uncertainty and focus on optimization of resolution
of certainty inequality constraints, obtained from a translation in query
processing phase. We develop a running prototype which evaluates DL
knowledge bases with ABoxes and TBoxes annotated with uncertainty
parameters and computes the corresponding semantics encoded as a set
of constraints in the form of linear and/or nonlinear inequations. We
also explore various existing and new opportunities for optimizing the
reasoning procedure in this context. Our experimental evaluation indi-
cates that the optimization techniques we considered result in improved
efficiency significantly.

1 Introduction

Uncertainty is a form of imperfection commonly found in the real-world in-
formation, and refers to situations where the truth of such information is not
established definitely. Despite of recent advances on extending Description Log-
ics (DLs) with various forms of uncertainty (such as vagueness or probability),
there is generally a lack of effort in studying optimization aspects of uncertainty
reasoning. This paper is the first step in this direction.

This work is a continuation of our previous theoretical work on extending the
DL fragment ALC with various forms of uncertainty [4–6] in which we abstract
away the notion of uncertainty in the description language, the knowledge base,
and the reasoning services, and we encode their corresponding semantics as a set
of constraints in the form of linear and/or nonlinear inequations. In this paper,
we explore various opportunities for optimizing the tableau-based reasoning pro-
cedure for the prototype of our generic framework called GURDL – a Generic
Uncertainty Reasoner for the DL ALC.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of our generic framework for DL with uncertainty. We also review the

Proceeding of DL2007 - Regular Papers 307



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 308 — #318 i
i

i
i

i
i

existing tools that are available in this area. In Section 3, we present some op-
timization techniques that are implemented in GURDL, while Section 4 reports
our performance evaluation results. Finally, we conclude in Section 5 with some
directions for future work.

2 Related Work

In this section, we first give a brief overview of our generic framework for DL with
uncertainty. We then survey the existing tools that are available for reasoning
with DL and uncertainty.

2.1 Generic Framework for DL with Uncertainty

As mentioned in [6], existing extensions of DLs with uncertainty can be classi-
fied into one of the three approaches according to the underlying mathematical
foundation and the type of uncertainty they model: (1) the fuzzy approach (such
as [9, 10]), based on fuzzy set theory, essentially deals with the vagueness in the
knowledge; (2) the probabilistic approach (such as [1, 3, 8]), based on the classi-
cal probability theory, deals with the uncertainty due to lack of knowledge; (3)
the possibilistic approach [7], based on possibility theory, allows necessity and
possibility measures to be handled in the same formalism.

In order to support the various forms of uncertainty within the same frame-
work, we abstracted away the notion of uncertainty (fuzzy logic, probability,
possibilistic logic) and proposed a generic framework for DL with uncertainty
[5]. In particular, our generic framework consists of three components:

1. Description Language with Uncertainty: In our framework, we keep the syn-
tax of the description language identical to that of the classical ALC, while
extending the corresponding semantics with uncertainty. In order to flexibly
represent various forms of uncertainty, we assume that certainty values form
a complete lattice L = 〈V,�〉, where V is the certainty domain, and � is the
partial order defined on V. We also use b to denote the least element in V,
t for the greatest element in V, ⊕ for the join operator in L, ⊗ for its meet
operator, and ∼ for the negation operator.
The semantics of the description language is based on the notion of an inter-
pretation, where an interpretation I is defined as a pair (∆I , ·I), where ∆I

is the domain and ·I is an interpretation function. For example, if individual
John ∈ ∆I , then ObeseI(John) gives the certainty that John belongs to
concept Obese. The syntax and the semantics of the description language
supported in our framework are summarized in Table 1. Note that fc and
fd in the table denote conjunction and disjunction functions. They are used
to specify how one should interpret a given description language. For exam-
ple, in the fuzzy approach, we would have the min function as fc and max
function as fd, whereas in a probabilistic approach, we might have algebraic
product (prod(α, β) = αβ) as fc, and the independent function (ind(α, β)
= α + β −αβ) as fd.
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Name Syntax Semantics (a ∈ ∆I)

Atomic Concept A AI(a) = CFC , with CFC : ∆I → V
Atomic Role R RI(a, b) = CFR, with CFR : ∆I ×∆I → V
Top Concept ⊤ ⊤I(a) = t

Bottom Concept ⊥ ⊥I(a) = b

Concept Negation ¬C (¬C)I(a) =∼CI(a)

Concept Conjunction C ⊓D (C ⊓D)I(a) = fc(C
I(a), DI(a))

Concept Disjunction C ⊔D (C ⊔D)I(a) = fd(CI(a), DI(a))

Role Exists Restriction ∃R.C (∃R.C)I(a) = ⊕b∈∆I{fc(R
I(a, b), CI(b))}

Role Value Restriction ∀R.C (∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}
Table 1. Syntax/Semantics of the Description Language Supported

2. Knowledge Bases with Uncertainty: As usual, the knowledge base (Σ) con-
sists of both the TBox and the ABox. However, unlike the classical case,
each axiom and assertion is associated with a certainty value, as well as
the conjunction/disjunction functions used to interpret the concept descrip-
tions. More specifically, the TBox includes a set of terminological axioms that
could be concept subsumptions 〈C ⊑ D,α〉〈fc, fd〉 and/or concept definitions
〈C ≡ D,α〉〈fc, fd〉, where C and D are concept descriptions, α ∈ V is the cer-
tainty that the axiom holds, and fc and fd are the conjunction and disjunc-
tion functions. As an example, the certainty of the axiom 〈Rich ⊑ ((∃owns.
ExpensiveCar ⊔ ∃owns.Airplane) ⊓Golfer), [0.8, 1]〉〈min,max〉 is at least
0.8, with all the concept conjunctions interpreted using min, and all the
concept disjunctions interpreted using max. Note that, although our frame-
work supports simple probabilities such as independent or mutually exclusive
events, we are investigating ways to model knowledge base with more general
probability theory such as conditional independence, since reasoning with it
requires extra information about the events and facts in the world (Σ).
The ABox in our framework consists of a set of concept assertions of the
form 〈a : C,α〉〈fc, fd〉 or role assertions 〈(a, b) : R,α〉〈−,−〉, where a, b are
individuals, C is a concept, R is a role, α ∈ V, fc is the conjunction function,
fd is the disjunction function, and − denotes that the corresponding function
is not applicable. For instance, the assertion “Mary is tall and thin with a de-
gree between 0.6 and 0.8” can be expressed as 〈Mary : Tall ⊓ Thin, [0.6, 0.8]〉
〈min,−〉. Here, min is used as the conjunction function, and the disjunction
function is not necessary since there is no concept disjunction here.

3. Reasoning with Uncertainty: The inference problems supported by our frame-
work include the satisfiability problem and the entailment problem, where
the former checks if an admissible knowledge base is satisfiable and the later
determines the degree with which an assertion is true given the knowledge
base. Similar to the classical DL reasoning, pre-processing steps are first ap-
plied to abstract the TBox. Then, completion rules are applied to simplify
the ABox, and blocking is introduced to ensure termination [4]. However,
unlike the classical case, each rule application generates a set of derived as-
sertions and a set of constraints in the form of linear/nonlinear inequations
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which encode the semantics of the assertion. For example, given the assertion
〈Mary : Tall ⊓ Thin, [0.6, 0.8]〉〈min,−〉, the conjunction rule can be applied,
which yields 〈Mary : Tall, xMary:Tall〉〈−,−〉 and 〈Mary : Thin, xMary:Thin〉
〈−,−〉, and the constraint (min(xMary:Tall, xMary:Thin) = [0.6, 0.8]), where
xMary:Tall (resp., xMary:Thin) is the variable representing the certainty that
Mary is Tall (resp., Thin). The completion rules we introduced in [4] are
applied in arbitrary order until either the extended ABox contains a clash
or no further rule could be applied. If a clash is encountered (such as an
assertion has two conflicting certainty values), the knowledge base is unsat-
isfiable. Otherwise, a constraint solver is called to solve/optimize the system
of inequations to check satisfiability of the knowledge base or the degree with
which an assertion is true. Details and the proof for the correctness of the
reasoning procedure can be found in [4].

2.2 Existing Tools for DL with Uncertainty

To the best of our knowledge, the only DL/uncertainty reasoner that is pub-
licly available is fuzzyDL [2], which inspired our preliminary prototype. As the
name suggests, fuzzyDL supports only fuzzy knowledge (i.e., it cannot handle
other uncertainty formalisms such as probabilities). Although fuzzyDL supports
two types of fuzzy knowledge – those with Zadeh semantics and those with
Lukasiewicz logic, it uses two sets of completion rules instead of using a generic
set of inference rules to deal with different semantics. Nevertheless, fuzzyDL has
some interesting features. For example, it supports concept modifiers and a more
expressive fragment of DL SHIF .

3 Optimization Techniques Employed in GURDL

GURDL is the prototype of our generic framework for DL with uncertainty.
A number of optimization techniques have been incorporated in GURDL. Due
to the limited space, we discuss only some of them here. The idea is to investi-
gate whether some existing optimization techniques used in classical DL systems
could be applied to the uncertainty case (including lexical normalization, con-
cept simplification, partition based on connectivity as Individual Groups, and
caching), while exploring new optimization technique that is specific to deal with
uncertainty (partition based on connectivity as Assertion Groups).

3.1 Lexical Normalization

Lexical normalization is a common optimization technique used in classical DL
systems, where concepts are transformed into a canonical form. For example,
concepts like (C ⊓ (B ⊓A)), (B ⊓ (C ⊓A)), and ((B ⊓A) ⊓ C) can all be trans-
formed into the canonical form (A ⊓ (B ⊓ C)). In GURDL, lexical normaliza-
tion is realized by sorting the sub-concepts in the concept description. The ma-
jor advantage of lexical normalization is that it allows obvious clashes be de-
tected early. For example, given the assertions 〈Mary : Tall ⊓ Thin, [0.8, 1]〉 and
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〈Mary : Thin ⊓ Tall, [0, 0.4]〉, the second assertion becomes 〈Mary : Tall ⊓ Thin,
[0, 0.4]〉 after the normalization. This allows us to easily notice the inconsistency
between the two assertions, which would be hard to detect otherwise. Another
advantage of lexical normalization is that it facilitates concept simplification.

3.2 Concept Simplification

Concept simplification is another optimization technique that is commonly em-
ployed in classical DL systems, done by removing redundant sub-concepts in a
given concept. In GURDL, the following simplifications are applied:

⊤ ⊓ C  C ⊤ ⊔ · · · ⊤ ∀R.⊤ ⊤
⊥ ⊓ · · · ⊥ ⊥ ⊔ C  C ∃R.⊥ ⊥

The above simplifications are valid due to the boundary-condition properties
of the combination functions [5]. Note that simplification must be applied with
care when uncertainty is introduced. For example, it is a common practice in
classical DL systems to remove duplicated sub-concepts in a concept conjunction
or disjunction, such as simplifying (A ⊓A) to A. However, such simplification is
not valid once uncertainty is introduced. For example, assume that the interpre-
tation of concept A is 0.4. If the conjunction function is min, then (A ⊓A) is A
since min(0.4, 0.4) = 0.4. However, if the conjunction function is the algebraic
product (×), then (A ⊓A) is not the same as A, since ×(0.4, 0.4) = 0.16 6= 0.4.
Therefore, such simplification is invalid, hence cannot be applied.

The major advantage of the simplification method is that it could potentially
reduce the number of sub-concepts in a concept description, hence reducing the
number of completion rule applications. In some extreme case, a complicated
concept description can be simplified to only ⊤ or ⊥, hence eliminating the need
to apply the completion rule.

3.3 Partition Based on Connectivity

In GURDL, the ABox is partitioned into Individual Groups (IGs) and Assertions
Groups (AGs) based on the notion of connectivity.

Individual Groups (IGs) Similar to the classical DL systems, the individuals
in the ABox are divided into one or more partitions called Individual Groups.
Each group consists of individuals that are “related” to each other through role
assertions. By partitioning the ABox this way, inferences can be performed inde-
pendently for each IG. Once no more completion rule can be applied to a given
IG, we could pass the derived assertions and their corresponding constraints to
the constraint solver to build the model, and we can be sure that the model built
will not be changed even if we perform inference on other IGs in the ABox. This
allows the consistency of the ABox be checked incrementally and hence reduces
the reasoning complexity when the knowledge base includes many individuals
which could be partitioned as described. This also allows us to check the con-
sistency of the ABox related to one particular individual without checking the
consistency of the complete ABox.
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Assertion Groups (AGs) As mentioned in Section 2.1, the reasoning pro-
cedure for our uncertainty framework differs from the classical one because, in
addition to derive assertions, a set of constraints in the form of linear/nonlinear
inequations is also generated, which is later on feed into the constraint solver to
check for its consistency. Since the number of constraints generated is usually
large, it is important to optimize the constraint solving process.

In GURDL, each IG is partitioned into one or more independent subsets
called Assertion Groups. In general, two assertions A1 and A2 are in the same
AG if A1 is directly or indirectly inferred from A2 (through the application of
completion rules), or A1 and A2 differ only in terms of their certainty values
and/or conjunction and disjunction functions. The interesting property about
this partition is that, when we union all the constraints (resp., variables associ-
ated with the constraints) in the AGs that belong to a particular IG, we obtain
all the constraints (resp., variables associated with the constraints) in that IG.
On the other hand, if we take the intersection, we obtain an empty set. This
implies that constraints in each AG can be solved independently, while assuring
that the model built will not be changed when we solve constraints in other AGs.

This has several advantages. First, the consistency of the IG can be checked
incrementally. At any given time, the constraints in one single AG are fed into
the constraint solver. If any AG is found to be inconsistent, this implies that the
whole IG is inconsistent. A related advantage is that, in case an IG is inconsistent,
the reasoner will be able to more precisely identify the assertions that cause the
inconsistency. Another advantage is that we are now able to determine the degree
to which a particular assertion (say, X) is true by simply solving the constraints
in the AG that X belongs. Finally, since the number of constraints (and the
variables used in the constraints) in one single AG is, in general, no more than
those of the whole IG, the speed of solving a few small constraint sets would
be faster than solving one large constraint set. The performance evaluation of
AG-partitioning is studied in Section 4.

3.4 Caching

To save the reasoner from doing redundant/repeated work, each assertion and
constraint is stored only once. A flag is set to indicate whether completion rules
have been applied to a given assertion (resp., IG). In addition, after the con-
straints in an AG are solved, the result is cached for later use.

4 Performance Evaluation

In this section, we study the performance of GURDL. All the experiments were
conducted under Windows XP on a Pentium 2.40 GHz computer with 3.25 GB
of RAM. Due to the limited space, we present only highlights of our results here.

Table 2 lists a few test cases, the number of concept assertions (C) in each
test case, the number of role assertions (R), the number of axioms with necessary
condition (N), the number of axioms with concept definitions (D), the functions
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Test Case C R N D F V IG AG W H L I S O Total

1. Classical 15 2 5 0 min/max {0, 1} 3 84 25 6 0.014 0.10 2.19 0.22 2.52
2. Min-Max 15 2 5 0 min/max [0, 1] 3 84 25 6 0.015 0.10 2.47 0.19 2.78
3. Mixed 15 2 5 0 mixed [0, 1] 3 159 44 6 0.016 0.17 12.92 0.32 13.43
4. Min-Max/Def. 15 2 0 5 min/max [0, 1] 3 13 58 6 0.016 0.54 21.36 0.29 22.20
5. University 1 0 47 6 min/max {0, 1} 1 231 45 5 0.020 1.25 17.15 0.75 19.17

Table 2. Performance of test cases (in seconds)

used to interpret the concept description (F), the certainty domain (V), the
number of IGs (IG), the number of AGs (AG), the width of the ABox (W), the
height of the ABox (H), the time to load the knowledge base (L), the time to
apply the inference rules (I), the time to solve constraints (S), other time (mostly
I/O) (O), and the total time for ABox consistency checking (L + I + S + O).
All the time measures are in seconds.

As shown in the table, the time spent on solving constraints (S) dominates
the overall reasoning time (Total) for all the test cases. Note also that test
cases 1 and 2 differ by the certainty domain, but this has limited effect on the
performance. Test cases 2 and 3 differ by the functions used to interpret the
description language (F). We can see that it takes longer to solve constraints
that include a mix of nonlinear functions (prod, ind) and simple ones (min,
max). Test cases 4 illustrates that it takes longer when we have axioms with
concept definitions (D) instead of those with necessary conditions (N). Test case
5 shows the case where an IG is partitioned into many AGs.

Note that our prototype runs slower than the classical reasoners for stan-
dard knowledge bases, where we use {0, 1} for the certainty domain, and min
and max for conjunction and disjunction functions (one or two seconds vs. many
seconds). This was expected, partly because standard reasoners implement many
more optimization techniques, some of which we could not use in our context.
Also, unlike in our context, they do not need to rely on constraint solvers as
part of their reasoning process. Note also that we have not compared the per-
formance with fuzzyDL here, because fuzzyDL uses a different constraint solver
than GURDL, and the effect of such factor is not negligible.

Table 3 compares the total time for solving constraints when we partition the
ABox into AGs, IGs, or no partition at all (ALL). Note that when we partition
the ABox into AGs, the performance is the best. Note also that for the test
case University, when the ABox is not partitioned into AGs, the constraint set is
simply too large for the constraint solver to handle (we get stack overflow error).
This shows the importance of keeping the constraint set as small as possible by
partitioning the ABox.

5 Conclusion and Future Work

In this paper, we have explored various existing and new optimizing techniques
for the reasoning procedure of our generic framework for DL with uncertainty, for
which we have incorporated in our prototype. Due to the space limit, we present
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Test Case AG IG ALL Gain1 Gain2 Gain3

1. Classical 2.52 3.42 4.84 26.31% 29.37% 47.95%
2. Min-Max 2.78 4.15 6.17 32.99% 32.68% 54.88%
3. Mixed 13.43 25.54 28.99 47.43% 11.90% 53.69%
4. Min-Max/Def. 22.20 37.24 100.58 40.37% 62.98% 77.93%
5. University 19.17 N/A N/A N/A N/A N/A

Table 3. Performance evaluation for partition based on connectivity (in seconds)
(Gain1: AG vs. IG, Gain2: IG vs. ALL, Gain3: AG vs. ALL)

the partial performance evaluation result, which shows that the optimization
techniques we employed are effective. As future research, we plan to extend the
generic framework to a more expressive portion of DL. We also plan to opti-
mize the reasoning procedure further. For example, since constraint-solving is
the phase that takes the longest time, in case we have multiple AGs, we could
solve them concurrently by running multiple threads on different computers. An-
other optimization would be to reduce the number of constraints or the number
of variables in the constraints generated during the reasoning procedure. These
methods are expected to greatly enhance the performance.
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Abstract. Distributed Description Logics (DDLs) is a KR formalism
that enables reasoning with multiple ontologies interconnected by direc-
tional semantic mapping (bridge rules). DDLs capture the idea of im-
porting and reusing concepts between ontologies and thus combine well
with intuitions behind Semantic Web.
We modify the original semantics of DDLs in order to cope with a model-
ing discrepancy that has been pointed out in the literature. We do so by
introducing a new kind of bridge rules, which we call conjunctive. Using
conjunctive bridge-rules instead of the normal ones solves the problem.
All the basic properties that have been established for DDLs hold also for
the adjusted framework. We also provide a transformational semantics
for conjunctive bridge rules, and thus, at least theoretically, a decision
procedure for the new semantics.

1 Introduction

Distributed description logic (DDL) is a KR formalism introduced by Borgida,
Serafini and Tamilin in [1,2,3], intended especially to enable reasoning between
multiple ontologies connected by directional semantic mapping (bridge rules),
built upon the formal, logical and well established framework of Description
Logics (DLs). DDLs capture the idea of importing and reusing concepts between
several ontologies. This idea combines well with the basic assumption of Seman-
tic Web that no central ontology but rather many ontologies with redundant
knowledge will exist [4].

It has been noted in [5] that DDLs and the derived framework of C-OWL
[6] suffer from several drawbacks. Among these is the unintuitive behaviour in a
modeling scenario outlined therein. We analyse this problem and cope with it by
introducing a new kind of bridge rules with modified semantics. We then evaluate
the new semantics with respect to the desiderata that have been postulated for
DDLs. We also provide a transformational semantics for conjunctive bridge rules,
and thus, at least theoretically, a decision procedure for the new semantics.

2 Distributed Description Logics

As introduced in [1,2,3], a DDL knowledge base consists of a distributed TBox
T – a set of local TBoxes {Ti}i∈I , and a set of bridge rules B =

⋃
i,j∈I,i 6=j Bij
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between these local TBoxes, for some non-empty index-set I. Each of the local
TBoxes Ti is a collection of axioms called general concept inclusions (GCIs) in
its own local DL Li of the form: i : C v D. It is assumed that each Li is a sub-
language of SHIQ [7]. Each Bij is a set of directed bridge rules from Ti to Tj .
Intuitively, these are meant to “import” information from Ti to Tj , and therefore
Bij and Bji are possibly, and expectedly, distinct. Bridge rules of Bij are of
two forms, into-bridge rules and onto-bridge rules (in the respective order):

i :A v→ j :G , i : B w→ j : H .

Given a TBox T , a hole is an interpretation Iε = 〈∅, ·ε〉 with empty do-
main. Holes are used for fighting propagation of inconsistency. We use the
most recent definition for holes, introduced in [3]. A distributed interpretation
I = 〈{Ii}i∈I , {rij}i∈I,i 6=j〉 of a distributed TBox T consists of a set of local
interpretations {Ii}i∈I such that for each i ∈ I either Ii = (∆Ii , ·Ii) is an inter-
pretation of local TBox Ti or Ii = Iε is a hole, and a set of domain relations rij
between these domains – each rij is a subset of ∆Ii ×∆Ij . We denote by rij(d)
the set {d′ | 〈d, d′〉 ∈ rij} and by rij(D) the set

⋃
d∈D rij(d).

Definition 1. For every i and j, a distributed interpretation I satisfies the el-
ements of a distributed TBox T (denoted by I |=ε ·) according to the following
clauses:

1. I |=ε i : C v D if Ii |= C v D.
2. I |=ε Ti if I |=ε i : C v D for each C v D ∈ Ti.
3. I |=ε i :C

v→ j :G if rij
(
CIi

) ⊆ GIj .

4. I |=ε i : C w→ j : G if rij
(
CIi

) ⊇ GIj .
5. I |=ε B if I satisfies all bridge rules in B.
6. I |=ε T if I |=ε B and I |=ε Ti for each i.

If I |=ε T then we say that I is a (distributed) model of T. Finally, given
C and D of some local TBox Ti of T, C is subsumed by D in T (denoted by
T |=ε i : C v D) whenever, for every distributed interpretation I, I |=ε T
implies I |=ε i : C v D.

3 The Problem

In [5] it is pointed out that certain properties of subsumption relations are not
modeled properly by DDL. This problem is demonstrated by the following ex-
ample that we borrow from [5].

Example 1 ([5]). Consider the ontology O:

NonFlying ≡ ¬Flying , Penguin v Bird ,

Bird v Flying , Penguin v NonFlying .
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And the distributed counterpart of O, divided into two ontologies O1 (on the
left) and O2 (on the right):

NonFlying1 ≡ ¬Flying1 , 1 : Bird1
w→ 2 : Penguin2 ,

Bird1 v Flying1 . 1 : NonFlying1
w→ 2 : Penguin2 .

As it is argued in [5], while the concept Penguin of O is not satisfiable, the
corresponding concept Penguin2 of O2 is. The problem is that, in a perfectly sane
interpretation, each instance x ∈ Penguin2

I2 , is assigned to two distinct elements
of ∆I1 , say y1 and y2, by r, one instance of Bird1 and the other one of NonFlying1.
Note that this is possible even if Bird1

I1 and NonFlying1
I1 are disjoint as required

by ontology O1. We agree with [5] that it is intuitive to expect that bridge rules
retain certain properties that GCIs have. So, we would expect Penguin2 to be
unsatisfiable, as we made it a “subconcept of two imported concepts” Bird1 and
NonFlying1 which in their original ontology O1 are disjoint.

Let us generalize the problem illustrated by Example 1 a bit further. We
have two local TBoxes in T, say Ti and Tj , and we have two onto-bridge rules

from i to j, i : C w→ j : G ∈ B and i : D w→ j : H ∈ B. The problem is that the
inclusion (G uH)Ij ⊆ rij

(
(C uD)Ii

)
does not necessarily hold in every model

of T, as we would have expected. The source of our intuition here is indeed the
fact that the respective inclusion (G uH)I ⊆ (C uD)I holds in every model I
in the case when C, D, G and H are all local concepts of some T and instead of
the bridge rules we have two GCIs G v C ∈ T and H v D ∈ T . We push our
generalization even further and expect the respective to hold in case if n > 0
onto-bridge rules are involved. Please note that this issue does not arise in case
of into-bridge rules (see Theorem 3 below).

To justify this generalization, we offer Example 2 in which two distinct pairs
of concepts are bridged by two onto-bridge rules.

Example 2. Consider two ontologies O1 and O2 with the following GCIs (and
also possibly some other):

1 : Tokaji1 u Selection1 v DessertWine1 , 2 : SixPuttony2 v Tokaji2 u Selection2 .

In order to import knowledge from O1 to O2 we add the following bridge rules:

1 : Tokaji1
w→ 2 : Tokaji2 , 1 :DessertWine1

v→ 2 :SweetWine2 ,

1 : Selection1
w→ 2 : Selection2 .

We argue, that intuitively SixPuttony v SweetWine should hold in O2. This is not
the case however, since (Tokaji2 u Selection2)

I2 ⊆ r12

(
(Tokaji1 u Selection1)

I1
)

does not necessarily hold in every distributed model, as discussed above.

In the following, we introduce an alternative kind of onto-bridge rules with
slightly modified semantics. We then show that this semantics follows the intu-
itions outlined above (Theorem 2 below).
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4 Conjunctive Bridge Rules

We address the problem outlined above by introducing new form of onto-bridge
rules. We call these new bridge rules conjunctive and the original form normal.
We introduce the following syntax for them:

i : D
w
� j : H .

In the following, we use i : D
w j : H to denote onto-bridge rules that are

possibly of both kinds, either conjunctive or normal.

Definition 2. The semantics of conjunctive onto-bridge rules is established by
adding the following clause to Definition 1:

7. I |=ε i : C
w
� j : G if for each i : D

w
� j : H ∈ B, rij

(
CIi ∩DIi

) ⊇
GIj ∩HIj .

Our choice of adding new kind of onto-bridge rules instead of simply replacing
the old semantics is to underline the fact that both kinds can co-exist and be
used according to the modeling scenario and the intentions of the ontology editor.
Also, it is not yet clear, how the usage of conjunctive bridge rules affects the
computational complexity of the framework. It surely introduces a significant
number of additional conditions to verify. Hence it might be desirable to be
allowed to choose the exact form of a bridge rule according to the modeling
scenario.

5 Properties of Conjunctive Bridge Rules

We first show that conjunctive bridge rules are somewhat strictly stronger, in a
sense, than normal bridge rules. That is, all the semantic implications caused by
normal bridge rules are also in effect if conjunctive bridge rules are used instead.
With conjunctive bridge rules, we have some more implications in addition.

Theorem 1. Given a distributed TBox T with a set of bridge rules B and some

local TBoxes Ti and Tj such that i 6= j and i : C
w
� j : G ∈ B, for each

distributed interpretation I such that I |=ε T it holds that rij
(
CIi

) ⊇ GIj .

The next theorem provides a characterization of conjunctive bridge rules. It
says, that if we bridge between several pairs of concepts with conjunctive onto-

bridge rules, say i : C1

w
� j : G1, . . . , i : Cn

w
� j : Gn, then the implications

caused to the pairs of concepts pair-wise, do propagate to intersections C1u· · ·u
Cn and G1u· · ·uGn of these concepts. This does not hold for normal bridge rules
however, as demonstrated by Examples 1 and 2. It follows that indeed the choice
of conjunctive bridge rules does solve the problem outlined by the examples.
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Theorem 2. Given a distributed TBox T with a set of bridge rules B and some
local TBoxes Ti and Tj such that i 6= j, if for some n > 0 the bridge rules

i : C1

w
� j : G1, . . . , i : Cn

w
� j : Gn are all part of B then for every distributed

interpretation I such that I |=ε T it holds that

rij

(
(C1 u · · · u Cn)Ii

)
⊇ (G1 u · · · uGn)Ij .

The next theorem shows that the corresponding characterization indeed holds
for normal into-bridge rules, hence there is no need to introduce conjunctive into-
bridge rules.1

Theorem 3. Given a distributed TBox T with a set of bridge rules B and some
local TBoxes Ti and Tj such that i 6= j, if for some n > 0 the bridge rules

i :C1
v→ j :G1, . . . , i :Cn

v→ j :Gn are all part of B then for every distributed
interpretation I such that I |=ε T it holds that

rij

(
(C1 u · · · u Cn)Ii

)
⊆ (G1 u · · · uGn)Ij .

6 Transformational Semantics

It follows that the problem of deciding subsumption with respect to a distributed
knowledge base that allows conjunctive bridge rules is reducible to the case with
normal bridge rules only (Theorem 4 below). As a tableaux decision procedure
is known for the latter case (see [2,3]), this result provides us with reasoning
support for DDLs with conjunctive bridge-rules. However, the transformation
leads to quadratic blowup in the number of bridge rules in the worst case, and
so the computational properties of the overall procedure may not be satisfiable.
This suggests further investigation of reasoning in presence of conjunctive bridge
rules.

Theorem 4. Given a distributed TBox T with a set of bridge rules B that con-
tains conjunctive bridge rules, let T′ and B′ be obtained in two steps:

1. adding i : C uD w→ j : G uH to B for each pair of i : C
w
� j : G ∈ B and

i : D
w
� j : H ∈ B,

2. removing all conjunctive bridge rules from B.

Then for every i ∈ I and for every two concepts, say C and D, of Ti it holds
that T |=ε i : C v D if and only if T′ |=ε i : C v D.

Given the reduction, it is now clear that the expressive power of the frame-
work is not enhanced by addition of conjunctive bridge rules. We argue, however,
that conjunctive bridge rules still are an interesting update since using them in-
stead of normal onto-bridge rules guarantees intuitive behaviour of the semantics,
as demonstrated in Examples 1 and 2 and formally established by Theorem 2.
1 We are indebted to one of the anonymous referees for pointing this out.
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7 Evaluation and Comparison

In [1,2,3] various intuitions on how the semantics of a distributed DL environ-
ment, such as DDL, should behave are presented. The original semantics of
DDLs has been evaluated with respect to these desiderata throughout [1,2,3].
We proceed with evaluating the new framework with respect to these desiderata.

First of all, monotonicity is a desired property, that is, the requirement that
bridge rules do not delete local subsumptions as postulated in [1,2].

Theorem 5 (Monotonicity). In every distributed TBox T that also allows
conjunctive bridge-rules it holds that Ti |= A v B =⇒ T |=ε i : A v B.

Another desired property is that there is no backflow of information against
the direction of bridge rules. This property (we use the version of [3]) also holds
in the presence of conjunctive bridge-rules.

Theorem 6 (Directionality). Given a distributed TBox T that allows con-
junctive bridge rules in its set of bridge rules B, if there is no directed path
of bridge rules from Ti to Tj in T, then T |=ε j : C v D if and only if
T′ |=ε j : C v D, where T′ is obtained by removing Ti from T as well as
removing all bridge-rules involving Ti from B.

Another interesting desideratum that has been postulated in [2] is that one
should be only able to add new knowledge by combination of into- and onto-
bridge rules.

Desideratum 1 (Strong directionality) If either for all k 6= i, Bki contains
no into-bridge rules or for all k 6= i, Bki contains no onto-bridge rules, then
T |=ε i : A v B implies Ti |= A v B.

Unfortunately, this does not hold for DDLs, with or without conjunctive bridge
rules. As a counterexample consider the distributed TBox of Example 1 and
replace all bridge-rules therein by conjunctive ones. This setting counters the
desideratum. Using the reduction of Theorem 4 one obtains an equivalent knowl-
edge base with no conjunctive bridge rules that still counters the desideratum.

Yet another interesting desideratum for DDLs is that local inconsistency that
occurs in some of the local TBoxes does not spread and pollute the whole system.
In [3] a precise characterization of how inconsistent local TBoxes affect a DDL
knowledge base is given. We confirm this property also in presence of conjunctive
bridge rules.

Theorem 7 (Local inconsistency). Given a distributed TBox T that also
allows conjunctive bridge rules, T |=ε i : C v D if and only if for any J ⊆ I not
containing i, T(εJ) |=d i : C v D, where |=d is a kind of entailment that does
not allow holes, and T(εJ) is obtained from T by removing each Tj, j ∈ J , and

adding {D v ⊥ | j : C
w i : D ∈ B ∧ j ∈ J} to each Ti, i ∈ I \ J .
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Two desiderata of [1,2,3] show how subsumption is propagated along bridge
rules. Since only one onto-bridge rule is involved here, it follows immediately
that these desiderata also hold when a conjunctive onto-bridge rule is used.

Theorem 8 (Simple subsumption propagation). If i : C
w j : G ∈ B and

i :D v→ j :H ∈ B then T |=ε i : C v D =⇒ T |=ε j : G v H.

Theorem 9 (Generalized subsumption propagation). If i : C
w j : G ∈

B and i :Dk
v→ j :Hk ∈ B, for 1 ≤ k ≤ n then T |=ε i : C v ⊔n

k=1Dk implies
T |=ε j : G v ⊔n

k=1Hk.

So far we have evaluated the adjusted DDLs framework, with respect to the
desiderata postulated for DDLs in [1,2,3]. We have showed that all the desiderata
that are satisfied for the original framework also hold when conjunctive bridge
rules are present. Moreover, we introduce a variant of the Generalized subsump-
tion propagation desideratum, in which concept intersection is involved instead
of concept union. We consider this a desired property and are pleased to report
that it also holds for DDLs (with or without conjunctive bridge rules allowed).

Theorem 10 (Subsumption propagation over concept intersection). If

i : C
w j : G ∈ B and i :Dk

v→ j :Hk ∈ B, for 1 ≤ k ≤ n then T |=ε i : C vdn
k=1Dk implies T |=ε j : G v dn

k=1Hk.

8 Related Work

Besides of DDLs of Borgida, Serafini and Tamilin [1,2,3], another major contri-
bution to distributed and modular ontologies is the approach of Cuenca Grau
et al. [8,5] where a combination of several ontologies using E-connections [9] is
proposed. In this framework, link relations – inter-ontology roles between local
ontologies – are favored instead of bridge rules. While both are related [9,10],
each maintains its own primary intuitions – in DDLs inter-ontology subsumption
is modeled directly with bridge rules, while the preference of links in the latter
framework has lead to such results as automated ontology decomposition [11].

An extension of DDLs called C-OWL has been introduced by Bouquet et al.
in [6]. Several improvements were suggested, including a richer family of bridge
rules, allowing bridging between roles, etc. Also, Ghidini and Serafini in [12,13]
enrich DDLs with heterogenous mappings, that is mappings between concepts
and roles.

9 Conclusion and Future Work

We have proposed an adjustment/extension of DDLs of [1,2,3] in order to address
an issue noted in [5]. We have introduced so called conjunctive onto-bridge rules
with modified semantics; there is no need for conjunctive into-bridge rules. Even
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if the expressive power of the framework does not grow when conjunctive onto-
bridge rules are added, using them instead of normal onto-bridge rules guarantees
that the unintuitive behaviour of the semantics does not occur any more. All
desired properties that hold for DDLs, as established in [1,2,3], also hold when
conjunctive bridge rules are added. We have postulated one additional property
which holds with and without conjunctive bridge rules as well. We have also
provided a transformational semantics for conjunctive bridge rules and so, at
least theoretically, a decision procedure, given the known results for DDLs [2,3].

Other interesting issues regarding distributed ontologies that we would like
to address include evaluation of the adjusted DDL framework; and further in-
vestigation of reasoning algorithms and computational properties.
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Multimedia Interpretation as Abduction

S. Espinosa Peraldi, A. Kaya, S. Melzer, R. Möller, M. Wessel

Hamburg University of Technology, Germany

Abstract. In this work we present an approach to interpret information
extracted from multimedia documents through Abox abduction, which
we consider as a new type of non-standard retrieval inference service
in Description Logics (DLs). We discuss how abduction can be adopted
to interpret multimedia content through explanations. In particular, we
present a framework to generate explanations, and introduce a preference
measure for selecting ‘preferred’ explanations.1

1 Introduction

Automated extraction of information from different types of multimedia docu-
ments such as image, text, video, and audio becomes more and more relevant
for intelligent retrieval systems. An intelligent retrieval system is a system with
a knowledge base and capabilities that can be used to establish connections
between a request and a set of data based on the high-level semantics of the
data (which can also be documents). Typically, nowadays, automated semantics
extraction from multimedia occurs by using low-level features and is often lim-
ited to the recognition of isolated items if even. Examples are single objects in
an image, or single words (or maybe phrases) in a text. However, multimedia
documents such as images usually present more than objects detectable in a
bottom-up fashion. For instance, an image may illustrate an abstract concept
such as an event. An event in a still image can hardly be perceived without
additional high-level knowledge.

We see multimedia interpretation as abduction (reasoning from effects to
causes) in that we reason from observations (effects) to explanations (causes).
The aim of this work is to present a novel approach for multimedia interpretation
through Abox abduction, which we consider as a new type of non-standard
retrieval inference service in DLs. In particular, we focus on the use of DL-
safe-like rules for finding explanations and introduce a preference measure for
selecting ‘preferred’ explanations.

2 Related Work in Media Interpretation and Abduction

The idea of formalizing interpretation as abduction is investigated in [4] in the
context of text interpretation. In [8], Shanahan presents a formal theory of robot
1 This work is partially supported by the EU-funded projects BOEMIE (Bootstrapping

Ontology Evolution with Multimedia Information Extraction, IST-FP6-027538) and
TONES (Thinking ONtologiES, FET-FP6-7603).
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perception as a form of abduction. In this work, low-level sensor data is trans-
formed into a symbolic representation of the world in first-order logic and ab-
duction is used to derive explanations. In the context of scene interpretation,
recently, in [7] the use of DLs for scene interpretation processes is described.

In this paper we present a novel approach based on the combination of the
works in [4, 8] and [7], and indicate how formal representation and reasoning tech-
niques can be used for interpretation of information extracted from multimedia
documents. The approach used description logics and rules, with abduction im-
plemented with backward-chaining applied to the rules. In contrast to approaches
such as [5], which use abduction in the context of rules in logic programming,
we use description-logic reasoning for proving subgoals of (non-recursive) rules.
Other approaches for abduction in description logics (e.g., [1]) have dealt with
concept abduction only. In [3] among other abductive reasoning tasks in DLs
also Abox abduction is discussed. A solution to the Abox abduction problem is
formally presented, but it is not shown how to derive solutions.

Abduction is investigated for supporting information retrieval based on high-
level descriptions on media content. The approach builds on [6] and, in contrast
to later related work such as [2], the approach is integrated into a mainstream
description logic system and is based on high-level descriptions of media content.

3 Retrieval Inference Services

Before introducing abduction as a new inference service, we start with an overview
of retrieval inference services that are supported by state-of-the-art DL reason-
ers.

The retrieval inference problem w.r.t. a Tbox T is to find all individuals men-
tioned in an Abox A that are instances of a certain concept C: {x mentioned
in A | (T ,A) |= x : C}. In addition to the basic retrieval inference service, ex-
pressive query languages are required in practical applications. Well-established
is the class of conjunctive queries. A conjunctive query consists of a head and
a body. The head lists variables for which the user would like to compute bind-
ings. The body consists of query atoms (see below) in which all variables from
the head must be mentioned. If the body contains additional variables, they are
seen as existentially quantified. A query answer is a set of tuples representing
bindings for variables mentioned in the head. A query is a structure of the form
{(X1, . . . , Xn) | atom1, . . . , atomm}.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )),
same-as query atoms (X = Y ) as well as so-called concrete domain query atoms.
The latter are introduced to provide support for querying the concrete domain
part of a knowledge base and will not be covered in detail here. Complex queries
are built from query atoms using boolean constructs for conjunction (indicated
with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in
the body) are bound to (possibly anonymous) domain objects. A system support-
ing (unions of) standard conjunctive queries is QuOnto. In so-called grounded
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conjunctive queries, C(X), R(X,Y ) or X = Y are true if, given some bindings
α for mapping from variables to individuals mentioned in the Abox A, it holds
that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y )) : R, or (T ,A) |= α(X) = α(Y ),
respectively. In grounded conjunctive queries the standard semantics can be
obtained for so-called tree-shaped queries by using corresponding existential re-
strictions in query atoms. Due to space restrictions, we cannot discuss the details
here. In the following, we consider only grounded conjunctive queries, which are
supported by KAON2, Pellet, and RacerPro.

In practical applications it is advantageous to name subqueries for later reuse,
and practical systems, such as for instance RacerPro, support this for grounded
conjunctive queries with non-recursive rules of the following form

P (X1, . . . , Xn1)← A1(Y1), . . . , Al(Yl), R1(Z1, Z2), . . . , Rh(Z2h−1, Z2h). (1)

The predicate term to the left of ← is called the head and the rest is called the
body (a set of atoms), which, informally speaking, is seen as a conjunction of
predicate terms. All variables in the head have to occur in the body, and rules
have to be non-recursive (with the obvious definition of non-recursivity). Since
rules have to be non-recursive, the replacement of query atoms matching a rule
head is possible (unfolding, with the obvious definition of matching). The rule
body is inserted (with well-known variable substitutions and variable renamings).
If there are multiple rules (definitions) for the same predicate P , corresponding
disjunctions are generated. The unfolding process starts with the set of atoms
of a query. Thus, we start with a set of atom sets.

{{atom1, atom2, . . . atomk}}

Each element of the outer set represents a disjunct. Now, wlog we assume that
there are n rules matching atom2. Then, the set {atom1, atom2, . . . atomk}
is eliminated and replaced with the sequence of sets {atom1} ∪ replace vars(
body(rule1), head(rule1), atom2)∪{. . . atomk}, . . . , {atom1}∪replace vars(body
(rulen), head(rulen), atom2)∪{. . . atomk}. The unfolding process proceeds until
no replacement is possible any more (no rules match). The unfold operator is
used in the abduction process, which is described in the next section.

4 Abduction as a Non-Standard Inference Service

In this paper, we argue that abduction can be considered as a new type of non-
standard retrieval inference service. In this view, observations (or part of them)
are utilized to constitute queries that have to be answered. Contrary to existing
retrieval inference services, answers to a given query cannot be found by simply
exploiting the knowledge base. In fact, the abductive retrieval inference service
has the task of acquiring what should be added to the knowledge base in order
to positively answer a query.

More formally, for a given set of Abox assertions Γ (in form of a query) and
a knowledge base Σ = (T ,A), the abductive retrieval inference service aims to
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derive all sets of Abox assertions ∆ (explanations) such that Σ ∪ ∆ |= Γ and
the following conditions are satisfied:

– Σ ∪∆ is satisfiable, and
– ∆ is a minimal explanation for Γ , i.e., there exists no other explanation ∆′

in the solution set that is not equivalent to ∆ and it holds that Σ ∪∆′ |= ∆.

In addition to minimality (simplicity), in [4] another dimension called con-
silience is mentioned. An explanation should explain as many elements of Γ as
possible. Both measures are contradictory.

In the next section, we will focus on the use of abductive retrieval infer-
ence services for multimedia interpretation and address two important issues,
namely finding explanations that meet the conditions listed above and selecting
‘preferred’ ones.

5 Interpretation of Multimedia Documents

For intelligent retrieval of multimedia documents such as images, videos, audio,
and texts, information extracted by media analysis techniques has to be enriched
by applying high-level interpretation techniques. The interpretation of multime-
dia content can be defined as the recognition of abstract knowledge, in terms of
concepts and relations, which are not directly extractable by low-level analysis
processes, but rather require additional high-level knowledge. Furthermore, such
abstract concepts are represented in the background knowledge as aggregate
concepts with constraints among its parts.

In this section, we start by specifying the requirements for the abduction
approach by defining its input and output. Then, we proceed with describing the
framework for generating explanations, and finally introduce a scenario with a
particular example involving for image interpretation where various explanations
are generated and the usefulness of a preference score is demonstrated.

5.1 Requirements for Abduction

The abduction approach requires as input a knowledge base Σ consisting of
a Tbox T and an Abox A. We assume that the information extracted from a
multimedia document through low-level analysis (e.g., image analysis) is formally
encoded as a set of Abox assertions (Γ ). For example, in the context of images for
every object recognized in an image, a corresponding concept assertion is found in
Γ . Usually, the relations that can be extracted from an image are spatial relations
holding among the objects in the image. These relations are also represented
as role assertions in Γ . In order to construct a high-level interpretation of the
content in Γ , the abduction process will extend the Abox with new concept and
role assertions describing the content of the multimedia document at a higher
level.

The output of the abduction process is formally defined as a set of assertions
∆ such that Σ ∪∆ |= Γ , where Σ = (T ,A) is the knowledge base (usually the
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Abox A is assumed to be empty), Γ is a given set of low-level assertions, and
∆ is an explanation, which should be computed. The solution ∆ must satisfy
certain side conditions (see Section 4). To compute the explanation ∆ in our
context we modify this equation into

Σ ∪ Γ1 ∪∆ |= Γ2, (2)

where the assertions in Γ will be split into bona fide assertions (Γ1) and asser-
tions requiring fiats (Γ2).2 Bona fide assertions are assumed to be true by default,
whereas fiat assertions are aimed to be explained. The abduction process tries to
find explanations (∆) such that Γ2 is entailed. This entailment decision is imple-
mented as (boolean) query answering. The output ∆ of the abduction process is
represented as an Abox. Multiple solutions are possible.

5.2 The Abduction Framework

The abduction framework exploits the non-recursive rules of Σ to answer a
given query in a backward-chaining way (see Framework 1). The function com-
pute_explanations gets Σ,Γ1, and Γ2 as input. We assume a function trans-
form_into_query that is applied to a set of Abox assertions Γ2 and returns
a set of corresponding query atoms. The definition is obvious and left out for
brevity. Since the rules in Σ are non-recursive, the unfolding step (see Line 2
in Framework 1) in which each atom in the transformed Γ2 is replaced by the
body of a corresponding rule is well-defined. The function unfold returns a set
of atom sets (each representing a disjunct introduced by multiple matching rules,
see above).

The function explain computes an explanation ∆ for each γ ∈ Γ ′2. The
function vars (or inds) returns the set of all vars (or inds) mentioned in the
argument structures. For each variable in γ a new individual is generated (see the
set new inds in Line 7). Besides old individuals, these new individuals are used in
a non-deterministic variable substitution. The variable substitution σγ,new inds

(line 8) is inductively extended as follows:

– σγ,new inds({a1, . . . , an}) =def {σγ,new inds(a1), . . . , σγ,new inds(an)}
– σγ,new inds(C(x)) =def C(σγ,new inds(x))
– σγ,new inds(R(x, y)) =def R(σγ,new inds(x), σγ,new inds(y))
– σγ,new inds(x) =def x if x is an individual

The function transform maps C(i) into i : C and R(i, j) into (i, j) : R, respec-
tively. All satisfiable explanations ∆ derived by explain are added to the set of
explanations ∆s. The function compute-preferred-explanations transforms
the ∆s into a poset according to a preference measure and returns the maxima
as a set of Aboxes. The preference score of a ∆ used for the poset order relation
is: Spref(∆) := Si(∆)− Sh(∆) where Si and Sh are defined as follows.

2 With the obvious semantics we slightly abuse notation and allow a tuple of sets of
assertions Σ to be unioned with a set of assertions Γ1 ∪∆.
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– Si(∆) := |{i|i ∈ inds(∆) and i ∈ inds(Σ ∪ Γ1)}|
– Sh(∆) := |{i|i ∈ inds(∆) and i ∈ new inds}|

Algorithm 1 The Abduction Framework
1: function compute explanations(Σ,Γ1, Γ2, S) : set of Aboxes
2: Γ ′2 := unfold(transform into query(Γ2), Σ) // Γ ′2 = {{atom1, . . . , atomm}, . . .}
3: ∆s := {∆ |∃γ ∈ Γ ′2.(∆ = explain(Σ,Γ1, γ), Σ ∪ Γ1 ∪∆ 6|= ⊥)}
4: return compute preferred explanations(Σ,Γ1,∆s, S)

5: function explain(Σ,Γ1, γ) : Abox
6: n := |vars(γ)|
7: new inds := {new indi | i ∈ {1 . . . n}}, where new inds∩(inds(Σ)∪inds(Γ1)) = ∅
8: ∆ := {transform(a) | ∃σγ,new inds : vars(γ) 7→ (inds(Σ) ∪ inds(Γ1) ∪ new inds).
9: (a ∈ σγ,new inds(γ), (Σ ∪ Γ1) 6|= a)}

10: return ∆

11: function compute preferred explanations(Σ,Γ1,∆s, S) : set of Aboxes
12: return maxima(poset(∆s, λ(x, y) • S(x) < S(y)))

Depending on the preference function given as the actual parameter for the
argument S, the procedure compute_explanations can be considered as an
approximation w.r.t. the minimality and consilience condition defined in Section
4. It adds to the explanation those query atoms that cannot be proven to hold.

For the abduction framework, only the rules are considered. The GCIs should
be used for abduction as well, however. We might accomplish this by approx-
imating the Tbox with the DLP fragment and, thereby, see the Tbox axioms
from a rules perspective in order to better reflect the Tbox in the abduction
process. The procedure does not add irrelevant atoms (spurious elements of an
explanation), in case the rules are well-engineered and do not contain irrelevant
ways to derive assertions. The procedure could be slightly modified to check for
those redundancies.

5.3 An Example for Image Interpretation as Abduction

For the image shown in Figure 1, we suppose the Abox in Figure 2 is provided
by low-level image analysis. Furthermore, a sample Tbox of the athletics domain
and a small set of rules are assumed to be provided as background knowledge Σ
(see Figure 3).

In order to find a ‘good’ high-level interpretation of this image, we divide the
Abox Γ into Γ1 and Γ2 following Equation 2. In this example Γ1 contains {pole1 :
Pole, human1 : Human, bar1 : Bar} and Γ2 contains {(bar1, human1) : near}.
Consequently, the abductive retrieval inference service computes the following
boolean query in line 2: Q1:={() | near(bar1, human1)}. In this paper we do not
elaborate on the strategy to determine which Γ2 to actually choose.
Obviously, both rules in Σ match with the ‘near’ atom in query Q1. Therefore,
the abduction framework first generates explanations by non-deterministically
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Fig. 1. A pole vault event.

pole1 : Pole
human1 : Human

bar1 : Bar
(bar1, human1) : near

Fig. 2. An Abox Γ representing the results
of low-level image analysis.

Jumper v Human
Pole v Sports Equipment
Bar v Sports Equipment

Pole uBar v ⊥
Pole u Jumper v ⊥
Jumper uBar v ⊥

Jumping Event v ∃≤1hasParticipant.Jumper
Pole V ault v Jumping Event u ∃hasPart.Pole u ∃hasPart.Bar
High Jump v Jumping Event u ∃hasPart.Bar
near(Y,Z) ← Pole V ault(X), hasPart(X,Y ), Bar(Y ),

hasPart(X,W ), Pole(W ), hasParticipant(X,Z), Jumper(Z)
near(Y,Z) ← High Jump(X), hasPart(X,Y ), Bar(Y ),

hasParticipant(X,Z), Jumper(Z)

Fig. 3. A tiny example Σ consisting of a Tbox and DL-safe rules.

substituting variables in the query body with different instances from Γ1 or with
new individuals. Some intermediate ∆ results turn out to be unsatisfiable (e.g., if
the bar is made into a pole by the variable subsitution process). However, several
explanations still remain as possible interpretations of the image. The preference
score is used to identify the ‘preferred’ explanations. For example, considering
the following explanations of the image

– ∆1 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, new ind2) :
hasPart, new ind2 : Pole, (new ind1, human1) : hasParticipant, human1 :
Jumper}

– ∆2 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, pole1) :
hasPart,
(new ind1, human1) : hasParticipant, human1 : Jumper}

– ∆3 = {new ind1 : High Jump, (new ind1, bar1) : hasPart, (new ind1, human1) :
hasParticipant,
human1 : Jumper}

the preference measure of ∆1 is calculated as follows: ∆1 incorporates the in-
dividuals human1 and bar1 from Γ1 and therefore Si(∆1)=2. Furthermore, it
hypothesizes two new individuals, namely new ind1 and new ind2, such that

Proceeding of DL2007 - Regular Papers 329



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 330 — #340 i
i

i
i

i
i

Sh(∆1)=2. The preference score of ∆1 is S(∆1)= Si(∆1)- Sh(∆1)=0. Similarly,
the preference scores of the second and third explanations are S(∆2)=2 and
S(∆3)=1. After transforming the ∆s into a poset, the algorithm computes the
maxima. In our case, the resulting set of Aboxes contains only one element, ∆2,
which represents the ‘preferred’ explanation. Indeed, the result is plausible, since
this image should better be interpreted as showing a pole vault and not a high
jump, due to the fact that low-level image analysis could detect a pole, which
should not be ignored as in the high-jump explanation.

6 Summary

In this paper we presented a novel approach to interpret multimedia data using
abduction with description logics that makes use of a new type of non-standard
retrieval service in DLs. We showed that results from low-level media analysis
can be enriched with high-level descriptions using our Abox abduction approach.
In this approach, backward-chained DL-safe-like rules are exploited for generat-
ing explanations. For each explanation, a preference score is calculated in order
to implement the selection of ‘preferred’ explanations. Details of the approach
have been discussed with a particular example for image interpretation. An im-
plementation of the abduction process described in this paper is available as a
non-standard retrieval service integrated in RacerPro.
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Prospects for and issues with mapping the
Object-Role Modeling language into DLRifd

C. Maria Keet

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
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Abstract. Object-Role modellers miss the advantages of automated
reasoning over their ORM conceptual models, which could be addressed
by DL reasoners. DLs are not considered user-friendly and could benefit
from the easy to use ORM diagrammatic and verbalization interfaces
and modelling methodologies. Relating the two would greatly expand
the scope for automated reasoning with additional scenarios to improve
quality of software systems. Given that none of the extant DL languages
are as expressive as ORM or its successor ORM2, the ‘best-fit’ DLRifd
was chosen to map the formal conceptual modelling language ORM2.
For the non-mappable constraints, pointers to other DL languages are
provided, which could serve as impetus for research into DL language
extensions or interoperability between existing DL languages.

1 Introduction

Description Logic (DL) languages have been shown useful for reasoning both
over conceptual models like ER and UML [2, 4, 12] and ontology languages such
as OWL-DL, OWL-Lite [27], its proposed successor OWL 1.1 [26] that is based
on the DL language SROIQ [22], and DL-Lite [7]. In particular, we are inter-
ested in the notion of using DLs as unifying paradigm for conceptual modelling
to enable automated reasoning over conceptual data models, which, be it due
to legacy, preference, or applicability, are made with different conceptual mod-
elling languages. A tool such as iCOM [15] already supports automated reasoning
over UML or EER diagrams, which may have cross-conceptual model assertions.
What is lacking, however, is a mapping from Object-Role Modeling (ORM) into
a DL. One may wonder: why yet another mapping? There are three main reasons
for this. First, ORM is a so-called “true” conceptual modelling language in the
sense that it is independent of the application scenario and it has been mapped
into both UML class diagrams and ER. That is, ORM and its successor ORM2
can be used in the conceptual analysis stage for database development, applica-
tion software development, requirements engineering, business rules, and other
areas, e.g., [3, 5, 14, 17, 24]. Thus, if there is an ORM-to-DL mapping, the possible
applications for automated reasoning services can be greatly expanded. Second,
an important aspect of ORMing is to have great consideration for the user and
therefore ORM tools such as CaseTalk and NORMA are very user-friendly, so
that even domain experts unfamiliar with formalisms can start modelling after
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half an hour training. ORM tools have both diagrammatic and textual interfaces
(the latter through so-called verbalizations, which are pseudo-natural language
renderings of the axioms), thereby accommodating different user preferences to-
ward modelling. Third, ORM is more expressive than either UML or EER and
is more expressive than the extant DLs as well. Most ORM constraints are sup-
ported in one DL language or another, but none supports all ORM constraints.
The proposed ORM-to-DLRifd mapping may provide some élan to examine DL
language extensions not only based on interest and particular user requests from
domain-modelling scenarios, but toward those (combinations of) extensions that
are already known to be useful, or to find an implementable solution where for
different (sections of) conceptual models, different languages can be used within
one application interface.

The remainder of this paper is organised as follows. Subsections 1.1 and 1.2
contain brief introductions to ORM and DLR, respectively. The main part is
devoted to the assessment of the mapping (Section 2). Finally, some reflections
and conclusions are included in Section 3.

1.1 Brief introduction to Object-Role Modeling (ORM)

The basic building blocks of the ORM language are object types, value types—at
the conceptual level no subjective distinction has to be made between classes and
attributes—relations, roles, and a plethora of constraints. A role is that what
the object or value type ‘plays’ in the relation. ORM supports n-ary relations,
where n is a finite integer ≥ 1. An example of a fact type is shown in Fig.1, which
was made with the NORMA CASE tool [25]: the diagrammatic representation
of the relation –rectangle divided into three roles, one for each participating
object or value type– in the ORM model has 1) the name of the relation, which
is displayed in the properties box of the relation and is generated automatically
by the software (called “PatientAdmittedToHospitalAtDateDate” in the example), 2)
role names, such as “[hospitalAdmission]” for the the role that object type Patient
plays, and 3) a label attached to the relation, “... admitted to ... at date ...”, which
is used for the verbalization. ORM models can be mapped into, among others,
ER and UML diagrams, IDEFX logical models, SQL table definitions, C, Visual
Basic, and XML. More information on these mappings can be found in e.g. [17].
The ORM basics can be summarised as follows: an n-ary predicate (relation) R,
with n ≥ 1, is composed of r1, ..., rn roles where each role has one object type,
denoted with C1, ..., Cn, associated with it. Roles and predicates are globally
unique (although the ‘surface labeling’ for the modeler may suggest otherwise).

Halpin’s first order logic formalization [16] was taken as basis for the mapping
into DLRifd , because it was the first formal characterisation of ORM and is
relatively comprehensive in its treatment of constructors; other formalizations
of ORM [13, 20, 21] do not differ significantly from Halpin’s version. [20, 21] make
clearer distinctions between roles and predicates and the relation between them
and the naming and labeling of ORM elements, but they cover fewer constraints.
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Patient is an entity type. 
Reference Scheme: Patient has Patient_ID. 
Reference Mode: ID. Hospital is an entity type. 
Reference Scheme: Hospital has Hospital_name. 
Reference Mode: name. Date is a value type. Portable data type: Temporal: Date & Time. 
Patient admitted to Hospital at date Date. 
It is possible that more than one Patient admitted to the same Hospital at date the same Date 

and that the same Patient admitted to more than one Hospital at date the same Date 
and that the same Patient admitted to the same Hospital at date more than one Date. 

Each Patient, Hospital, Date combination occurs at most once in the population of Patient admitted to Hospital at date Date. 

 
 Fig. 1. Top left: an ORM2 model with two object types, a value type, a ternary relation,

label for the reading, and name of the first role in “[ ]”; top-right: properties box of the
fact type, displaying the name of the relation; bottom-half: verbalization of the fact
type, its object and value types, and uniqueness constraint (line above the rectangle).

1.2 DLs for conceptual modelling languages

DL languages are decidable fragments of first order logic and are used for logic-
based knowledge representation. Basic ingredients of all DL languages are con-
cepts and roles (an n-ary predicate where n ≥ 2). In addition, a DL has several
constructors, giving greater or lesser expressivity and efficiency of automated
reasoning over a logical theory. The Terminological Box (TBox) contains axioms
at the concept-level and the ABox contains assertions about instances. A TBox
corresponds to a formal conceptual data model or can be used to represent an
ontology. More information and its usage can be found in [2].

For conceptual modelling, we introduce DLR first [8], and subsequently the
“ifd” extension [4, 9]. Take atomic relations (P) and atomic concepts A as the
basic elements of DLR. We then can construct arbitrary relations with arity ≥ 2
and arbitrary concepts according to the following syntax:

R −→ >n| P | ($i/n : C) | ¬R | R1u R2

C −→ >1| A | ¬C | C1 u C2 | ∃[$i]R | ≤ k[$i]R
i denotes a component of a relation; if components are not named, then inte-
ger numbers between 1 and nmax are used, where n is the arity of the relation.
k is a nonnegative integer for multiplicity (cardinality). Only relations of the
same arity can be combined to form expressions of type R1u R2, and i ≤ n,
i.e., the concepts and relations must be well-typed. The semantics of DLR is
specified through the usual notion of interpretation, where I= (∆I , ·I), and the
interpretation function ·I assigns to each concept C a subset CI of ∆I and to
each n-ary R a subset RI of (∆I)n, s.t. the conditions are satisfied following
Table 1. >1 denotes the interpretation domain, >n for n ≥ 1 denotes a subset
of the n-cartesian product of the domain, which covers all introduced n-ary re-
lations; hence “¬” on relations means difference rather than the complement.
The ($i/n : C) denotes all tuples in >n that have an instance of C as their
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>In ⊆ (∆I)n AI ⊆ ∆I
PI ⊆ >In (¬C)I = ∆I \ CI

(¬R)I = >In \RI (C1 u C2)
I = CI1 ∩ CI2

(R1 uR2)
I = RI1 ∩RI2 ($i/n : C)I = {(d1, ..., dn) ∈ >In|di ∈ CI}

>I1 = ∆I (∃[$i]R)I = {d ∈ ∆I |∃(d1, ..., dn) ∈ RI .di = d}
(≤ k[$i]R)I = {d ∈ ∆I ||{(d1, ..., dn) ∈ RI1 |di = d|} ≤ k}

Table 1. Semantic rules for DLRifd .

i-th component. DLR is a proper generalization of ALCQI, where the usual
DL constructs can be re-expressed in DLR as: ∃P.C as ∃[$1](P u ($2/2 : C)),
∃P−.C as ∃[$2](P u ($1/2 : C)) and so forth (see [8] for details). The following
abbreviations can be used: C1 t C2 for ¬(¬C1 u ¬C2), C1 ⇒ C2 for ¬C1 t C2,
(≥ k[i]R) for ¬(≤ k− 1[i]R), ∃[i]R for (≥ 1[i]R), ∀[i]R for ¬∃[i]¬R, R1 tR2 for
¬(¬R1 u ¬R2), and (i : C) for (i/n : C) when n is clear from the context.
DLRifd supports identification assertions on a concept C, which has the

form (id C[i1]R1, ..., [ih]Rh), where each Rj is a relation and each ij denotes one
component of Rj . Then, if a is an instance of C that is the ij-th component of
a tuple tj of Rj , for j ∈ {1, ..., h}, and b is an instance of C that is the ij-th
component of a tuple sj of Rj , for j ∈ {1, ..., h}, and for each j, tj agrees with
sj in all components different from ij , then a and b are the same object. DLRifd
supports functional dependency assertions on a relation R for operations, which
has the form (fd R i1, ..., ih → j), where h ≥ 2, and i1, ..., ih, j denote compo-
nents of R.

Other relevant DL languages There are three other DLR flavours. DLRµ
supports fixpoint constructs for recursive structures over single-inheritance trees
of a role [10] and thereby can represent acyclicity, transitivity, asymmetry, and
(ir)reflexivity. DLRreg adds support for regular expressions over roles (includ-
ing the role composition operator and reflexive transitive closure) [11], and
DLRUS for temporal EER [1]. It has not been investigated if combining DLRifd ,
DLRreg , and DLRµ remains within EXPTIME or leads to undecidability. In the
other direction toward expressive DL-based ontology languages, OWL and draft
OWL 1.1 [26] are based on SHOIN (for OWL-DL), SHIF (OWL-Lite), and
SROIQ, respectively. SROIQ supports local (ir)reflexivity, (a)symmetry, and
transitive roles [22], but does not have constructors for acyclic roles, datatypes,
id, and has no ‘access’ to elements of a DL-role.

2 Mapping issues

We now proceed to the mapping, which considers all components and constraints
of ORM2, except deontic constraints (compared to ORM in [16], ORM2 also sup-
ports exclusive total covering of subtypes, role values, and deontic constraints).
As basis, we used the ORM formalisation in first order logic by [16]. Graphical
notation of ORM constrains and more explanation is deferred to [23] due to
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space limitations; e.g., the ternary relation in Fig.1 is reified in DLRifd as:
PatientAdmittedToHospitalAtDateDate v ∃[1]r1 u (≤ 1[1]r1) u ∀[1](r1 ⇒ (2 :Patient
))u ∃[1]r2u (≤ 1[1]r2)u∀[1](r2 ⇒ (2 : Hospital ))u ∃[1]r3u (≤ 1[1]r3)u∀[1](r3 ⇒
(2 : Date )) and the identification of Hospital either as (id Hospital [1]Hospital-
HasHospital name) or through a 1:1 relation (abbreviated as HHH n) HHH n v (1:
Hospital) u (2: Hospital name), Hospital v (≤ 1 [1]HHH n ), and Hospital name v (≤
1 [2]HHH n) with mandatory Hospital v ∃ [1] HHH n. The interesting problematic
constraints are addressed in this section. The main problems concern ORM ring
constraints, which are DL-role properties (Fig.2), and constraints with patterns
of the type “constraint x over k ORM-roles” over an n-ary relation where k < n.

antisymmetry
acyclicity

asymmetry

intransitivity

irreflexivity

symmetry
ri

Ri

ri

Rj

r1

r1 r2

r2

rk

rk

A. ORM Ring constraints/DL-role properties B. Subset over k roles

Fig. 2. A: ring constraints (after [17]); B: example of constraint over k ORM-roles.

Intransitivity over an ORM ring constraint is, obviously, supported inDLRifd ,
but not transitivity, for which we need either DLRµ or DLRreg . Antisymmetry
in ORM is reflexive antisymmetry (∀x, y(R(x, y) ∧ R(y, x) → x = y)), which
no DL language supports. (Observe from Fig.2 that SROIQ’s irreflexive an-
tisymmetry is asymmetry.) The irreflexive ring constraint on a binary relation
(∀x¬(R(x, x))) is an open issue for DLRifd , but already possible with DLRµ
thanks to least/greatest fixpoint construct and in SROIQ with Self. The sym-
metric (∀x, y(R(x, y) → R(y, x))) and asymmetric (∀x, y(R(x, y) → ¬R(y, x)))
ring constraints are not supported either, but both are supported in SROIQ and
the latter is supported in DLRµ through the stronger notion of well-foundedness.
The last ‘basic’ ring constraint, acyclicity (“R is acyclic iff ∀x¬(x has path to
x)” in [17]), probably can be added to DLRifd with the repeat PDL (tran-
sitive closure of roles, R+, i.e.,

⋃
n≥1(R

I)n) using the least fixpoint construct
µX.C (i.e., ∃R∗.C = µX(C t ∃R.X) [8, 10]). ORM also permits combinations
of ring constraints: intersecting acyclicity and intransitivity, antisymmetry with
intransitivity, intransitive symmetry, and irreflexive symmetry.

The second main problem concerns constraints over k roles in an n-ary rela-
tion, which are: Subset over k roles in two n-ary relations (depicted in Fig.2-B, A
below with abbreviation that underlined variable stands for a sequence x1, ..., xn
in an n-ary relation [23]), k < n, where the corresponding roles must match in
domain, Set-equality over k roles (B), Role exclusion over k roles (C) in two n-
ary relations Ri and Rj , and Multi-role frequency spanning i roles of an n-ary
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relation, i > 2, and i ≤ n (TFC5 in [16]), with formalisms as follows [16].
A. ∀x1, ...xn(∃ y (Rj(y) ∧x1 = yj1 ∧ ... ∧ xn = yjn) → ∃ z (Ri(z ) ∧ x1 =
zi1 ∧ ... ∧ xn = zin)) // Subset over k roles

B. ∀x1, ...xn(∃ y (Rj(y) ∧x1 = yj1 ∧ ... ∧ xn = yjn) ≡ ∃ z (Ri(z ) ∧ x1 =
zi1 ∧ ... ∧ xn = zin)) // Set-equality over k roles

C. ∀x1, ..., xn¬(∃y(Ri(y ∧x1 = yi1 ∧ ... ∧ xn = yin) ∧ ∃ z ( Rj(z ) ∧ x1 =
zj1 ∧ ... ∧ xn = zjn)) // Role exclusion over k roles

The problem is that these constraints lead to undecidability if those k roles do
not exactly make up the primary key (spanning uniqueness), as in a relational
table (A)-(C) correspond to arbitrary projections. If one does not consider an
additional key constraint, a partial mapping of (A)-(C) can be made on a ORM
role-by-role basis (DL-role element by DL-role element). This can be reduced
to a minor issue for Multi-role frequency (D) spanning roles ri, rj in an n-ary
relation, n ≥ 2, and 1 ≤ a ≤ b and subsequently assesses it in combination with
permissible uniqueness constraints.
D. ∀x, y(∃z1R(x, y, z1)→ ∃z2, ..., za(z1 6= z2 ∧ ... ∧ za−1 6= za ∧R(x, y, z2) ∧ ... ∧
R(x, y, za))) ∧ ∀x, y, z1, ..., zb+1(R(x, y, z1) ∧ ... ∧ R(x, y, zb+1) → z1 = z2 ∨ z1 =
z3 ∨ ... ∨ zb = zb+1) // Multi-role frequency

Given that an elementary fact type must have uniqueness over n-1 roles, then
either 1) ri or rj is part of a single role uniqueness constraint but not both, 2)
ri or rj is part of a multi-role uniqueness constraint but not both, 3) multi-role
uniqueness includes ri, rj , and ≥ 1 other role in the relation, or 4) the relation
is not an elementary fact type and ought to be remodelled to be elementary.
Option 1 implies that either i) a = 1 or ii) b = 1, and then the constraint can be
reduced to 1:n and m:n uniqueness, respectively; options 2-4, however, reduce
to the same problem of undecidability as with (C) (see [23]).

Last, a minor mapping issue is the Role value constraint, which is new in
ORM2: object type Ci only participates in role ri if an instance has any of the
values {vi, ...vk}, which is a subset of the set of values Ci can have. With a
binary relation, then ∀x, y(x ∈ {vi, ..., vk} → (R(x, y) → Ci(x) ∧ Cj(y))) holds.
A ‘candidate approach’ is to try to use DLRifd through breaking down the
constraint by creating a new subtype C ′i for the set of values to which the role
is constrained, where the value can be any of {vi, ...vk}, and let C ′i play role
ri, s.t. C ′i v Ci and C ′i v ∀[ri]R and then use named value types for the value
constraints on C ′i. Alternatively, remodelling with role values might be an option,
but, at present, this is supported only in DL-LiteA [6].

3 Discussion and Conclusions

As has become clear from the mapping, the ORM ring constraints/DL-role prop-
erties are most problematic for DLRifd , but most of them can be met by DLRµ
or SROIQ. On the other hand, DLRµ and SROIQ do not have a construc-
tor for non-unary primary keys, and SROIQ neither supports n-ary relations
where n > 2 nor provides a means to ‘access’ an ORM-role/DL-role element. For
these reasons, DLRifd was chosen. Another advantage of having taken DLRifd

336 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 337 — #347 i
i

i
i

i
i

is that the syntax of UML class diagrams have been mapped into it [4], thereby
augmenting the current informal mapping in [17] and moving closer to interop-
erability between ORM and UML through a formal correspondence between the
two conceptual modelling languages with DLR as unifying paradigm.

Looking toward implementations, EER and UML were mapped to DLR and
DLRifd earlier and implemented in the iCOM tool [15], where one can use tools
like Racer, Pellet, and FaCT. Hence, it uses a SHIQ-based reasoner through
an additional transformation step; note that there are differences between theo-
retically computationally feasible and actually implemented reasoning services.
Nevertheless, reasoning over less complex ORM-models is already a considerable
advantage over no automated reasoning services at all. Moreover, if iCOM adds
a module for ORM support, the modeller would be able to describe already sup-
ported inter-model assertions between EER, UML, and, now, ORM models and
reason over any combination. Further down the line, a software developer will
benefit from a better, consistent and known to be satisfiable, conceptual model
and with e.g. NORMA would be able take advantage of the already implemented
features of automated generation of relational databases and of software code.

Concluding, most –and the most often used– ORM2 elements and constraints
can be mapped into DLRifd . This already could be used for a wide range of
ORM-models that do not use its full expressive capabilities; e.g., to carry out
model checking, compute derived relations, and classification. Conversely, when
the present mapping is implemented, DLs will have a sophisticated user interface
enabling domain experts to take part in representing their Universe of Discourse.
Several approaches are possible to narrow the gap between ORM2 and DL lan-
guages, where a “DLRµifd” or SROIQ with n-ary relations seem close by. But
to take advantage of narrowing the gap, tools for automated reasoning services
will have to expand their features list as well. Alternatively, if this leads to un-
decidability or intractability, one could investigate modularization where a large
conceptual model can be split-up into sections (ideally, hidden from the mod-
eller) and perform the reasoning on the separate subsections. We are currently
working on formal proofs of the ‘mismatches’ between ORM and the DLRs.
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Abstract. We now know that the addition of a concept constructor called a Path
Functional Dependency (PFD) to the Boolean-complete description logic DLF
leads to undecidability of ABox consistency for DLF . Consequently, we de-
fine a boundary condition for PFDs that enables the recovery of earlier DLF
complexity bounds for this problem. This is accomplished indirectly by adding
an additional concept constructor for rooted path equality, which has the added
benefit of increasing the utility of DLF for reasoning about query containment
problems in query optimization, in plan generation and in automated sythesis of
web services.

1 Introduction

The introduction of web service environments with query and ontology languages such
as SWRL [8] and OWL [9] make it necessary for agents to reason about query plans and
about how to communicate the results of queries between agents. It is consequently im-
perative to allow identification constraints to be incorporated in ontologies to enable an
agent to determine, e.g., that there is at most one way of performing a currency conver-
sion, or that items from a particular company are reliably identified by that company’s
item code. Indeed, this situation is anticipated by extensive experience with SQL and
the relational model of data in which keys and functional dependencies have been used
for reasoning about properties of query plans related, e.g., to tuple identification.

In earlier work, we have explored how a general form of uniqueness constraint
called a Path Functional Dependency (PFD) can be added to a Boolean-complete de-
scription logic called DLF , a fragment of the OWL ontology language [14]. The re-
sulting logic is calledDLFD and can be used to express, e.g., that customers who have
consulted with a manager can be reliably identified by their social insurance number.
In particular, this can be captured by the following inclusion dependency in DLFD.

Customer u ∀Consults.Manager v Person : SIN→ Id

To paraphrase: If a customer has consulted with a manager, then no other person will
share his or her social insurance number. Later on, we show how this constraint can
help with an important reformulation of a query.

AlthoughDLFD is particularly suited to capturing such meta-data, we has recently
discovered that its ABox consistency problem is undecidable [22]. This is bad news
since this greatly limits how the logic can then be used for reasoning about queries and
services, e.g., in query reformulation. To remedy this, we define a boundary syntactic
condition for PFDs that enables the recovery of earlier DLF complexity bounds for
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reasoning about ABox consistency. This is effectively accomplished by adding an ad-
ditional concept constructor for rooted path equality along the lines pioneered by the
description logic CLASSIC [3]. The addition of this constructor thereby obtains the
logic DLFDE which serves as the primary focus of this paper.
Our main contributions are as follows.

– We establish the equivalence of the ABox consistency problem for DLFD and the
logical implication problem for DLFDE . Thus, and this was surprising to us, the
latter is also undecidable. We also show that this equivalence continues to hold in
the absence of any occurrences of PFDs.

– We define the logic DLFDE− which refines DLFDE by introducing a syntactic
boundary condition for PFDs, and show that both its ABox consistency problem
and its logical implication problem are decidable and complete for EXPTIME.

1.1 Background and Related Work

In addition to the web ontology language OWL, description logics have been used ex-
tensively as a formal way of understanding a large variety of languages for specifying
meta-data, including ER diagrams, UML class and object diagrams, relational database
schema, etc. [18].

PFDs were first introduced and studied in the context of object-oriented data mod-
els [12, 24] as a way of capturing functional constraints such as keys and functional
dependencies. An FD concept constructor was subsequently proposed and incorporated
in CLASSIC [4], an early DL with a PTIME reasoning procedure, without changing the
complexity of its implication problem. This was particularly noteworthy since CLAS-
SIC also included a concept constructor for rooted path (in)equalities. The general-
ization of the FD constructor to PFDs alone leads to EXPTIME completeness of the
implication problem [14]; this complexity remains unchanged in the presence of addi-
tional concept constructors common in rich DLs [23]. More recent work has shown the
need to limit where PFDs may occur in concepts to avoid undecidability, in particu-
lar outside the scope of non-monotonic concept constructors such as negation, and that
ABox consistency is undecidable regardless [22].

Calvanese and others have considered a DL with functional dependencies and a
general form of keys added as additional varieties of dependencies, called a key box
[6]. They show that their dialect is undecidable for DLs with inverse roles, but becomes
decidable when unary functional dependencies are disallowed. This line of investigation
is continued in the context of PFDs and inverse attributes, with analogous results [21].
We therefore disallow inverse attributes in this paper to exclude an already known cause
for undecidability.

A form of key dependency with left hand side feature paths has been considered for
a DL coupled with various concrete domains [15, 16]. In this case, the authors explore
how the complexity of satisfaction is influenced by the selection of a concrete domain
together with various syntactic restrictions on the key dependencies themselves.

PFDs have been used in a number of applications: in object-oriented schema diag-
nosis and synthesis [1, 2], in query optimization [13] and in the selection of indexing
for a database [19]. Description logics have also been used for reasoning about query
containment in the presence of rich database schema [5, 10].
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SYNTAX SEMANTICS: DEFN OF “(·)I”

C ::= A (A)I ⊆ ∆
| C1 u C2 (C1)

I ∩ (C2)
I

| ¬C ∆ \ (C)I

| ∀f.C {x : (f)I(x) ∈ (C)I}
D ::= C

| C : Pf1, ...,Pfk → Pf {x : ∀ y ∈ (C)I .Vk
i=1(Pfi)

I(x) = (Pfi)
I(y)⇒ (Pf)I(x) = (Pf)I(y)}

E ::= C

| E1 u E2 (E1)
I ∩ (E2)

I

| ¬E ∆ \ (E)I

| ∀f.E {x : (f)I(x) ∈ (E)I}
| (Pf1 = Pf2) {x : (Pf1)

I(x) = (Pf2)
I(x)}

Fig. 1. SYNTAX AND SEMANTICS OF DLFDE .

The remainder of the paper is organized as follows. The definition of DLFDE , a
Boolean complete DL based on attributes that includes the PFD concept construc-
tor, immediately follows. In Section 3, we establish the first of our main results: the
equivalence of the ABox consistency problem for DLFD and the logical implica-
tion problem for DLFDE , and that this equivalence continues to hold in the absence
of any occurrences of PFDs. Section 4 introduces the logic DLFDE− which refines
DLFDE by introducing the above-mentioned syntactic boundary condition for PFDs,
and shows that both the ABox consistency problem and the logical implication problem
for DLFDE− are decidable and complete for EXPTIME. A more in depth example
of using DLFDE− for reasoning about a query property follows in Section 5. Our
summary comments then follow in Section 6.

2 Definitions

To simplify the presentation, the description logic DLFDE defined below is based on
attributes (also called features) instead of the more common case of roles. With regard
to expressiveness, note that ALCN with a suitable PFD construct can simulate our
dialect. Conversely, DLFD can simulate ALCQI [20].

Definition 1 (Description Logic DLFDE) Let F, A and N be sets of (names of) at-
tributes, primitive concepts and individuals, respectively. A path expression is defined
by the grammar “ Pf ::= f.Pf | Id” for f ∈ F. We define derived concept descriptions
by the grammar on the left-hand-side of Figure 1. A concept description obtained by
using the fourth production of this grammar is called an attribute value restriction. A
concept description obtained by using the sixth production is called a path functional
dependency (PFD).
An inclusion dependency C is an expression of the form C v D. A posed question Q is
an expression of the form E1 v E2. A terminology (TBox) T consists of a finite set of
inclusion dependencies.

Proceeding of DL2007 - Regular Papers 341



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 342 — #352 i
i

i
i

i
i

Person
Consults

��

SIN // Number

ServiceRep

@H
��������

��������
Customer

U]44444444

44444444

Manager

KS

Person v ∀SIN.Number
u ∀Consults.ServiceRep
u ServiceRep t Customer (1)
u ¬Number (2)

ServiceRep v Person
u Person : SIN→ Id (3)

Customer v Person

Customer u ∀Consults.Manager
v Person : SIN→ Id (4)

Fig. 2. THE SERVICE SCHEMA AND TERMINOLOGY.

An ABox A consists of a finite set of assertions of the form C(a) or f(a) = b, for C a
concept description, f ∈ F and {a, b} ⊆ N.
The semantics of expressions is defined with respect to a structure (∆, ·I), where ∆ is
a domain of “objects” and (.)I an interpretation function that fixes the interpretation
of primitive concepts A to be subsets of ∆, primitive attributes f to be total functions
(f)I : ∆ → ∆ and individuals a to be elements of ∆. The interpretation is extended
to path expressions, (Id)I = λx.x, (f.Pf)I = (Pf)I ◦ (f)I and derived concept
descriptions C, D and E as defined on the right-hand-side of Figure 1.
An interpretation satisfies an inclusion dependency C v D (resp. a posed question
E1 v E2) if (C)I ⊆ (D)I (resp. (E1)I ⊆ (E2)I). An interpretation satisfies an ABox
assertion C(a) (resp. f(a) = b) if (a)I ∈ (C)I (resp. (f)I((a)I) = (b)I).
The logical implication problem asks if T |= Q holds; that is, for a posed question
Q, if Q is satisfied by any interpretation that satisfies all inclusion dependencies in T .
The ABox consistency problem asks if T ∪ A is consistent; that is, if there exists an
interpretation that satisfies all inclusion dependencies in T and all assertions in A.

To improve readability in the remainder of the paper, we follow the simple protocol of
removing “. Id” from the end of path expressions that consist of at least one attribute.
We also allow the use of standard abbreviations, e.g., ⊥ for A u ¬A, (Pf1 6= Pf2) for
¬(Pf1 = Pf2), etc. Finally, we write Pf(a) = b as shorthand for the equivalent set of
primitive ABox assertions with “single use” intermediate individuals.

Example 2 Figure 2 illustrates an information schema for a hypothetical online cus-
tomer SERVICE system where, e.g., service representatives are special cases of people
who in turn have social insurance numbers and consult with service representatives, and
so on. The information can be captured as a SERVICE TBox with the inclusion depen-
dencies in the right part of Figure 2. The four marked dependencies more thoroughly
exercise the capabilities of DLFDE , asserting that:
1. A person is either a service representative or a customer;
2. Nothing is both a person and a number;
3. Any service representative is uniquely identified by a social insurance number; and
4. (from our introductory comments) Any customer who has consulted with a man-

ager is also uniquely identified by a social insurance number.
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3 Equations and ABoxes

We first explore the relationship between ABox consistency problems and allowing path
agreements in posed questions. It turns out that either capacity alone is sufficient: each
is able to effectively simulate the other.

Intuitively, path equations (and inequations) can enforce that an arbitrary finite
graph (with feature-labeled edges and concept description-labeled nodes) is a part of
any model that satisfies the equations. Such a graph can equivalently be enforced by an
ABox. Hence we have:

Theorem 3 Let T be a DLFD terminology and A an ABox. Then there is a concept
E such that T ∪ A is not consistent if and only if T |= E v ⊥.
Conversely, it is also possible to show that ABox reasoning can be used for reasoning
about equational constraints in the posed questions. However, as the equational concepts
are closed under boolean constructors, a single equational problem may need to map to
several ABox consistency problems.

Theorem 4 Let T be a DLFD terminology and E an equational concept. Then there
is a finite set of ABoxes {Ai : 0 < i ≤ k} such that

T |= E v ⊥ iff T ∪ Ai is not consistent for all 0 < i ≤ k.
Theorems 3 and 4 hold even when the terminology T is restricted to theDLF fragment
(i.e., does not contain any occurrences of the PFD concept constructor).

4 Adding PFDs

The correspondence between ABox reasoning and equational concepts in the posed
questions provides us with the necessary means to understanding the impact of PFDs
in the presence of an ABox or path agreements. Indeed, our DLFDE grammar in Fig-
ure 1 does not explicitly allow posed questions to contain PFDs (the PFD constructor is
confined by the Grammar to the TBox). However, this restriction can be easily circum-
vented using the following lemma:

Lemma 5 Let T be a DLFD terminology and E1 v E2 : Pf1, . . . ,Pfk → Pf a posed
question. Then there is a equational concept E such that T |= E v ⊥ iff

T |= E1 v E2 : Pf1, . . . ,Pfk → Pf .

4.1 Undecidability

While allowing general reasoning about path agreements in terminologies leads imme-
diately to undecidability (by virtue of a straightforward reduction of the uniform word
problem [17]), the following two restricted cases have decidable decision problems:

– Allowing arbitrary PFDs in terminologies; and
– Allowing path agreements in the posed question.

Unfortunately, the combination of the two cases again leads to undecidability:

Theorem 6 Let T be a DLFD terminology and E an equational concept. Then the
problem T |= E v ⊥ is undecidable.
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4.2 Decidability and a Boundary Condition

To regain decidability, we restrict the PFD constructor to the following two forms:
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f , for some primitive feature f .

We call the resulting fragment DLFDE−. To abstract syntax a bit for the sake of read-
ability, the condition distinguishes, e.g., the PFDs f → Id and f → g from the PFD
f → g.f . Intuitively, a simple saturation procedure that “fires” PFDs on a hypothetical
database is now guaranteed to terminate as a consequence.

Notice that the boundary condition still admits PFDs that express arbitrary keys or
functional dependencies in the sense of the relational model, including those occurring
in all our examples. Thus, we believe that restricting PFDs in this manner does not
sacrifice any real world modeling utility.

Theorem 7 Let T and T ′ be a DLF and DLFDE− terminologies, respectively, and
E an equational concept. Then there is a concept E′ such that

T ∪ T ′ |= E v ⊥ iff T |= (E u E′) v ⊥.
Moreover, E′ can be constructed from T ′ and E effectively and is polynomial in |T ′|.
The boundary condition on PFDs is essential for the above theorem to hold. If unre-
stricted PFDs are combined with either equations or an ABox, there is no limit on the
length of paths participating in path agreements when measured from an initial object
o ∈ E u E′ in the associated satisfiability problem. Moreover, any minimal relaxation
of this condition, i.e., allowing any PFDs of the form C : f → g.h, already leads to
undecidability [22].

Corollary 8 DLFDE− logical implication and ABox consistency problems are decid-
able and complete for EXPTIME.

5 Applications to Query Optimization

Assuming set semantics for query results and the presence of a database schema, [5]
and [10] have shown how conjunctive and positive query containment can be reduced
to ABox consistency problems for the description logics DLR [7] and SHIQ [11],
respectively. Analogous reductions can also be made to ABox consistency problems for
DLFD. In addition, more direct and transparent reductions that use path agreements are
now possible withDLFDE− (c.f. the concept descriptionE in the following example).
DLFDE− can also be used in query reformulation when allowing duplicate seman-

tics. However, in this case, PFDs serve an essential role as we now illustrate.

Example 9 Consider the following SQL-like query on our example SERVICE schema
that finds distinct social insurance numbers for all persons who have consulted with a
manager.

select distinct N
from Person as P , Number as N ,
where exists ( select ∗

from Manager asM
where P.Consults = M )

and P.SIN = N

344 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 345 — #355 i
i

i
i

i
i

Clearly, there is a considerable incentive on the grounds of query performance to reason
about the possibility of avoiding expensive duplication elimination operations, i.e., if
the above query can be reformulated without the distinct keyword. Indeed, this is
possible iff

SERVICE |= E v E : N→ P

where E is the concept description

(∀P.Person) u (∀N.Number) u (∀M.Manager)
u(P.Consults = M) u (P.SIN = N)

that encodes the above query. Note that this clear and direct formulation relies on
Lemma 5.

The link between the above formulation and earlier ABox consistency approaches to
query containment is explained by Theorems 4 and 3.

6 Conclusions

Earlier research has led to the development of a Boolean-complete description logic
called DLFD that incorporated a powerful concept constructor for expressing unique-
ness constraints called PFDs. Unfortunately, recent negative results have shown that
the ABox consistency problem for DLFD is not decidable. In this paper, we have
proposed a boundary condition for PFDs that re-obtains decidability and tight com-
plexity bounds for ABox consistency and logical implication problems. We have also
shown how ABox consistency checking relates to logical implication problems when
path agreement is allowed in posed questions. This connection is essential to the design
of the decision procedure for DLFD in the presence of an ABox.

There are several directions for future research, in particular exploring alternative
fragments of DLFDE with decidable reasoning problems; finding further restrictions
onDLFDE that lead to polynomial time reasoning algorithms; and incorporating more
general ordering dependencies that generalize equality based reasoning that underlies
PFDs.
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A Well-founded Semantics for Hybrid MKNF
Knowledge Bases?
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Abstract. In [10], hybrid MKNF knowledge bases have been proposed
for combining open and closed world reasoning within the logics of mini-
mal knowledge and negation as failure ([8]). For this powerful framework,
we define a three-valued semantics and provide an alternating fixpoint
construction for nondisjunctive hybrid MKNF knowledge bases. We thus
provide a well-founded semantics which is a sound approximation of the
cautious MKNF model semantics, and which also features improved com-
putational properties. We also show that whenever the DL knowledge
base part is empty, then the alternating fixpoint coincides with the clas-
sical well-founded model.

1 Introduction

One of the major open research questions in Description Logic (DL) research is
how to combine the open-world semantics of DLs with the closed-world seman-
tics featured by (nonmonotonic) logic programming (LP). Much of this research
effort is being driven by the needs of the Semantic Web initiative. Indeed, the
addition of rules, in LP style, on top of the DL-based ontology layer has been
recognized as an important task for the success of the Semantic Web, and initia-
tives are being taken to define such a rule layer (cf. the Rule Interchange Format
working group of the W3C). Combining LP rules and DLs indeed is a non-trivial
task since these two formalisms are based on different assumptions: the former is
nonmonotonic, relying on the closed world assumption, while the latter is based
on first-order logic under the open world assumption.

Accordingly, several proposals have been made for dealing with knowledge
bases (KB) which contain DL and LP statements (see e.g. [2–4, 7, 10, 12]). But
apart from [4], they rely on the stable models semantics (SMS) of logic programs
[6]. It is our stance that, especially for use in the Semantic Web, the well-founded
semantics (WFS) [14], though being closely related to SMS (see e.g. [5]), is
often the better choice. Indeed, in applications dealing with large amounts of
information, the polynomial worst-case complexity of WFS is preferable to the
NP-hard SMS. Furthermore, the WFS is defined for all programs and allows to
? Pascal Hitzler is supported by the German Federal Ministry of Education and Re-

search (BMBF) under the SmartWeb project (grant 01 IMD01 B), and by the
Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.
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answer queries by consulting only the relevant part of a program whereas SMS
is neither relevant nor always defined.

While the approach in [4] is based on a loose coupling between DL and LP,
others are tightly integrated. The most advanced of these approaches currently
appears to be that of hybrid MKNF knowledge bases [10] which is based on the
logic of Minimal Knowledge and Negation as failure (MKNF) [8]. Its advantage
lies in a seamless integration of DL and LP which is nevertheless decidable due
to the restriction of reasoning in the program part to known constants by means
of DL-safe rules.

In this paper, we define a well-founded semantics for hybrid MKNF knowl-
edge bases, for now restricting to nondisjunctive MKNF rules, which compares
to that of [10] as the WFS does to the SMS of LP:
– our well-founded semantics is a sound approximation of the semantics of [10]
– the computational complexity is strictly lower
– the semantics retains the property of [10] of being faithful, but now wrt. the

WFS, i.e. when the DL part is empty, it coincides with the WFS of LPs.

We start by recalling basic notions and then introduce models in a 3-valued
setting. The paper continues with the definition of the proposed semantics and
some of its properties. We end with conclusion and future work. Lack of space
prevents us from presenting all proofs, which can be found in the extended report
at http://centria.di.fct.unl.pt/∼mknorr/wfmknf-extd.pdf.

2 Preliminaries

MKNF notions. We start by recalling the syntax of MKNF formulas from [10].
A first-order atom P (t1, . . . , tn) is an MKNF formula where P is a predicate
and the ti are first-order terms3. If ϕ is an MKNF formula then ¬ϕ, ∃x : ϕ, Kϕ
and notϕ are MKNF formulas and likewise ϕ1 ∧ ϕ2 and ϕ1 ⊂ ϕ2 for MKNF
formulas ϕ1, ϕ2. We use the following symbols to represent boolean combinations
of the previously introduced syntax, i.e. ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ≡ ϕ2 for
(ϕ1 ⊂ ϕ2)∧(ϕ2 ⊂ ϕ1), and ∀x : ϕ for ¬∃x : ¬ϕ. Substituting the free variables xi
in ϕ by terms ti is denoted ϕ[t1/x1, . . . , tn/xn]. Given a (first-order) formula ϕ,
Kϕ is called a modal K-atom and notϕ a modal not-atom. An MKNF formula
ϕ without any free variables is a sentence and ground if it does not contain
variables at all. It is positive if it does not contain the operator not.

It is assumed that apart from the constants occurring in the formulas the
signature contains a countably infinite supply of constants not occurring in the
formulas. The Herbrand Universe of such a signature is also denoted 4. The
signature contains the equality predicate ≈ which is interpreted as congruence
relation on 4. An MKNF structure is a triple (I,M,N) where I is an Herbrand
first-order interpretation over 4 and M and N are nonempty sets of Herbrand
first-order interpretations over 4. For the 2-valued satisfiability of MKNF sen-
tences we refer only to [10], since we will define 3-valued satisfiability in a way
that, when restricted to 2-valued trivially coincides with the one of [10].
3 We consider function-free first-order logic, so terms are either constants or variables.
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Hybrid MKNF Knowledge Bases. Quoting from [10], the approach of hybrid
MKNF knowledge bases is applicable to any first-order fragment DL satisfy-
ing these conditions: (i) each knowledge base O ∈ DL can be translated into
a formula π(O) of function-free first-order logic with equality, (ii) it supports
A-Boxes-assertions of the form P (a1, . . . , an) for P a predicate and ai constants
of DL and (iii) satisfiability checking and instance checking (i.e. checking entail-
ments of the form O |= P (a1, . . . , an) are decidable4.

We recall MKNF rules and hybrid MKNF knowledge bases from [10]. For the
rationales behind these and the following notions we also refer to [9].

Definition 2.1. Let O be a DL knowledge base. A first-order function-free atom
P (t1, . . . , tn) over Σ such that p is ≈ or it occurs in O is called a DL-atom; all
other atoms are called non-DL-atoms. An MKNF rule r has the following form
where Hi, Ai, and Bi are first-order function free atoms:

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm (1)

The sets {KHi}, {KAi}, and {notBi} are called the rule head, the positive
body, and the negative body, respectively. A rule is nondisjunctive if l = 1;
r is positive if m = 0; r is a fact if n = m = 0. A program is a finite set
of MKNF rules. A hybrid MKNF knowledge base K is a pair (O,P) and K is
nondisjunctive if all rules in P are nondisjunctive.

The semantics of an MKNF knowledge base is obtained by translating it into
an MKNF formula ([10]).

Definition 2.2. Let K = (O,P) be a hybrid MKNF knowledge base. We extend
π to r, P, and K as follows, where x is the vector of the free variables of r.

π(r) = ∀x : (KH1 ∨ . . . ∨KHl ⊂ KA1, . . . ,KAn,notB1, . . . ,notBm)

π(P) =
∧
r∈P

π(r) π(K) = Kπ(O) ∧ π(P)

An MKNF rule r is DL-safe if every variable in r occurs in at least one
non-DL-atom KB occurring in the body of r. A hybrid MKNF knowledge base
K is DL-safe if all its rules are DL-safe. Given a hybrid MKNF knowledge base
K = (O,P), the ground instantiation of K is the KB KG = (O,PG) where PG
is obtained by replacing in each rule of P all variables with constants from K in
all possible ways. Then it was shown in [9], for a DL-safe hybrid KB K and a
ground MKNF formula ψ, that K |= ψ if and only if KG |= ψ.

3 Well-founded MKNF Semantics

3.1 Three-valued Models

Satisfiability as defined in [10] allows modal atoms only to be either true or
false in a given MKNF structure. We extend the framework by allowing a third
4 For more details on DL notation we refer to [1].
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truth value u, denoting undefined, to be assigned to modal atoms while first-
order atoms remain two-valued due to being interpreted solely in one first-order
interpretation. We therefore introduce consistent MKNF structures which, for
all MKNF formulas ϕ over some given signature, do not allow ϕ to be true for
all J ∈M and false for some J ∈ N at the same time. Subsequently, we evaluate
MKNF sentences in consistent MKNF structures with respect to the set {t,u, f}
of truth values with the order f < u < t:

– (I,M,N)(p(t1, . . . , tn)) =
{

t iff p(t1, . . . , tn) ∈ I
f iff p(t1, . . . , tn) 6∈ I

– (I,M,N)(¬ϕ) =

 t iff (I,M,N)(ϕ) = f
u iff (I,M,N)(ϕ) = u
f iff (I,M,N)(ϕ) = t

– (I,M,N)(ϕ1 ∧ ϕ2) = min{(I,M,N)(ϕ1), (I,M,N)(ϕ2)}
– (I,M,N)(ϕ1 ⊃ ϕ2) = t iff (I,M,N)(ϕ2) ≥ (I,M,N)(ϕ1) and f otherwise
– (I,M,N)(∃x : ϕ) = max{(I,M,N)(ϕ[α/x]) | α ∈ 4}

– (I,M,N)(Kϕ) =

 t iff (J,M,N)(ϕ) = t for all J ∈M
f iff (J,M,N)(ϕ) = f for some J ∈ N
u otherwise

– (I,M,N)(notϕ) =

 t iff (J,M,N)(ϕ) = f for some J ∈ N
f iff (J,M,N)(ϕ) = t for all J ∈M
u otherwise

The operator max chooses the greatest element with respect to the truth ordering
given above and likewise min chooses the least one. We can see that the truth
of modal atoms is evaluated just as in the two-valued case (see [10]), we only
have to separate additionally false from undefined modal atoms which is done by
means of the other set of interpretations in the structure. Note that implications
and objective MKNF formulas can never be undefined.

Definition 3.1. An interpretation pair (M,N) consists of two MKNF inter-
pretations M , N and models a closed MKNF formula ϕ, written (M,N) |= ϕ,
if and only if (I,M,N)(ϕ) = t for each I ∈ M . We call ϕ consistent if there
exists an interpretation pair modeling it.

It is straightforward to see (cf. [10]) that (M,M) corresponds to the (two-
valued) MKNF interpretation M , i.e. a nonempty set of Herbrand first-order
interpretations over 4, since there are no undefined modal atoms in it. In this
case, recalling from [10],M is additionally an MKNF model if (1) (I,M,M)(ϕ) =
t for all I ∈ M and (2) for each MKNF interpretation M ′ such that M ′ ⊃ M
we have (I ′,M ′,M)(ϕ) = f for some I ′ ∈M ′.
Example 3.1. Let us consider the following hybrid MKNF knowledge base

NaturalDeath v Pay Suicide v ¬Pay

KPay(x)← Kmurdered(x),K benefits(y, x),not responsible(y, x)
KSuicide(x)← notNaturalDeath(x),notmurdered(x)

Kmurdered(x)← notNaturalDeath(x),notSuicide(x)
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based on which a life insurance company decides whether to pay or not the
insurance. Additionally, we know that Mr. Jones who owned a life insurance
was found death in his living room, the revolver still in his hand. Thus we
add ¬NaturalDeath(jones) and the last two rules offer us a choice between
commitment of suicide or murder. While immediately obtaining two MKNF
models in such a scenario, the three-valued framework allows to assign u to
both so that we delay this decision until the evidence is evaluated. Until then,
by the first rule, also no payment is possible.

3.2 Alternating Fixpoint for Hybrid MKNF

As discussed in [9], since an MKNF model M is in general infinite, instead of rep-
resenting M directly, a first-order formula ϕ is computed such that M is exactly
the set of first-order models of ϕ. This is possible for modally closed MKNF
formulae and the ideas from [11] are applied to provide a partition (P,N) of
modal atoms which uniquely defines ϕ. We extend this idea by allowing parti-
tions to be partial in the sense that modal atoms may occur neither in P nor
in N , i.e. are neither true nor false but supposed to be undefined. To obtain
the unique desired partial partition we apply a technique known from logic pro-
gramming: stable models ([6]) for normal logic programs correspond one-to-one
to MKNF models of programs of MKNF rules (see [8]). The well-founded model
([14]) for normal logic programs can be computed by an alternating fixpoint of
the operator used to define stable models ([13]).

Here we proceed similarly: we define an operator providing a stable condition
for nondisjunctive hybrid MKNF knowledge bases and use it to obtain an al-
ternating fixpoint, the well-founded semantics. We thus start by adapting some
notions from [10] formalizing partitions and related concepts.

Definition 3.2. Let K = (O,P) be a hybrid MKNF knowledge base. The set of
K-atoms of K, written KA(K), is the smallest set that contains (i) all K-atoms
of PG, and (ii) a modal atom K ξ for each modal atom not ξ occurring in PG.

For a subset P of KA(K), the objective knowledge of P is the formula
obK,P = O ∪ ⋃

K ξ∈P ξ. A (partial) partition (P,N) of KA(K) is consistent
if obK,P 6|= ξ for each K ξ ∈ N .

For a set of modal atoms S, SDL is the subset of DL-atoms of S and Ŝ =
{ξ | K ξ ∈ S}.

An MKNF interpretation M induces the partition (P,N) of KA(K) if K ξ ∈ P
implies (M,M) |= K ξ and K ξ ∈ N implies (M,M) |= not ξ.

We now adapt the operators from [10] which allow to draw conclusions from
positive hybrid MKNF knowledge bases similarly to the immediate consequence
operator for definite logic programs, only that the operators below also are
“aware” of possible consequences including the DL knowledge base O.

Definition 3.3. For K a positive nondisjunctive DL-safe hybrid MKNF knowl-
edge base, RK, DK, and TK are defined on the subsets of KA(K) as follows:
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RK(S) = S ∪ {KH | K contains a rule of the form (1) such that KAi ∈ S
for each 1 ≤ i ≤ n}
DK(S) = {K ξ | K ξ ∈ KA(K) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn) |
KQ(a1, . . . , an) ∈ S\SDL, KQ(b1, . . . , bn) ∈ KA(K), and O∪ŜDL |= ai ≈ bi
for 1 ≤ i ≤ n}
TK(S) = RK(S) ∪DK(S)

The difference to the operators in [10] is that given e.g. only a ≈ b and
KQ(a) we do not derive KQ(b) explicitly but only as a consequence of obK,P .

As in [9], it can be shown that TK is monotonic and yields a least fixpoint
TK ↑ ω in the usual manner. We can therefore, in the style of stable models,
define a transformation which turns a nondisjunctive hybrid MKNF knowledge
base into a positive one allowing to apply the previous operators.

Definition 3.4. Let KG = (O,PG) be a ground nondisjunctive DL-safe hy-
brid MKNF knowledge base and S ⊆ KA(K). The MKNF transform KG/S =
(O,PG/S) is obtained by PG/S containing all rules KH ← KA1, . . . ,KAn
for which there exists a rule KH ← KA1, . . . ,KAn,notB1, . . . ,notBm in PG
with KBj 6∈ S for all 1 ≤ j ≤ m.

On top of that, an operator yielding the fixpoint of TK is defined.

Definition 3.5. Let K = (O,P) be a nondisjunctive DL-safe hybrid MKNF
knowledge base and S ⊆ KA(K). We define:

ΓK(S) = TKG/S ↑ ω

This operator is antitonic (cf. extended technical report), so applying ΓK(S)
twice is a monotonic operation yielding a least fixpoint by the Knaster-Tarski
theorem (and dually a greatest one) and we can iterate as follows: Γ 2

K ↑ 0 = ∅,
Γ 2
K ↑ (n+1) = Γ 2

K(Γ 2
K ↑ n), and Γ 2

K ↑ ω =
⋃
Γ 2
K ↑ i, and dually Γ 2

K ↓ 0 = KA(K),
Γ 2
K ↓ (n+ 1) = Γ 2

K(Γ 2
K ↓ n), and Γ 2

K ↓ ω =
⋂
Γ 2
K ↓ i. The least and the greatest

fixpoint then define the well-founded partition.

Definition 3.6. Let K = (O,P) be a nondisjunctive DL-safe hybrid MKNF
knowledge base and let PK,NK ⊆ KA(K) with PK = Γ 2

K ↑ ω and NK = Γ 2
K ↓ ω.

Then (PW , NW ) = (PK ∪ {Kπ(O)},KA(K) \NK) is the well-founded partition
of K.

Example 3.2. Continuing our example, the investigation of the police reveals
that the known criminal Max is responsible for the murder, though not being de-
tectable, so we cannot conclude Suicide(jones) while K responsible(max, jones)
and Kmurdered(jones) hold. Unfortunately, the person benefitting from the
insurance is the nephew Thomas who many years ago left the country, i.e.
K benefits(thomas, jones). Computing the well-founded partition yields thus
KPay(jones), so the company contacts the nephew outside the country. How-
ever, they also hire a private detective who finds out that Thomas is max, having
altered his personality, i.e. we can add thomas ≈ max to the hybrid KB. Due
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to DK and grounding we now obtain a well-founded partition which contains
K responsible(thomas, jones) and K benefits(max, jones) being true and the
insurance is not paid any longer.

One of the results shown in the extended paper is that the well-founded
partition is consistent. Besides that, similarly to stable models, we can compute
one fixpoint defining the well-founded partition directly from the other.

Proposition 3.1. Let K be a nondisjunctive DL-safe hybrid MKNF knowledge
base. Then PK = ΓK(NK) and NK = ΓK(PK).

Knowing this, we can use ΓK as an alternative characterization of MKNF
models if the considered KB is consistent. It should be noted that in case of an
inconsistent hybrid MKNF KB due to the operator DK we obtain a well-founded
partition where all modal K-atoms are true. I.e., even though we always obtain
a well-founded partition for any K the result may not be a desired one.

It was also shown that the information derived in the well-founded partition
is contained in any MKNF model.

Theorem 3.1. Let K be a nondisjunctive DL-safe hybrid MKNF knowledge
base, M an MKNF model of K with (P,N) induced by M , and (PW , NW ) the
well-founded partition of K. Then PW ⊆ (P ∪ {Kπ(O)}) and NW ⊆ N .

Furthermore, the well-founded partition yields a model in the three-valued
framework we defined in the previous subsection.

Theorem 3.2. Let K be a consistent nondisjunctive DL-safe hybrid MKNF KB
and (PK ∪ {Kπ(O)},KA(K) \ NK) be the well-founded partition of K. Then
(IP , IN ) |= π(K) where IP = {I | I |= obK,PK} and IN = {I | I |= obK,NK}.

One of the open questions mentioned in [10] was that MKNF models are
not compatible with the well-founded model for logic programs. Our approach,
regarding knowledge bases just consisting of rules, does coincide with the well-
founded model for the corresponding (normal) logic program.

Finally, though not providing here a detailed study of complexity issues we
can recall from [9], assuming that entailment of first-order formulas encountered
while computing TK is decidable in C, that the data complexity of computing
TK is in PC (for positive nondisjunctive programs). Since we just apply the same
operator n-times we remain in the same complexity class while the data com-
plexity for reasoning with MKNF models in nondisjunctive programs is shown
to be EPC where E = NP if C ⊆ NP, and E = C otherwise. Thus computing
the well-founded partition ends up in a strictly smaller complexity class than
deriving the MKNF models.

4 Conclusions and Future Work

We have continued the work on hybrid MKNF knowledge bases providing an
alternating fixpoint restricted to nondisjunctive rules. We basically achieve bet-
ter complexity results by having only one model which is semantically weaker
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than any MKNF model defined in [10] but bottom-up computable. The well-
founded semantics is not only a sound approximation of any MKNF model but
a partition of modal atoms which can seemlessly be integrated in the reasoning
algorithms presented for MKNF models in [10] thus reducing the difficulty of
guessing the ’right’ model. Future work shall include the extension to disjunc-
tive rules, a study on top-down querying procedures, and further investigations
on the well-founded model in the three-valued framework.
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Abstract. EL++ is a rather expressive description logic (DL) that still admits
polynomial time inferencing for many reasoning tasks. Conjunctive queries are
an important means for expressive querying of DL knowledge bases. We ad-
dress the problem of computing conjunctive query entailment for EL++ knowl-
edge bases. As it turns out, querying unrestrictedEL++ is actually undecidable,
but we identify restrictions under which query answering becomes decidable and
even tractable. We give precise characterisations of schema, query, and combined
complexity. To the best of our knowledge, the presented algorithm is the first to
answer conjunctive queries in a DL that admits complex role inclusion axioms.

1 Introduction

Conjunctive queries originated from research in relational databases [1], and, more re-
cently, have been considered for expressive description logics (DLs) as well [2–6]. Al-
gorithms for answering (extensions of) conjunctive queries in the expressive DLSHIQ
have been discussed in [3, 4], but the first algorithm that supports queries for transitive
roles was presented only very recently [6].

Modern DLs, however, allow for complex role inclusion axioms that encompass
role composition and further generalise transitivity. To the best of our knowledge, no
algorithms for answering conjunctive queries in those cases have been proposed yet. A
relevant logic of this kind isSROIQ [7], the basic DL considered for OWL 1.1.1 An-
other interesting DL that admits complex role inclusions isEL++ [8, 9], which has been
proposed as a rather expressive logic for which many inference tasks can be computed
in polynomial time. In this paper, we present a novel algorithm for answering conjunc-
tive queries inEL++, which is based on an automata-theoretic formulation of complex
role inclusion axioms that was also found useful in reasoning withSROIQ [10, 7].

Our algorithm in particular allows us to derive a number of complexity results re-
lated to conjunctive query answering inEL++. We first show that conjunctive queries
in EL++ are undecidable in general, and identify theEL++-fragment ofSROIQ as
an appropriate decidable sub-DL. Under some related restrictions of role inclusion ax-
ioms, we show that conjunctive query answering in general isPS-complete. Query
answering for fixed knowledge bases (query complexity) is shown to be NP-complete,
whereas for fixed queries (schema complexity) it is merely P-complete.

After introducing some preliminaries in Section 2, we present a general undecidabil-
ity result for conjunctive queriesEL++ in Section 3. Thereafter, we present a modified,
automata-based inferencing procedure forEL++ in Section 4. This will be the basis for

1 http://owl1_1.cs.manchester.ac.uk/
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the algorithm for checking entailment of conjunctive queries as presented in Section 5,
which operates on a fragment ofEL++ for which this problem is decidable. Finally, we
derive a number of complexity results related to conjunctive queries inEL++. Proofs
are usually omitted in the extended abstract for reasons of space. They are found in the
accompanying technical report [11].

2 Preliminaries

We assume the reader to be familiar with the basic notions of description logics (DLs).
The DLs that we will encounter in this paper areEL++ [8] and, marginally,SROIQ
[7]. A signatureof DL consists of a finite set ofrole namesR, a finite set ofindividual
namesI , and a finite set ofconcept namesC, and we will use this notation throughout
the paper.EL++ supportsnominals, which we conveniently represent as follows: for
anya ∈ I , there is a concept{a} ∈ C such that{a}I = {aI} (for any interpretationI).
As shown in [8], anyEL++ knowledge base is equivalent to one innormal form, only
containing the following axioms:

TBox: A ⊑ C A⊓ B ⊑ C A ⊑ ∃R.C ∃R.A ⊑ C
RBox: R ⊑ T R◦ S ⊑ T

whereA, B ∈ C ∪ {⊤}, C ∈ C ∪ {⊥}, andR, S, T ∈ R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model theoretic
semantics ofEL++ can be found in [8]. Unless otherwise specified, the lettersC, D, E
in the remainder of this work always denote (arbitrary) concept names, and the letters
R, S denote (arbitrary) role names. We do not consider concrete domains in this paper,
but are confident that our results can be extended accordingly.

For conjunctive queries, we largely adopt the notation of [6] but directly allow for
individuals in queries. LetV be a countable set ofvariable names. Given elementsx,
y ∈ V ∪ I , a concept atom(role atom) is an expressionC(x) with C ∈ C (R(x, y) with
R ∈ R). A conjunctive query qis a set of concept and role atoms, read as a conjunction
of its elements. ByVar(q) we denote the set of variables occurring inq. Consider an
interpretationI with domain∆I, and a functionπ : Var(q)∪I → ∆I such thatπ(a) = aI
for all a ∈ I . We define

I, π |= C(x) if π(x) ∈ CI, and I, π |= R(x, y) if (π(x), π(y)) ∈ RI.

If there is someπ such thatI, π |= A for all atomsA ∈ q, we writeI |= q and say thatI
models q. A knowledge baseKB entailsq if all models ofKB entailq.

3 Conjunctive Queries inEL++
We first investigate the complexity of conjunctive queries in generalEL++ as defined
in [8]. The following result might be mildly surprising, butis in fact closely related to
similar results for logics with complex role expressions (see, e.g., [12]).

Theorem 1. For an EL++ knowledge base KB and a conjunctive query q, the entail-
ment problem KB|= q is undecidable. Likewise, checking class subsumptions inEL++
extended with inverse roles or role conjunctions is undecidable, even if those operators
occur only in the concepts whose subsumption is checked.
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Proof. Intuitively, the result holds since RBoxes can encode context-free languages, the
intersection of which can then be checked with conjunctive queries/inverse roles/role
conjunctions. This problem is undecidable. The proof in [11] uses an even simpler re-
duction of the undecidable Post correspondence problem. ⊓⊔

Clearly, arbitrary role compositions are overly expressive when aiming for a de-
cidable (or even tractable) logic that admits conjunctive queries. We thus restrict our
attention to the fragment ofEL++ that is in the (decidable) description logicSROIQ
[7], and investigate its complexity with respect to conjunctive query answering.

Definition 1. AnEL++ RBox in normal form isregularif there is a strict partial order
≺ onR such that, for all role inclusion axioms R1 ⊑ S and R1 ◦R2 ⊑ S , we find Ri ≺ S
or Ri = S (i= 1, 2). AnEL++ knowledge base is regular if it has a regular RBox.

The existence of≺ ensures that the role hierarchy does not contain cyclic dependen-
cies other than through direct recursion of a single role.

4 Reasoning Automata forEL++

In this section, we describe the construction of an automaton that encodes certain con-
cept subsumptions entailed by anEL++ knowledge base. The automaton itself is closely
related to the reasoning algorithm given in [8], but the representation of entailments via
nondeterministic finite automata (NFA) will be essential for the query answering algo-
rithm in the following section. We describe an NFAA as a tuple (QA, ΣA, δA, iA, FA),
whereQA is a finite set of states,ΣA is a finite alphabet,δA : QA × QA → 2ΣA is a
transition function that maps pairs of states to sets of alphabet symbols,2 iA is the initial
state, andFA is a set of final states.

Consider anEL++ knowledge baseKB. Given a concept nameA ∈ C, we construct
an NFAAKB(A) = (Q, Σ, δ, i, F) that computes superconcepts ofA, where we omit the
subscript ifKB is clear from the context. SetQ = F = C ∪ {⊤}, Σ = C ∪ R ∪ {⊤,⊥},
and i = A. The transition functionδ is initially defined asδ(C,C) ≔ {C,⊤} (for all
C ∈ Q), and extended iteratively by applying the rules in Table 1.The rules correspond
to completion rules in [8, Table 2], though the conditions for (CR6) are slightly relaxed,
fixing a minor glitch in the original algorithm.

It is easy to see that the rules of Table 1 can be applied at mosta polynomial number
of times. The words accepted byA(A) are strings of concept and role names. For each
such wordw we inductively define a concept expressionCw as follows:

– if w is empty, thenCw = ⊤,
– if w = Rvfor someR ∈ R and wordv, thenCw = ∃R.(Cv),
– if w = Cv for someC ∈ C and wordv, thenCw = C ⊓Cv.

For instance, the wordCRDEStranslates intoCCRDES = C⊓∃R.(D⊓E⊓∃S.⊤). Based
on the close correspondence of the above rules to the derivation rules in [8], we can
now establish the main correctness result for the automatonA(A).

2 A possibly more common definition is to map pairs of states andsymbols to sets of states, but
the above is more convenient for our purposes.
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Table 1.Completion rules for constructing an NFA from anEL++ knowledge baseKB.

(CR1) If C′ ∈ δ(C,C), C′ ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR2) If C1,C2 ∈ δ(C,C), C1 ⊓C2 ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR3) If C′ ∈ δ(C,C), C′ ⊑ ∃R.D ∈ KB, andR < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {R}.
(CR4) If R ∈ δ(C,D), D′ ∈ δ(D,D), ∃R.D′ ⊑ E ∈ KB, and E < δ(C,C) then δ(C,C) ≔

δ(C,C) ∪ {E}.
(CR5) If R ∈ δ(C,D), ⊥ ∈ δ(D,D), and⊥ < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {⊥}.
(CR6) If {a} ∈ δ(C,C) ∩ δ(D,D), and there are statesC1, . . . ,Cn such that

– C1 ∈ {C,⊤,A} ∪ {{b} | b ∈ I },
– δ(C j ,C j+1) , ∅ for all j = 1, . . . ,n− 1,

as well asCn = D, andδ(D,D) * δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ δ(D,D).
(CR7) If R ∈ δ(C,D), R⊑ S, andS < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {S}.
(CR8) If R1 ∈ δ(C,D), R2 ∈ δ(D,E), R1 ◦R2 ⊑ S, andS < δ(C,E) thenδ(C,E) ≔ δ(C,E) ∪ {S}.

Theorem 2. Consider a knowledge base KB, concept A, and NFAA(A) as above, and
let w be some word over the associated alphabet. Then KB|= A ⊑ Cw iff one of the
following holds:

– A(A) accepts the word w, or
– there is a transition⊥ ∈ δ(C,C) where C = ⊤, C = A, or C = {a} for some

individual a.

In particular,A(A) can be used to check all subsumptions between A and some atomic
concept B.

The second item of the theorem addresses the cases whereA is inferred to be empty
(i.e. inconsistent) or where the whole knowledge base is empty. While the above yields
an alternative formulation of theEL++ reasoning algorithm presented in [8], it has the
advantage that it also encodes allpathswithin the inferred models. This will be essential
for our results in the next section where we will use the following convenient definition.

Definition 2. Consider a knowledge base KB, concepts A, B∈ C, and the NFAA(A) =
(Q, Σ, δ, i, F). The automatonAKB(A, B) (or justA(A, B)) is defined as(Q,R, δ, i, F′)
where F′ = ∅ whenever⊥ ∈ δ(A,A), and F′ = {B} otherwise.

A(A, B) obviously accepts all wordsR1, . . . ,Rn such thatA ⊑ ∃R1(. . .∃Rn.B . . .) is
a consequence ofKB, with the border case wheren = 0 andKB |= A ⊑ B. Moreover,
the language accepted by the NFA is empty wheneverA ⊑ ⊥ has been inferred.

5 Deciding Conjunctive Queries forEL
In this section, we present a nondeterministic algorithm that decides the entailment of
a queryq with respect to some knowledge baseKB. This is done by constructing a so-
calledproof graphwhich establishes, for any interpretationI of KB, the existence of a
suitable functionπ that shows query entailment.

Formally, a proof graph is a tuple (N, L,E) consisting of a set of nodesN, a labelling
function L : N → C ∪ {⊤}, and a partial transition functionE : N × N → A, where
Ais the set of all NFA over the alphabetC ∪ {⊤,⊥} ∪ R. The nodes of the proof graph
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are abstract representations of elements in the domain of some model ofKB. The labels
assign a concept to each node, and our algorithm ensures thatthe represented element
is necessarily contained in the interpretation of this concept. Intuitively, the label en-
codes all relevant concept information about one node. Thisis only possible since (1)
KB is in normal form and thus supplies concept names for all composite concept ex-
pressions such as conjunctions, and (2)EL++ does not allow inverse roles or number
restrictions that could be used to infer further information based on the relationship of
an element to elements in the model. Finally, the transitionfunction encodes paths in
each model, which provide the basis for inferencing about role relationships between el-
ements. It would be possible to adopt a more concrete representation for role paths (e.g.
by guessing a single path), but our formulation reduces nondeterminism and eventually
simplifies our investigation of algorithmic complexity.

The automaton of Definition 2 encodes concept subsumptions based on TBox and
RBox. For deciding query entailment we also require automata that represent the con-
tent of the RBox.

Proposition 1. Given a regularEL++ RBox, and some role R∈ R, there is an NFA
A(R) over the alphabetR which accepts a word R1 . . .Rn iff R1 ◦ . . . ◦ Rn ⊑ R is a
consequence of everyEL++ knowledge base with the given RBox.

Proof sketch.One possible construction for the required automaton is discussed in [7].
Intuitively, the RBox can be understood as a grammar for a regular language, for which
an automaton can be constructed in a canonical way. ⊓⊔

The above construction might be exponential for some RBoxes. In [10], restrictions
have been discussed that prevent this blow-up, leading to NFA of only polynomial size
w.r.t. the RBox. Accordingly, an RBox issimplewhenever, for all axioms of the form
R1◦S ⊑ S, S◦R2 ⊑ S, the RBox does not contain a common subroleRof R1 andR2 for
which there is an axiom of the formR◦S′ ⊑ R′ or S′ ◦R⊑ R′. We will usually consider
only such simple RBoxes whenever the size of the constructedautomata matters.

We are now ready to present the algorithm. It proceeds in various consecutive steps:

Query factorisation.The algorithm nondeterministically selects a variablex ∈ Var(q)
and some elemente ∈ Var(q)∪ I , and replaces all occurrences ofx in q with e. This step
can be executed an arbitrary number of times (including zero).

Proof graph initialisation.The proof graph (N, L,E) is initialised by settingN ≔ {⊤}∪
I ∪ Var(q). L is initialised byL(⊤) ≔ ⊤, L(a) ≔ {a} for eacha ∈ I . For eachx ∈
Var(q), the algorithm selects a labelL(x) ∈ C ∪ {⊤}. Finally, E is initialised by setting
E(n, a) ≔ A(L(n), L(a)) for eachn ∈ N, a ∈ I . A nodem ∈ N is reachableif there is
some noden ∈ N such thatE(n,m) is defined, andunreachableotherwise. Clearly, all
nominal nodes are reachable by the initialisation ofE. Now as long as there is some
unreachable nodex ∈ Var(q), the algorithm nondeterministically selects one suchx and
some noden ∈ N that is either reachable or⊤, and setsE(n, x) ≔ A(L(n), L(x)). After
this procedure, the graph (N, L,E) is such that all nodes other than⊤ are reachable.
Finally, the algorithm checks whether any of the automataE(n,m) (n, m ∈ N) accepts
the empty language, and aborts with failure if this is the case.
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Checking concept entailment.For all concept atomsC(n) ∈ q, the algorithm checks
whetherL(n) |= C with respect toKB.

For the remaining steps of the algorithm, some preliminary definitions and observa-
tions are needed. The automataE(n,m) of the proof graph represent chains of existential
role restrictions that exist within any model. Ifm ∈ Var(q), then the automaton encodes
(all possible) ways of constructing an element that belongsto the interpretation ofL(m)
in each model. The role automataA(R) in turn encode possible chains of roles that suf-
fice to establish roleR along some such path. To show that an atomR(n,m) is entailed,
one thus merely has to check whether the automataE(n,m) andA(R) have a non-empty
intersection. Two issues must be taken into account. Firstly, not every pair of nodes is
linked via some edgeE(n,m), so one might have to look for a longer path and check
non-emptiness of its intersection withA(R). Secondly, there might be many role atoms
that affect the path betweenn andm, and all of them must be satisfied concurrently.
Hence, one either needs to check intersections of many automata concurrently, or one
needs to retain the restrictions imposed by one (processed)role atom before treating
further atoms. The following is easy to prove.

Proposition 2. For every pair of nodes n, m∈ N, there either is a uniqueshortest
connecting path n0 = n, n1, . . . , nk = m with ni ∈ N and E(ni, ni+1) defined, or there
is no connecting path at all. If it exists, this path can be computed by a deterministic
algorithm in polynomial time.

Now any role atom in the query should span over some existing path, and we need
to check whether this path suffices to establish the required role. To do this, we nonde-
terministically split the role automaton into parts that are distributed along the path.

Definition 3. Consider an NFAA = (Q, Σ, δ, i, { f }). Asplit ofA into k parts is given by
NFAA1, . . . ,Ak that are constructed as follows. For every j= 0, . . . , k, there is some
state qj ∈ Q such that q0 = i and qk = f . The NFAA j has the form(Q, Σ, δ, q j−1, {q j}).

It is easy to see that, if each split automatonA j accepts some wordw j , we find that
w1 . . .wk is accepted byA. Likewise, any word accepted byA is also accepted in this
sense by split ofA. Since the combination of any split in general accepts less words
thanA, splitting an NFA usually involves some don’t-know nondeterminism. We can
now proceed with the steps of the algorithm.

Splitting of role automata.For each role atomR(n,m) within the query, the algorithm
computes the shortest pathn = n0, . . . , nk = m from n to m, or aborts with failure if
no such path exists. Next, it splits the NFAA(R) into k automataA(R(n,m), n0, n1),...,
A(R(n,m), nk−1, nk), and aborts with failure if any of the split automata is empty.

Check role entailment.Finally, for eachn, m ∈ N with E(n,m) defined, the algorithm
executes the following checks:

– If m ∈ I , it checks whether the intersection of the edge automatonE(n,m) with any
single split automaton of the formA(F, n,m) is empty.

– If m ∈ Var(q), it checks whether the simultaneous intersection of the edge automa-
ton E(n,m) with all split automata of the formA(F, n,m) is empty.

360 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 361 — #371 i
i

i
i

i
i

If all those intersections have been shown to be non-empty, the algorithm confirms the
entailment of the query (we say that the algorithmacceptsthe query). Otherwise it
terminates with failure.

Formal proofs of soundness and completeness of the algorithm are given in [11].
Soundness is established by showing that acceptance implies the existence of a match
for the query w.r.t. any model ofKB. Indeed, a suitable section of the model can be
found by retracting the algorithms construction of the proof graph to find suitable do-
main element, and by noting that the properties that the algorithm has inferred ensure
that all conditions imposed by the query are satisfied for this match. For completeness,
a canonical model is constructed and this model is used to guide the choices of the al-
gorithm to successful acceptance. Similar to the constructed proof graph, the canonical
model exposes a certain local “tree-likeness”: while the presence of nominals prevents
the model from being a tree, all cycles in the model must involve a named constant (and
thus a nominal). This fact is exploited by the algorithm in its construction of shortest
paths and allows us to focus on only one unique such path for showing the entailment
of all role atoms in the query.

6 Complexity of Query Answering for EL++
Finally, we harvest a number of complexity results from the algorithm of Section 5.

Theorem 3. The complexities of conjunctive query entailment for regular EL++ knowl-
edge bases – estimated w.r.t. the size of the variable input –are shown in the following
table. Whenever the RBox is variable, we assume that it is simple.

Variable parts:
QueryRBoxTBoxABox Complexity

Combined complexity × × × × PS-complete
Query complexity × NP-complete

Schema complexity × × × P-complete
Data complexity × P-complete

Proof. The hardness proofs detailed in [11] apply known hardness results for the data-
complexity of instance checking in fragments ofEL [13], evaluation of single Data-
log clauses (NP-complete, [14]), and emptiness of the intersection of finite automata
(PS-complete, [15]). For containment in the respective complexity classes, one
carefully estimates complexity boundaries for the algorithm of Section 5. ⊓⊔

We remark that the above results are quite generic, and can beestablished for many
other DLs. Especially, NP-hardness w.r.t. knowledge base size can be shown for any
logic that admits an ABox, whereas PS hardness of the combined problem follows
whenever the DL additionally admits role composition and existential role restrictions.

7 Conclusion

We have proposed a novel algorithm for answering conjunctive queries inEL++ KBs,
which is worst-case optimal under various assumptions. Apparently, this also consti-
tutes the first inference procedure for conjunctive queriesin a DL that supports complex
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role inclusions (including composition). Showing undecidability of conjunctive queries
for unrestrictedEL++, we illustrated that combining role atoms in queries and complex
role inclusion axioms can make reasoning significantly moredifficult.

A compact automata-based representation of role chainsand (parts of) models al-
lowed us to establish polynomial bounds for inferencing in various cases, thus identify-
ing querying scenarios that are still tractable forEL++. Conjunctive queries inherently
introduce some nondeterminism, but automata can conveniently represent sets of possi-
ble solutions instead of considering each of them separately. We therefore believe that
central methods from the presented algorithm can be a basis for actual implementation
that introduces additional heuristics to ameliorate nondeterminism.
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Abstract. We study the semantic difference operator defined in [16] for
ALN . We give a polynomial-time algorithm to compute it. We compare
it with the syntactic difference operator defined in [7], for which we also
give a polynomial-time algorithm for ALN .

1 Introduction

Among non standard reasonings for description logics, the subtraction or differ-
ence operation addresses the problem of computing descriptions that are part
of one concept and not part of another one. Two definitions of the difference
operation have been used in the literature, namely the semantic and the syn-
tactic difference. The semantic difference between two descriptions B and A,
noted B − A, has been defined in [16] as the most general descriptions C such
that C u A ≡ B. Two general kinds of applications of the semantic difference
have been mentioned in [16]: removing specific information from a description
and description decomposition. Such an inference mechanisms can, for example,
be useful in tutorial systems that have to explain concepts to users. Recently,
motivated by two applications in the areas of semantic web service discovery and
querying e-catalog communities, we have used the semantic difference operation
to define a new more flexible concept rewriting approach, called best covering
concepts using terminologies [10, 4, 5].

However, the difference operation suffers from some drawbacks. First, in the
languages that provide full negation the difference B − A is always equal to
¬(A u ¬B), a description which is not very useful in practice [16, 7]. Second, in
many description logics, e.g., ALN , the difference operations is not semantically
unique, i.e., it yields to a set of descriptions that are not semantically equivalent
to each other. In this case, the semantic difference is a set-valued operation and
gives rise to two main difficulties: (i) computation of the semantic difference,
and (ii) manipulation of the results in practical cases.

To cope with these limitations, a syntactic difference operation has been
proposed in [7]. In this case, the difference B−A yield to a syntactically minimal3

description C such that C uA ≡ B uA. The syntactic difference has been used
in [7] to measure the accuracy of an approximation of a given concept.

3 That is a description containing less syntactic redundancies possible.
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In contrast with its semantic version, the syntactic difference operation al-
ways produce a unique description and hence it is usually easier to compute.
However, as it can be expected, the result of a syntactic operation is less accu-
rate than the one produced by the semantic one. The overall conclusion is that
the choice of a difference operator, i.e., semantic v.s. syntactic, is application
dependent.

In this paper, we investigate the problem of computing the difference descrip-
tions in the context of the ALN language. The motivation is the extension of
our previous work on the concept covering problem [10] to ALN . We first recall
some useful results about ALN in section 2. Then, in section 3, we provide a
polynomial-time algorithm to compute the semantic difference in ALN . In sec-
tion 4, we provide another polynomial-time algorithm to compute the syntactic
difference in ALN , then we compare both operators, and justify why we have
chosen the semantic one in the study of concept covers. We conclude in section
5.

2 Preliminaries

We assume the reader familiar with the ALN description logic. Let C an ALN -
concept description. The normal form of C, noted Ĉ, is obtained as usual by
applying the set of normalization rules given in [2, 12] that aim at removing
redundancies and making explicit all implicit inconsistencies due to interac-
tions between constructors. For more conveniency, we define in this paper a
set-oriented representation of (normalized) ALN -descriptions. To this end, we
introduce below the notions of ALN -clause and clausal form.

Let P be an atomic concept, the negation of an atomic concept or a number
restriction. An ALN -clause, or more simply a clause, is either: (i) a description
P , or (ii) a description of the form ∀R1.(...(∀Rn.P )). In the following, a clause
of the form ∀R1.(...(∀Rn.P )...) is written ∀R1...Rn.P .

Let C be an ALN -description. A clausal form of C, noted Ĝ#
C , is the set

made of all the clauses that appear in the description obtained by recursively
applying the following rule on Ĉ : (∀R.(E u F )) ≡−→ (∀R.E) u (∀R.F ).

Example 1. The following example shows the normal form and the clausal form
of an ALN -descriptions C.
C ≡ ∀T.((≥ 4 R) u (∃S) u (≤ 1 R)) u (≥ 2 R) u (∀Q.A) u (∀Q.(∀R.(∀S.(B u ¬B))))

Ĉ = (≤ 0 T ) u (≥ 2 R) u (∀Q.(A u ∀R.(≤ 0 S)))

Ĝ#
C ={≤ 0 T, ≥ 2 R, ∀Q.A, ∀QR. ≤ 0 S}
Clausal forms enable a set-oriented representation of concept descriptions

that is easy to understand and manipulate (especially from an algorithmic point
of view). Moreover, previous results regarding subsumption and lcs in ALN ,
achieved using different formal frameworks such as description graphs [14, 11] or
automata theory [1, 11], can be easily translated in our context as shown below.

Theorem 1 (Structural subsumption and lcs in ALN ). Let C and D two
ALN -descriptions. There is :

364 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 365 — #375 i
i

i
i

i
i

1. C v D ⇔ ∀cD ∈ Ĝ#
D ,∃cC ∈ Ĝ#

C | cC v cD
2. Ĝ#

lcs(C,D) = {c1 | (c1, c2) ∈ (Ĝ#
C × Ĝ#

D) ∪ (Ĝ#
D × Ĝ#

C ) and c2 v c1}

We recall that, building Ĉ from an ALN -description C can be achieved in poly-
nomial time in the size of C [6]. So Ĝ#

C can also be computed in polynomial
time in the size of C. Consequently, testing subsumption between two ALN
descriptions C and D using theorem 1 can also be achieved in polynomial time
in the sizes of the inputs. Moreover, it is shown in [11] that the lcs of two ALN
descriptions always exists and it can be computed in polynomial time in the
sizes of the inputs.

In order to study the semantic difference in ALN , we need to recall the
notion of weak approximation defined in [8, 9]. The L2-description D is a weak
approximation of the L1-description C if D is the maximal description w.r.t.
subsumption being subsumed by C. In this case, we write D = Approx↑(C).
In fact, as will be seen later, in our work we are only interested in computing
the weak approximation of the negation of an ALN -clause (which is an ALEN -
description) by an ALNdescription. To this end, we reuse the following result
[8, 9]:

Lemma 1 (Weak approximation of ∀R1R2...Rn.P ). Let C be a ALN -clause,
i.e. C ≡ ∀R1R2...Rn.P with P an atomic concept, the negation of an atomic con-
cept or a number restriction. There is:
Ĝ#
Approx↑(¬C) = { ∀R1R2...Rn.(¬P ), ∀R1R2.........Rn−1.(≥ 1 Rn),

∀R1R2......Rn−2.(≥ 1 Rn−1), ...,∀R1.(≥ 1 R2), (≥ 1 R1) }
All previous recalls and following results about semantic and syntactic dif-

ference in ALN can be extended to take into account an ALN -terminology T
containing either concept definitions of the form A ≡ C or atomic concept inclu-
sions of the form A v C, with A an atomic concept and C an ALN -description.
This is due to the fact that testing the subsumption of twoALN -descriptions wrt
T amounts to testing the subsumption of the same but unfolded descriptions wrt
to the empty terminology (i.e. (C vT D)⇔ (T (C) v T (D))). Thus, to take into
account concept definitions, a first unfolding step is mandatory (which can lead
to an exponential blow-up [15]). Taking into account atomic concept inclusions
can be achieved by replacing them by concept definitions adding a new atomic
concept. For example, A v P1u∀R.P2 would be replaced by A ≡ P1u∀R.P2uA′.
In the sequel, we suppose that we work on unfolded descriptions, so we do not
talk about terminologies any more.

3 Semantic difference in ALN
Given two concept descriptions B and A, the semantic difference B−A amounts
to computing all the maximal, w.r.t. subsumption, descriptions C s.t. C u A is
equivalent to B. So C can be seen as (i) what has to be added to A in order to
get back B, and as (ii) the rest of B after removing its common information with
A. The fact that C must be maximal with respect to subsumption ensures that
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there is no semantic redundancy in C, which means (i) C is only what is strictly
necessary to add to A to get B, and (ii) C describes what is really specific in B
w.r.t. A. Primarily defined with the constraint B v A, the semantic difference
is generalized to all couples of descriptions using their least common subsumer,
if it exists [16]. The formal definition of the semantic difference is now given.

Definition 1 (Semantic difference [16]). Let L a description logic, B and
A two L-concept descriptions such that B v A. The semantic difference between
B and A, noted B −A, is defined by :
B −A := Maxv{C|C uA ≡ B}
If the lcs always exists between two L-descriptions (for example in ALN ), then
this definition is extended to couples of descriptions B and A with B 6v A by :
B −A := B − lcs(B,A)

Note that this definition is independent of L, and the result of a semantic dif-
ference may be a set of descriptions. Whereas, in [16] the semantic difference
is especially studied for languages having a special property4 ensuring a unique
description in the result, we study here the semantic difference for ALN . The
difference of two ALN descriptions may lead to potentially numerous non equiv-
alent ALN descriptions (see example 2). This is due to the possibility to decom-
pose the empty concept ⊥ into non trivial conjunctions. Up to our knowledge,
this is the first time that the semantic difference is studied for a language that
implies a non unique difference.

Example 2. Let us consider the following two ALN descriptions:
Q ≡ A u ∀R1.(Bu ≤ 4R2)u ≤ 0R3

S ≡ A u ∀R1.(B u ∀R4.C) u ∀R3.(D u ∀R5.Eu ≤ 2R6)
The lcs of Q and S is:

lcs(Q,S) ≡ A u ∀R1.B u ∀R3.(D u ∀R5.Eu ≤ 2R6)
Hence, the semantic difference between Q and S is given by the set:

Q− S = {∀R1. ≤ 4R2 u ∀R3∀R5.¬E u ∀R3. ≥ 1R5,
∀R1. ≤ 4R2 u ∀R3.¬D,
∀R1. ≤ 4R2 u ∀R3. ≥ 3R6}

We now see algorithm computeALNSemDiff to compute the semantic
difference of two ALN -descriptions A and B. Due to lack of space, its detailed
form is given in [13], but its underlying principle are given in lemma 2 and its
soundness and completeness is given in theorem 2. This is the main contribution
of this paper.

Lemma 2 (Building one description of the semantic difference). Let B
and A two ALN -descriptions such that B v A. Let C be an ALN -description
in B − A. Let P be any atomic concept, the negation of any atomic concept or
any number restriction. Ĝ#

C can be built as follows:

4 This is the so-called structural subsumption property in the sense of [16] which is
stronger than the usual notion of a structural subsumption algorithm.
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First, if Ĝ#
A = Ĝ#

B , then Ĝ#
C must be {>}. Else, Ĝ#

C is initialized at ∅, and
then, for all cB in Ĝ#

B :
• Inconsistency case:
if cB = ∀R1R2...Rn−1.(≤ 0 Rn), with n ≥ 0 (if n = 0 then cB = ⊥)

and ∃cA ∈ Ĝ#
A | cA = ∀R1R2...RnRn+1...Rn+m.P , m ≥ 0

then we add to Ĝ#
C all clauses c verifying:(

c = ∀R1R2...Rn.c
′, c′ ∈ Ĝ#

Approx↑(¬∀Rn+1...Rn+m.P )

)
and (A 6v c)

• General case:

else if cB 6∈ Ĝ#
A , then we add cB to Ĝ#

C .

Thus, for each clause cB of Ĝ#
B , zero, one or many clauses of Ĝ#

C will be gen-
erated such that the conjunction of these generated clauses and some clauses in
Ĝ#
A gives back cB after normalization. The reason for having a set of descriptions

in the result is due to some clauses in Ĝ#
B that may lead to different possibilities

to generate clauses of Ĝ#
C . More precisely, only clauses cB of Ĝ#

B that have the
form ∀R1R2...Rn−1.(≤ 0 Rn), with n ≥ 05 (i.e. ∀R1R2...Rn.⊥) may lead to such
situations (this is the so-called ”Inconsistency case” in theorem 2). All other
configurations for cB are trivially solved (this is the so-called ”General case” in
theorem 2).

Elements of proof are now given. In the inconsistency case, the weak ap-
proximation is used to generate clauses that stay in ALN (because we can’t
use the full negation constructor in ALN ). The other interesting point concern-
ing the weak approximation is that it ensures the property of maximality w.r.t.
subsumption that is required. Last but not least, we use the characterization
of inconsistency in ALN showed in lemmas 4.2.2 and 6.1.4 of [11] as the main
argument of completeness for this theorem. The detailed proof of lemma 2 is
given in [13].

Based on lemma 2, the computeALNSemDiff algorithm computes all and
only all descriptions in the semantic difference by computing all possible combi-
nations of multiple clauses cases. Theorem 2 proves its soundness and complete-
ness and gives its complexity (see [13] for the proof).

Theorem 2 (computeALNSemDiff characteristics). Let B and A be two
ALN -descriptions, given in their clausal forms, such that B v A. Algorithm
computeALNSemDiff (given in [13]) computes the clausal form of exactly all
ALN -descriptions that belong to the semantic difference of B and A as defined
in definition 1. This computation is PTIME wrt the sizes of B and A (i.e. the
numbers of clauses in their clausal forms and the maximal number of roles in
any of their clauses).

5 If n = 0, then it is the clause ⊥.
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4 Semantic versus syntactic difference in ALN
In this section, we focus on the comparison between the semantic difference and
the syntactic difference in ALN . We first show how to compute the syntactic
difference in ALN , and then we compare both operators.

4.1 Syntactic difference in ALN
Syntactic difference has been defined in [11, 7]. The aim of the syntactic difference
B − A is to remove from B all its subdescriptions that are redundant with A
(i.e. that are also in A). The consequence is that the result is minimal in size.
This operator was initially defined to evaluate the loss of information when
approximating an ALC-description by an ALE-description [7].

The syntactic difference relies on the notion of subdescription. Intuitively, D
is a subdescription of E if D can be obtained from E by removing conjuncts
or disjuncts that are in E, replacing parts of the description of E by ⊥ or by
subdescriptions of these parts. This notion of subdescription defines the partial
order �d : D �d E iff D is a subdescription of E [3, 11, 7]. This partial order is
used to define the syntactic difference B−A. Thereafter, we recall the definition
of this operation using ALE for both B and A. It is the only case for which
the difference is uniquely determined, modulo associativity and commutativity
of concept conjunction, and for which a sound and complete algorithm exists
[11, 7]6.

Definition 2 (Syntactic difference in ALE). Let A and B be two ALE de-
scriptions. The syntactic difference B − A of B and A is defined as the ALE
description C which is minimal w.r.t. �d such that C uA ≡ A uB.

Looking at the previous definition, it seems that, in ALN , the only difference
between semantic and syntactic difference is how ⊥ is processed: in the semantic
difference, non trivial conjunctions equivalent to ⊥ are computed, while they
are not in the syntactic difference. If we extend the definition of �d to ALN ,
as well as the definition of the syntactic difference to ALN , we can prove the
previous intuition by the following theorem which is the second contribution of
this paper. This theorem shows that the syntactic difference is basically a set
difference between clauses of A uB and A (see [13] for the full proof).

Theorem 3 (Building the syntactic difference in ALN ). Let A and B
be two ALN -descriptions given in their clausal form. The syntactic difference
B−A defined in definition 2 is a unique ALN -description C such that if A v B,
then C = >, else Ĝ#

C = Ĝ#
AuB \ Ĝ#

A .

Thus, computing the syntactic difference between two ALN descriptions is
PTIME wrt the numbers of clauses in their clausal forms.
6 The case where B is an ALC description and A an ALE has been studied in [7], but

only a heuristic has been given to compute it.
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4.2 Comparing semantic and syntactic operators

Theorems 2 and 3 show that, for ALN -descriptions, both difference compute the
same result, except for ⊥ in the two special cases presented below.

– Case 1:
Let B ≡ ∀R.⊥ and A ≡ ∀R.(¬P u P ′). There is:
Semantic difference: B −A = {∀R.P,∀R.¬P ′}.
Syntactic difference: B −A = ∀R.⊥.
This case has already been studied in [11], and the conclusion is the following.
It is true that the semantic difference does give the semantic gap between
B and A, i.e. what has to be added to A to get B. But multiple results
are less easy to figure out by a user (e.g. by a knowledge engineer) than
the unique one of the syntactic difference. Moreover, in this case, the result
of the syntactic difference is more intuitive since it doesn’t refer to any
decomposition of ⊥. Nevertheless, we could add that getting B as the result
of B − A amounts to say that there is no common point between B and A,
whereas lcs(B,A) ≡ A.

– Case 2:
Let B ≡ ∀R.P and A ≡ ∀R.¬P . There is:
Semantic difference: B − lcs(B,A) = {∀R.P}.
Syntactic difference: B −A = ∀R.⊥.
In that case, the result of the semantic difference seems to be more intu-
itive. Indeed, getting B as the result of B − A amounts to say that there
is no common point between B and A, which is verified in that case since
lcs(B,A) ≡ >. By the contrary, the result of the syntactic difference is
harder to interpret, since it cannot be interpreted neither as what remains
of B once A has been removed, nor as what to add to A to get B.

So none of the two operators always produces more intuitive or understand-
able results. On the one hand, syntactic one generates a unique result which
can be easier to manipulate (especially by a human). On the other hand, the
semantic operator really computes the semantic gap between two description,
by possibly generating many results and handling non intuitive decompositions
of ⊥. These multiple results may be more difficult to manipulate, but can allow
a more exhaustive processing of some task. Hence the overall conclusion is that
the choice of a difference operator in ALN will eventually depend more on the
applicative context than on other technical criteria. None is a priori better. How-
ever, in our application context [4, 5], the difference operation is used to define
the notion of best cover of a concept using a terminology. The aim there is to
reformulate a query Q into a description that contain as much as possible of
common information with Q and as less as possible of extra information with
respect to Q. Such a description is called a best cover of Q. In [5], the extra
information contained in a query Q and not in its best cover E, computed using
the difference Q−E, is used to query remote sources in a peer-to-peer integration
system. In such a context, using the semantic difference turns out to be more
adequate than the syntactic one as it enables to query more relevant sources
than what is enabled by the syntactic difference.
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5 Conclusion

In this paper, we investigated the problem of computing the semantic and the
syntactic difference operators in the context of the ALN language. We provide
two polynomial-time algorithms to compute them. We compare both and argue
that the semantic one is better suited to extend the notion of concept covers
previously studied in [10, 4, 5].
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Abstract. Description Logics (DLs) have been widely used in the last years as
formal language for specifying ontologies. In several contexts, as ontology-based
data integration, it may frequently happen that data contradict the intensional
knowledge provided by the ontology through which they are accessed, which
therefore may result inconsistent. In this paper, we analyze the problem of con-
sistent query answering (CQA) over DL ontologies, i.e., the problem of provid-
ing meaningful answers to queries posed over inconsistent ontologies. We pro-
vide inconsistency-tolerant semantics for DLs, and study the computational com-
plexity of CQA under such semantics for the case of conjunctive queries posed
over ontologies specified in DL-LiteF , a DL specifically tailored to deal with
large amounts of data. We show that the above problem is coNP-complete w.r.t.
data complexity. We then study the problem of consistent instance checking for
DL-LiteF ontologies, i.e., the instance checking problem considered under our
inconsistency-tolerant semantics, and we show that such problem is in PTIME

w.r.t. data complexity.

1 Introduction

Description Logics (DLs) have been widely used in the last years as formal language
for specifying ontologies, for their ability of combining modelling power and decidabil-
ity of reasoning [10]. Recently, besides expressive DLs, which suffer from inherently
worst-case exponential time behavior of reasoning [3], also DLs that allow for tractable
reasoning have been proposed for ontology modelling [2, 7]. Such DLs are particularly
suited for management of large amounts of data (e.g., from thousands to millions of
instances). Then, a challenging use of them is represented by ontology-based data in-
tegration, an issue that has recently received a growing attention in the Semantic Web
community [15]. Indeed, integrating data in the Semantic Web context mainly means
accessing, collecting, and exchanging data distributed over the web through mediated
schemas given in terms of ontologies (i.e., DL TBoxes).

Due to the dynamic nature of the setting described above, it may frequently happen
that data contradict the intensional knowledge provided by the ontology through which
they are accessed, especially in those cases in which the ontology provides a conceptual
view of a number of autonomous data sources, heterogeneous and widely distributed.

? The present work is an extended abstract of [12].
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In the above situation, ontologies may result inconsistent, and reasoning over them ac-
cording to classical of DLs may become meaningless, since whatever conclusion may
be derived from an inconsistent theory. Then, besides handling inconsistency at the ter-
minological/schema level, which has been a subject recently investigated for ontology-
based applications [14, 11], the need arises in this context to deal with inconsistency at
the instance/data level. In the present paper we study this problem.

The approach commonly adopted to solve data inconsistency is through data clean-
ing [5]. This approach is procedural, and is based on domain-specific transformation
mechanisms applied to the data. One of its problems is incomplete information on how
certain conflicts should be resolved. This typically happens in systems which are not
tailored for business logic support at the enterprise level, like systems for informa-
tion integration over the web. In the last years, an alternative declarative approach has
been investigated in the area of consistent query answering (CQA) [1, 4, 6]. Such an
approach relies on the notion of repair for a database instance that may violate integrity
constraints (ICs) specified over its schema. Roughly speaking, a repair is a new data-
base instance which satisfies the constraints in the schema and minimally differs from
the original one. In general multiple repairs are possible. Then, CQA amounts to com-
pute those answers to a user query that are in the evaluation of the query over each
repair. It is well-known [6, 9] that CQA of Conjunctive Queries (CQs) expressed over
database schemas with (even simple forms of) ICs is a coNP-complete problem in data
complexity, i.e., the complexity measured only with respect to the size of the database
instance.

In this paper, we study CQA over DL ontologies. In particular, we provide a new se-
mantic characterization for DLs, based on the notion of repair. We focus on DL-LiteF ,
a DL of the DL-Lite family [7, 8]. The DL-Lite family comprises a series of DLs that
are specifically tailored to deal with large amounts of data and reasoning over queries.
While the expressive power of the DLs in the DL-Lite family is carefully controlled to
maintain low the complexity of reasoning, such DLs are expressive enough to capture
the main notions of both ontologies, and conceptual modelling formalisms used in data-
bases and software engineering (i.e., ER and UML class diagrams). We study CQA for
the class of union of conjunctive queries (UCQs), which is the most expressive class of
queries for which decidability of query answering has been proved in DLs [13]. Notably,
standard query answering of UCQs over DL-LiteF can be solved by means of evalua-
tion of suitable first-order logic queries over the underlying DL-Lite ABox considered
as a flat relational database [7, 8]. This allows for using well established Relational Data
Base Management System technology for reasoning over queries in such DLs.

The contributions of the present paper can then be summarized as follows.

– We provide an inconsistency-tolerant semantics for DLs, which relies on the notion
of repair of a DL ontology, and allows for meaningful reasoning in the presence of
inconsistency (Section 3);

– We study computational complexity of CQA for conjunctive queries expressed over
DL-LiteF ontologies, and show that such a problem is coNP-complete w.r.t. data
complexity (Section 4);

– Towards identification of tractable cases of CQA for DL-Lite, we study consistent
instance checking over DL-LiteF ontologies, i.e., the instance checking problem

372 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 373 — #383 i
i

i
i

i
i

under our inconsistency-tolerant semantics. and show that such a problem is in
PTIME w.r.t. data complexity (Section 5).

2 The Description Logic DL-LiteF

In this section we present the syntax and the semantics of DL-LiteF [7]. DL-LiteF
concepts and roles are defined as follows:

B −→ A | ∃R R −→ P | P− C −→ B | ¬B
whereA denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P .B denotes a basic concept, i.e., a concept that can be either an atomic concept or
a concept of the form ∃R, and R denotes a basic role, i.e., a role that is either an atomic
role or the inverse of an atomic role. Finally, C denotes a (general) concept, which can
be a basic concept or its negation. Let B1 and B2 be basic concepts, we call positive
inclusions (PIs) assertions of the form B1 v B2, whereas we call negative inclusions
(NIs) assertions of the form B1 v ¬B2.

A DL knowledge base (KB) K is a pair 〈T ,A〉 which represents the domain of
interest in terms of two parts, a TBox T , specifying the intensional knowledge, and an
ABoxA, specifying extensional knowledge. A DL-LiteF TBox is formed by: (i) a finite
set of concept inclusion assertions, i.e., expressions of the form B v C, meaning that
all instances of the basic concept B are also instances of the generic concept C, and (ii)
a finite set of functionality assertions on roles or on their inverses of the form (funct P )
or (funct P−), respectively, meaning that a relation P (resp. P−) is functional. DL-
LiteF ABoxes are formed by a finite set of membership assertions on atomic concepts
and atomic roles, of the form A(a) and P (a, b), stating respectively that the object
denoted by the constant a is an instance of the atomic concept A and that the pair of
objects denoted by the pair of constants (a, b) is an instance of the role P .

The semantics of a DL is given in terms of interpretations, where an interpretation
I = (∆I , ·I) consists of a non-empty interpretation domain ∆I and an interpretation
function ·I that assigns to each concept C a subset CI of ∆I , and to each role R a
binary relation RI over ∆I . In particular we have:

AI ⊆ ∆I
P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

Furthermore, an interpretation I is a model of a concept inclusion assertion B v C,
if BI ⊆ CI , and is I is a model of an assertion (funct P ) if (o, o1) ∈ P I and
(o, o2) ∈ P I implies o1 = o2. Analogously for (funct P−).

To specify the semantics of membership assertions, we extend the interpretation
function to constants, by assigning to each constant a a distinct object aI ∈ ∆I . Note
that this implies that we enforce the unique name assumption on constants [3]. An
interpretation I is a model of a membership assertion A(a), (resp., P (a, b)) if aI ∈ AI
(resp., (aI , bI) ∈ P I).

Given an (inclusion, functionality, or membership) assertion α, and an interpretation
I, we denote by I |= α the fact that I is a model of α, and also say that α is satisfied by
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I. Given a (finite) set of assertions κ, we denote by I |= κ the fact that I is a model of
every assertion in κ. A model of a DL-Lite KB K = 〈T ,A〉 is an interpretation I such
that I |= T and I |= A. With a little abuse of notation, we also write I |= K. A KB is
satisfiable if it has at least one model, otherwise it is unsatisfiable.

Example 1. Consider the atomic concepts Cat , Dog , Pet and Person and the roles
hasOwner and feeds . The following TBox T is an example of DL-LiteF TBox:

Dog v Pet ∃hasOwner− v Person
Cat v Pet Cat v ¬Dog
Pet v ∃hasOwner (funct hasOwner).

In the TBox above we say that cats and dogs are pets, every pet has an owner, a cat
is not a dog, the owner of an animal is a person, and that a pet cannot have more then
one owner. Finally, we show a simple DL-Lite ABox A: Person(John), Dog(Bruto),
hasOwner(Tom, Leo).

A union of conjunctive queries (UCQ) q over a DL-LiteF KB K is an expression of
the form

q(x)←
∨

i=1,...,n

∃yi.conj i(x,yi), (1)

where each conj i(x,yi) is a conjunction of atoms and equalities, with free variables x
and yi. Variables in x are called distinguished, and the size of x is called the arity of q.
The right-hand side of the Formula (1) is called the body of q. Atoms in each conj i are
of the formA(z) or P (z1, z2), whereA and P are respectively an atomic concept and an
atomic role ofK, and z, z1, z2 are either constants inK or variables. A Boolean UCQ is
a query with arity 0, written simply as a sentence of the form

∨
i=1,...,n ∃yi.conj i(yi).

A UCQ with a single conjunction of atoms, i.e., with n = 1 in the Formula (1), is called
conjunctive query (CQ).

Let q be a Boolean UCQ over a DL-LiteF KBK. We say that q is entailed byK, and
write K |= q, if, for every modelM of K,M |= q, where |= is the standard evaluation
of first-order sentences in an interpretation. The instance checking problem corresponds
to entailment of a Boolean ground CQ consisting of a single atom, i.e., a membership
assertion of the form A(a) or P (a, b). Let q be a non-Boolean UCQ of arity n over
K, and let t be an n-tuple of constants. We say that t is a certain answer to q in K
if K |= q(t), where q(t) is the sentence obtained form the body of q by replacing its
distinguished variables by constants in t. We denote by Ans(q,K) the set of certain
answers to q in K.

Example 2. Let us consider the DL KB K = 〈T ,A〉 where the TBox T and the
ABox A are as defined in Example 1. The following query q is a CQ over K:
q(x) ← Person(x). It is easy to see that the set of certain answers to q in K is
Ans(q,K) = {John, Leo} where John can be directly derived from the membership
assertions of A, whereas Leo is implied by the inclusion assertion ∃hasOwner− v
Person and by the role membership assertion hasOwner(Tom, Leo).
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3 Inconsistency-tolerant Semantics

Let us now consider the case in which a DL KB K is unsatisfiable, i.e., K does not have
any model. As already said in the introduction, reasoning over such a K is meaning-
less, since whatever consequence can be deduced from K. In this section, we provide a
new semantics for DL KB that is inconsistency-tolerant, i.e., it allows for “meaningful”
reasoning over KBs that are unsatisfiable according to the classical first-order based
semantics, as that considered in Section 2 for DL-LiteF . In particular, our semantics
is tolerant to the inconsistency that arises in a DL knowledge base K = 〈T ,A〉 in
which a satisfiable TBox T may be contradicted by the extensional assertions in the
ABox A, thus resulting in possibly unsatisfiable KBs. This situation frequently hap-
pens in those systems that provide access to data (possibly integrated from autonomous
sources) through DL ontologies, as in Semantic Web applications.

Formally, let I be an interpretation and let A be an ABox. We denote by Sat(I,A)
the set of membership assertions from A that are satisfied in I, i.e., Sat(I,A) = {α |
α ∈ A and I |= α}.
Definition 1. Let K = 〈T ,A〉 be a DL KB and R an interpretation. We say that R is
a repair of K if: (i) R is a model for T ; (ii) there exists no interpretationR′ such that
R′ is a model for T and Sat(R′,A) ⊃ Sat(R,A).

In the following, we denote by Rep(K) the set of repairs of K. It is easy to see that
when a KB K is satisfiable, repairs of K coincide with models of K. Also, when the
TBox of K is satisfiable, K has always at least one repair.

Following the line of research of CQA [1, 4, 6], in our semantics, intensional knowl-
edge specified by the TBox of a knowledge base is considered stronger than data, i.e.,
the extensional knowledge provided by the ABox. Indeed, a repair R of a knowledge
base K = 〈T ,A〉 is an interpretation that needs to satisfy T and that at the same time
satisfies a maximal set Am of the membership assertions in A, i.e.,R is a model of the
knowledge base 〈T ,Am〉.

Let q be Boolean UCQ over a DL-Lite KB K, we say that q is consistently entailed
by K, and write K |=cons q if, for every R ∈ Rep(K), R |= q. Then, given a non-
Boolean UCQ q of arity n over K, we say that an n-tuple t of constants is a consistent
answer to q in K if K |=cons q(t). We denote by ConsAns(q,K) the set of consistent
answers to q in K. Furthermore, the consistent instance checking problem corresponds
to consistent entailment of a membership assertion.

We finally notice that, when a DL knowledge base K = 〈T ,A〉 is a DL-Lite KB,
K may result unsatisfiable only if the ABox A contradicts the intensional knowledge
of the TBox T . Indeed, it is possible to show that a DL-Lite TBox admits always at
least one model. As a consequence, we have that our inconsistency-tolerant semantics
ensures that every DL-Lite KB has always at least one repair.

Example 3. Let us consider again the DL-LiteF TBox T described in Example 1
and the ABox A′ containing the facts Person(John), hasOwner(Tom, John), and
hasOwner(Tom, Leo). It is easy to see that the knowledge base K′ = 〈T ,A′〉 is un-
satisfiable, since the functionality assertion on hasOwner is violated. Then, each repair
R of K′ is such that R |= T , and either Sat(R,A′) = {hasOwner(Tom, John)},
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or Sat(R,A′) = {hasOwner(Tom, Leo)}. Let us now consider the Boolean CQ
q′ = ∃y.hasOwner(Tom, y) over K′, asking whether Tom is owned by someone.
It is easy to see that q is consistently entailed by K′. However, for the query q′′ =
{x | hasOwner(Tom, x) }, we have that ConsAns(q′′,K′) = ∅. In words, we cannot
establish who is the owner of Tom, but we can state that Tom has an owner.

4 Consistent Query Answering

In this section we consider the problem of CQA for CQs over DL-LiteF KBs and show
that such a problem is coNP-complete w.r.t. data complexity, i.e., the complexity mea-
sured w.r.t. the size of the ABox only.

Theorem 1. Let K be a DL-LiteF KB, q a CQ of arity n over K, and t an n-tuple
of constants. Then, the problem of establishing whether t ∈ ConsAns(q,K) is coNP-
complete with respect to data complexity.

Proof (sketch) CoNP hardness can be proved by a reduction from the 3-colorability
problem, whereas membership in coNP follows from the results in [9].

The above result tells us that CQA over DL-LiteF KBs is in general intractable
w.r.t. data complexity, differently from the problem of (standard) query answering over
DL-LiteF KBs [7]. Notice that tractability of query answering (and of classical DL
reasoning services) is a crucial property for DLs of the DL-Lite family which makes
them particularly suited for dealing with big amounts of data. Then, to preserve this
nice behavior, we aim at identifying interesting cases in which CQA is tractable. As
we will show in the next section, consistent instance checking is in fact tractable over
DL-LiteF KBs.

5 Consistent Instance Checking

We now address consistent instance checking over DL-LiteF KBs, and show that such
a problem is in PTIME w.r.t. data complexity. To this aim, we define a polynomial time
algorithm that takes as input a membership assertion α and a DL-LiteF KBK = 〈T ,A〉
and returns true if α is consistently entailed by K, false otherwise.

In the following we only sketch our algorithm and refer the reader to [12] for a
more detailed description of it. We assume that input KB K is closed w.r.t. logical
implication of NIs by PIs and NIs specified in the TBox T , i.e., we assume that all
NIs logically implied by T are explicitly asserted in T . Furthermore, we assume that
the ABox A does not contain any membership assertion β such that the KB 〈T , {β}〉
is inconsistent, i.e., A does not contain membership assertions that not belong to any
repair of K. Notice that each DL-LiteF KB can be transformed in a KB of the above
form through simple pre-processing steps [12].

Our technique can be summarized in the two steps described below. In the first step,
we only take care of the PIs in K by means of the algorithm PerfectRef presented
in [7]. Informally, such an algorithm takes a DL-LiteF TBox T and a UCQ q as input,
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and reformulates q according to the PIs in T , used as rewriting rules, iteratively applied
from right to left to the atoms occurring in q, thus producing a new UCQ qr over K. In
words, PerfectRef encodes in qr the intensional knowledge of T in such a way that the
answers to q over K correspond to the answers to qr over the DL-LiteF KB K− that is
obtained from K by removing all PIs in T . We execute the algorithm PerfectRef with
the membership assertion α and the TBox T as input. Due to the particular form of the
input query, we obtain as result a Boolean union of atoms qr over K, i.e., qr is a CQ
of the form

∨
i=1,...,n ∃yi.conj i(yi), in which every conj i consists of a single atom,

denoted in the following by atomi.
In the second step we take into account only NIs and functionalities in T . To this

aim, we use the algorithm ConsAnswer which takes as input the Boolean union of
atoms qr and the DL-LiteF KB K−, and returns true if K− |=cons qr, false other-
wise. To explain the algorithm ConsAnswer more in detail, we need two prelimi-
nary definitions. A K-opponent to a membership assertion α is a membership asser-
tion β ∈ A that together with α contradicts a functionality or a NI assertion of T ,
i.e., the KB 〈T , {α, β}〉 is unsatisfiable. Then, let q be a Boolean union of atoms∨
i=1,...,n ∃yi.atomi(yi). A membership assertion γ is an image of q if there is an

i ∈ {1, . . . , n} such that there exists a substitution σ from the variables in atomi(yi)
to constants in γ such that σ(atomi(yi)) = γ. Roughly speaking, an image of q is a
membership assertion γ such that q is entailed by the knowledge base constituted only
by the assertion γ. With these notions in place, we can intuitively describe the behavior
of ConsAnswer. The algorithm verifies whether there exists an image γ of the input
query qr that belongs to A such that either (a) γ has no K-opponents or (b) every K-
opponent β to γ is such that β has at least one K-opponent β′ which is not K-opponent
to γ and is in turn K-opponent to a different image γ′. If the condition (a) succeeds,
then the query qr is consistently entailed byK since every repair ofK satisfies the same
image of qr. As for condition (b), it ensures that if a repairR does not satisfy the image
γ, since it satisfies the K-opponent β to γ, then R satisfies another image γ′, whose
satisfaction is guaranteed by the fact thatR does not satisfy β′.

It is possible to prove that the procedure described above is sound and complete
w.r.t. finding a solution to the consistent instance checking problem, and that it runs
in time polynomial in the size of the ABox A. Therefore, we can give the following
notable result.

Theorem 2. LetK be a DL-LiteF KB and α a membership assertion. Then, the problem
of establishing whether K |=cons α is in PTIME with respect to data complexity.

6 Conclusions

The work in the present paper can be extended in several directions. We are currently
developing a completely intensional technique for consistent instance checking, with
the aim of reducing this problem to query evaluation over a database instance repre-
senting the ABox of the knowledge base. Such a technique would allow us to maintain
reasoning at the intensional level, as it can be already done for standard query answering
over DL-LiteF KBs. We are also working in the direction of identifying other tractable
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cases of consistent query answering over DL-LiteF KBs. In this respect, we point out
that results of the present paper immediately imply that consistent query answering of
Boolean ground unions of conjunctive queries is tractable. The same analysis is being
carried out over other DLs that allow for tractable reasoning [2]. Finally, we are also
studying the problem of consistent query answering over more expressive DLs.
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Abstract. In spite of the increasing effort spent on building ontologies
for the Semantic Web, little attention has been paid to the impact of
these ontologies on knowledge-based intelligent systems such as Inductive
Logic Programming (ILP) systems which were not conceived for dealing
with DL knowledge bases. In this paper, we describe an extension of the
ILP system AL-QuIn to deal with a background knowledge in the form
of OWL DL ontology. The extension consists of a preprocessing of the
ontology that mainly relies on the services of the DL reasoner Pellet.

1 Introduction

Description Logics (DLs) are the most currently used among the logical for-
malisms proposed by Ontological Engineering [5]. Also the DL-based approach
to Ontological Engineering is playing a relevant role in the definition of the Se-
mantic Web. The Semantic Web is the vision of the World Wide Web enriched
by machine-processable information which supports the user in his tasks [2]. Its
architecture consists of several layers, each of which is equipped with an ad-hoc
mark-up language. DLs, more precisely the very expressive DL SHIQ, have
guided the design of the mark-up language OWL for the ontological layer [6].
A DL reasoner, Pellet [16], has been recently proposed for OWL. In spite of
the increasing effort spent on building ontologies for the Semantic Web, little
attention has been paid to the impact of these ontologies on knowledge-based
intelligent systems such as Inductive Logic Programming (ILP) systems which
were not conceived for dealing with DL knowledge bases. Note that the use of
background knowledge has been widely recognized as one of the strongest points
of ILP when compared to other forms of concept learning and has been empiri-
cally studied in several application domains [11]. Yet the background knowledge
in ILP systems is often not organized around a well-formed conceptual model
and still ignores the latest developments in Knowledge Engineering such as on-
tologies and ontology languages based on DLs. In a recent position paper, Page
and Srinivasan have pointed out that the use of special-purpose reasoners in ILP
is among the pressing issues that have arisen from the most challenging ILP ap-
plications of today [12]. We think that this is the case for ILP applications in the
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Semantic Web area. In this paper we report on an experience with DL reasoners
in ILP within the Semantic Web application area. In particular, we describe an
extension of the ILP system AL-QuIn [10] to deal with a background knowledge
in the form of OWL DL ontology. The extension consists of a preprocessing of
the ontology that mainly relies on the reasoning services of Pellet.

The paper is structured as follows. Section 2 briefly describes AL-QuIn.
Section 3 illustrates the use of Pellet in AL-QuIn. Section 4 concludes the paper.

2 The ILP system AL-QuIn

The ILP system AL-QuIn (AL-log Query Induction) [10] supports a data min-
ing task known under the name of frequent pattern discovery. In data mining
a pattern is considered as an intensional description (expressed in a given lan-
guage L) of a subset of a given data set r. The support of a pattern is the relative
frequency of the pattern within r and is computed with the evaluation function
supp. The task of frequent pattern discovery aims at the extraction of all fre-
quent patterns, i.e. all patterns whose support exceeds a user-defined threshold
of minimum support. AL-QuIn solves a variant of the frequent pattern discovery
problem which takes concept hierarchies into account during the discovery pro-
cess, thus yielding descriptions at multiple granularity levels up to a maximum
level maxG. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a multi-grained language {Ll}1≤l≤maxG of patterns
– a set {minsupl}1≤l≤maxG of user-defined minimum support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll that describe the
reference concept w.r.t. the task-relevant concepts and turn out to be frequent in
r. Note that P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors
of P w.r.t. T are frequent in r. Note that a pattern Q is considered to be an
ancestor of P if it is a coarser-grained version of P .

Example 1. As a showcase we consider the task of finding frequent patterns that
describe Middle East countries (reference concept) w.r.t. the religions believed
and the languages spoken (task-relevant concepts) at three levels of granular-
ity (maxG = 3). Minimum support thresholds are set to the following values:
minsup1 = 20%, minsup2 = 13%, and minsup3 = 10%. The data set and the
language of patterns will be illustrated in Example 2 and 3, respectively.

In AL-QuIn data and patterns are represented according to the hybrid
knowledge representation and reasoning system AL-log [4]. In particular, the
data set r is represented as an AL-log knowledge base B, thus composed of a
structural part and a relational part. The structural subsystem Σ is based on
ALC [14] whereas the relational subsystem Π is based on an extended form of
Datalog [3] that is obtained by using ALC concept assertions essentially as
type constraints on variables.
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Example 2. For the task of interest, we consider an AL-log knowledge base BCIA
that integrates a ALC component ΣCIA containing taxonomies rooted into the
concepts Country, EthnicGroup, Language and Religion and a Datalog com-
ponent ΠCIA containing facts1 extracted from the on-line 1996 CIA World Fact
Book2. Note that Middle East countries have been defined as Asian countries
that host at least one Middle Eastern ethnic group:

MiddleEastCountry ≡ AsianCountry u ∃Hosts.MiddleEastEthnicGroup.
In particular, Armenia (’ARM’) and Iran (’IR’) are classified as Middle East
countries because the following membership assertions hold in ΣCIA:

’ARM’:AsianCountry.
’IR’:AsianCountry.
’Arab’:MiddleEastEthnicGroup.
’Armenian’:MiddleEastEthnicGroup.
<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.

Also ΠCIA includes constrained Datalog clauses such as:

believes(Code, Name)←
religion(Code, Name, Percent) & Code:Country, Name:Religion.

speaks(Code, Name)←
language(Code, Name, Percent) & Code:Country, Name:Language.

that define views on the relations religion and language, respectively.

The language L = {Ll}1≤l≤maxG of patterns allows for the generation of
AL-log unary conjunctive queries, called O-queries. Given a reference concept
Cref , an O-query Q to an AL-log knowledge base B is a (linked and connected)3

constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variable and the remaining variables occurring
in the body of Q are the existential variables. Note that αj , 1 ≤ j ≤ m, is
a Datalog literal whereas γk, 1 ≤ k ≤ n, is an assertion that constrains a
variable already appearing in any of the αj ’s to vary in the range of individuals
of a concept defined in B. The O-query

Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint for the distinguished
variable X. Furthermore the language L is multi-grained, i.e. it contains expres-
sions at multiple levels of description granularity. Indeed it is implicitly defined

1 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
2 http://www.odci.gov/cia/publications/factbook/
3 For the definition of linkedness and connectedness see [11].

Proceeding of DL2007 - Regular Papers 381



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 382 — #392 i
i

i
i

i
i

by a declarative bias specification which consists of a finite alphabet ∆ of Data-
log predicate names and finite alphabets Γ l (one for each level l of description
granularity) of ALC concept names. Note that the αi’s are taken from A and
γj ’s are taken from Γ l. We impose L to be finite by specifying some bounds,
mainly maxD for the maximum depth of search and maxG for the maximum
level of granularity.

Example 3. To accomplish the task of Example 1 we define LCIA as the set of
O-queries with Cref = MiddleEastCountry that can be generated from the
alphabet ∆= {believes/2, speaks/2} of Datalog binary predicate names,
and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}
of ALC concept names for 1 ≤ l ≤ 3, up to maxD = 5. Examples of O-queries
in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:Language
Q2= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y)& X:MiddleEastCountry, Y:MuslimReligion

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

Note that Q1 is an ancestor of Q2.

The support of an O-query Q ∈ Ll w.r.t an AL-log knowledge base B is
defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |
where answerset(Q,B) is the set of correct answers to Q w.r.t. B. An answer
to Q is a ground substitution θ for the distinguished variable of Q. An answer
θ to Q is a correct (resp. computed) answer w.r.t. B if there exists at least one
correct (resp. computed) answer to body(Q)θ w.r.t. B. Thus the computation of
support relies on query answering in AL-log.

Example 4. The pattern Q2 turns out to be frequent because it has support
supp(Q2,BCIA) = (2/15)% = 13.3% (≥ minsup2). It is to be read as ’13.3 %
of Middle East countries speak an Indoeuropean language’. The two correct
answers to Q2 w.r.t. BCIA are ’ARM’ and ’IR’.

3 Exploiting Pellet in AL-QuIn

3.1 Coverage of observations

In ILP the evaluation of inductive hypotheses (like candidate patterns in frequent
pattern discovery) w.r.t. a set of observations (data units) is usually referred to as
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the coverage test because it checks which observations satisfy (are covered by) the
hypothesis. Since evaluation is the most computationally expensive step when
inducing hypotheses expressed in (fragments of) first-order logic, an appropriate
choice of representation for observations can help speeding up this step. In AL-
QuIn the extensional part of Π is partitioned into portions Ai each of which
refers to an individual ai of Cref . The link between Ai and ai is represented
with the Datalog literal q(ai). The pair (q(ai),Ai) is called observation.

Example 5. By assuming MiddleEastCountry as reference concept, the obser-
vation AARM contains Datalog facts such as

language(’ARM’,’Armenian’,96).
language(’ARM’,’Russian’,2).

concerning the individual ’ARM’ whereas AIR consists of facts like

language(’IR’,’Turkish’,1).
language(’IR’,’Kurdish’,9).
language(’IR’,’Baloch’,1).
language(’IR’,’Arabic’,1).
language(’IR’,’Luri’,2).
language(’IR’,’Persian’,58).
language(’IR’,’Turkic’,26).

related to the individual ’IR’.

In ILP the coverage test must take the background knowledge into account.
The portion K of B which encompasses the whole Σ and the intensional part
(IDB) of Π is considered as background knowledge for AL-QuIn. Therefore prov-
ing that anO-queryQ covers an observation (q(ai),Ai) w.r.t.K equals to proving
that θi = {X/ai} is a correct answer to Q w.r.t. Bi = K ∪Ai.
Example 6. Checking whether Q2 covers the observation (q(’ARM’),AARM) w.r.t.
KCIA is equivalent to answering the query

Q
(0)
2 = ← q(’ARM’)

w.r.t. KCIA ∪ AARM ∪Q2. The coverage test for (q(’IR’),AIR) is analogous.

A common practice in ILP is to use a reformulation operator, called sat-
uration [13], to speed-up the coverage test. It enables ILP systems to make
background knowledge explicit within the observations instead of implicit and
apart from the observations. In the following we will discuss the implementation
of the coverage test in AL-QuIn and clarify the role of Pellet in supporting the
saturation of observations w.r.t. a OWL-DL background knowledge Σ.

3.2 Saturation and instance retrieval

AL-QuIn is implemented with Prolog as usual in ILP. Thus, the actual repre-
sentation language in AL-QuIn is a kind of DatalogOI [15], i.e. the subset of
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Datalog 6= equipped with an equational theory that consists of the axioms of
Clark’s Equality Theory augmented with one rewriting rule that adds inequality
atoms s 6= t to any P ∈ L for each pair (s, t) of distinct terms occurring in
P . Note that concept assertions are rendered as membership atoms, e.g. a : C
becomes c C(a).

Example 7. The following query

q(X) ← c MiddleEastCountry(X), believes(X,Y), c MonotheisticReligion(Y),
believes(X,Z), Y6=Z

is the DatalogOI rewriting of:

q(X) ← believes(X,Y), believes(X,Z) &
X:MiddleEastCountry, Y:MonotheisticReligion

where the absence of a ALC constraint for the variable Z explains the need for
the inequality atom.

When implementing the coverage test in AL-QuIn, the goal has been to
reduce constrained SLD-resolution of AL-log to SLD-resolution on DatalogOI .
A crucial issue in this mapping is to deal with the satisfiability tests of ALC
constraints w.r.t. Σ which are required by constrained SLD-resolution because
they are performed by applying the tableau calculus for ALC. The reasoning
on the constraint part of O-queries has been replaced by preliminary saturation
steps of the observations w.r.t. the background knowledge Σ. By doing so, the
observations are completed with concept assertions that can be derived from
Σ by posing instance retrieval problems to a DL reasoner. Here, the retrieval
is called levelwise because it follows the layering of T : individuals of concepts
belonging to the l-th layer T l of T are retrieved all together. Conversely the
retrieval for the reference concept is made only once at the beginning of the
whole discovery process because it makes explicit knowledge of interest to all
the levels of granularity. This makes SLD-refutations of queries in Ll work only
on extensional structural knowledge at the level l of description granularity.

A Java application, named OWL2Datalog, has been developed to support
the saturation of observations w.r.t. a OWL-DL background knowledge Σ in
AL-QuIn. To achieve this goal, it supplies the following functionalities:

– levelwise retrieval w.r.t. Σ
– DatalogOI rewriting of (asserted and derived) concept assertions of Σ

Note that the former is implemented by a client for the DIG server Pellet.

Example 8. The DatalogOI rewriting of the concept assertions derived for T 2

produces facts like:

c AfroAsiaticLanguage(’Arabic’).
. . .
c IndoEuropeanLanguage(’Armenian’).
. . .
c MonotheisticReligion(’ShiaMuslim’).
. . .
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to be considered during coverage tests of O-queries in L2.

The concept assertions, once translated to DatalogOI , are added to the
facts derived from the IDB of Π at the loading of each observation. The coverage
test therefore concerns DatalogOI rewritings of both O-queries and saturated
observations.

Example 9. The DatalogOI rewriting

q(X) ← c MiddleEastCountry(X), speaks(X,Y), c IndoEuropeanLanguage(Y)

of Q2 covers the DatalogOI rewriting:

c MiddleEastCountry(’ARM’).
speaks(’ARM’,’Armenian’).
. . .
c IndoEuropeanLanguage(’Armenian’).
. . .

of the saturated observation ÂARM.

Note that the translation from OWL-DL to DatalogOI is possible because
we assume that all the concepts are named. This means that an equivalence
axiom is required for each complex concept in the knowledge base. Equivalence
axioms help keeping concept names (used within constrained Datalog clauses)
independent from concept definitions.

4 Final remarks

In this paper we have shown how to exploit DL reasoners to make existing ILP
systems compliant with the latest developments in Ontological Engineering. We
would like to emphasize that AL-QuIn was originally conceived to deal with
background knowledge in the form of ALC taxonomic ontologies but the imple-
mentation of this feature was still lacking4. Therefore, Pellet makes AL-QuIn
fulfill its design requirements. More precisely, the instance retrieval problems
solved by Pellet support the saturation phase in AL-QuIn. Saturation then
compiles DL-based background knowledge down to the usual Datalog-like for-
malisms of ILP systems. In this respect, the pre-processing method proposed in
[8] to enable legacy ILP systems to work within the framework of CARIN [9]
is related to ours but it lacks an implementation. Analogously, the method pro-
posed in [7] for translating OWL-DL to disjunctive Datalog is far too general
with respect to the specific needs of our application. Rather, the proposal of
interfacing existing reasoners to combine ontologies and rules [1] is more similar
to ours in the spirit. For the future we intend to compare AL-QuIn with other
ILP systems able to deal with ontological background knowledge as soon as they
are implemented and deployed.

4 AL-QuIn could actually deal only with concept hierarchies in DatalogOI .
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Extracting Ontologies from Relational Databases

Lina Lubyte and Sergio Tessaris

Faculty of Computer Science – Free University of Bozen-Bolzano

1 Introduction

The use of a conceptual model or an ontology over data sources has been shown
to be necessary to overcome many important database problems (for a survey see
[1]). Since ontologies provide a conceptual view of the application domain, the
recent trend to employ such ontologies for navigational (and reasoning) purposes
when accessing the data gives additional motivation for the problem of extracting
the ontology from database schema [2]. When such an ontology exists, modelling
the relation between the data sources and an ontology is a crucial aspect in order
to capture the semantics of the data.

In this paper we define the framework for extracting from a relational database
an ontology that is to be used as a conceptual view over the data, where the
semantic mapping between the database schema and the ontology is captured
by associating a view over the source data to each element of the ontology. Thus,
the vocabulary over the ontology can be seen as a set of (materialised) views over
the vocabulary of the data source; i.e., a technique known as GAV approach in
the information integration literature [3]. To describe the extracted conceptual
model, we provide an expressive ontology language which can capture features
from Entity-Relationship and UML class diagrams, as well as variants of De-
scription Logics. The heuristics underlying the ontology extraction process are
based on ideas of standard relational schema design from ER diagrams in order
to uncover the connections between relational constructs and those of ontologies.
Besides the latter assumption the procedure presented in this paper takes into
consideration relations being in third normal form (3NF). Under this assump-
tion we can formally prove that the conversion preserves the semantics of the
constraints in the relational database. Therefore, there is no data loss, and the
extracted model constitutes a faithful wrapper of the relational database.

2 Preliminaries

We assume that the reader is familiar with standard relational database notions
as presented, for example, in [4]. We assume that the database domain is a fixed
denumerable set of elements ∆ and that every such element is denoted uniquely
by a constant symbol, called its standard name [5]. We make use of the standard
notion of relational model by using named attributes, each with an associated
datatype, instead of tuples.

A relational schema R is a set of relationships, each one with a fixed set
of attributes (assumed to be pairwise distinct) with associated datatypes. We
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use [s1 : D1, . . . , sn : Dn] to denote that a relationship has attributes s1, . . . , sn
with associated data types D1, . . . , Dn. We interpret relationships over a fixed
countable domain ∆ of datatype elements, which we consider partitioned into
the datatypes Di. A database instance (or simply database) D over a relational
schema R is an (interpretation) function that maps each relationship R in R
into a set RD of total functions from the set of attributes of R to ∆. Let A =
[s1, . . . , sm] be a sequence of m attribute names of a relationship R of a schema
R. The projection of RD over A is the relation πAR

D ⊆ ∆m
D , satisfying the

condition that φ ∈ RD iff (φ(s1), . . . , φ(sm)) ∈ πARD.
The ontology extraction task takes as input a relational source; e.g. a DBMS.

We abstract from any specific database implementation by considering an ab-
stract relational source DB, which is a pair (R, Σ), whereR is a relational schema
and Σ is a set of integrity constraints. The semantics of relational schemata is
provided in the usual way by means of the relational model. Below we briefly
list the kind of database integrity constraints we consider in our framework (for
more details the reader is referred to [6]). Nulls-not-allowed constraints: satisfied
in a database when null are not contained in any indicated attribute. Unique
constraints: satisfied when the sequence of attributes are unique in a relation.
Together with nulls-not-allowed constraints they correspond to key constraints.
Inclusion dependencies: satisfied when the projection of two relations are in-
cluded one in the other. When the attributes of the target relation are a candi-
date key as well, we call them foreign key constraints. Exclusion dependencies:
satisfied when the intersection of the projection of two relations is the empty
set. Covering constraints:1 between a relation and a set of relations, satisfied
when the projection of the relation over the specified attributes is included in
the union of the projections of the relations in the set.

We call a DLR-DB system S a triple 〈R,P,K〉, where R is a relational
schema, P is a component structure over R, and K is a set of assertions involv-
ing names in R. The intuition behind a named component is the role name of
a relationship in an ER schema (or UML class-diagram). The component struc-
ture P associates to each relationship a mapping from named components to
sequences of attributes. Let R be a relationship in R, to ease the notation we
write PR instead of P(R).

Let R be a relationship in R, with attributes [s1 : D1, . . . , sn : Dn]. PR
is a non-empty (partial) function from a set of named components to the set
of nonempty sequences of attributes of R. The domain of PR, denoted CR, is
called the set of components of R. For a named component c ∈ CR, the sequence
PR(c) = [si1 , . . . , sim ], where each ij ∈ {1, . . . , n}, is called the c-component of
R. We require that the sequences of attributes for two different named com-
ponents are not overlapping, and that each attribute appears at most once in
each sequence. The signature of a component PR(c), denoted τ(PR(c)), is the
sequence of types of the attributes of the component. Two components PR(c1)
and PR(c2) are compatible if the two signatures τ(PR(c1)) and τ(PR(c2)) are
equal.

1 In ER terminology, this may also be indicated as mandatory for an IS-A relationship.
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The DLR-DB ontology language, used to express the assertions in K, is based
on the idea of modelling the domain by means of axioms involving the projection
of the relationship over the named components. An atomic formula is a projec-
tion of a relationship R over one of its components. The projection of R over the
c-component is denoted by R[c]. When the relationship has a single component,
then this can be omitted and the atomic formula R corresponds to its projec-
tion over the single component. Given the atomic formulae R[c], R′[c′], Ri[ci], an
axiom is an assertion of the form specified below; where all the atomic formulae
involved in the same axiom must be compatible. The semantics is provided in
terms of relational models for R, where K plays the role of constraining the set
of “admissible” models.

R[c] v R′[c′] πcR
D ⊆ πc′R′D Subclass

R[c] disj R′[c′] πcR
D ∩ πc′R′D = ∅ Disjointness

funct(R[c]) for all φ1, φ2 ∈ RD with φ1 6= φ2, we have

φ1(s) 6= φ2(s) for some s in c
Functionality

R1[c1], . . . , Rk[ck] coverR[c] πcR
D ⊆

[
i=1...k

πciR
′D
i Covering

A database D is said to be a model for K if it satisfies all its axioms, and for
each relationship R in R with components c1, . . . , ck, for any φ1, φ2 ∈ RD with
φ1 6= φ2, there is some s in ci s.t. φ1(s) 6= φ2(s). The above conditions are well
defined because we assumed the compatibility of the atomic formulae involved
in the constraints.

The DLR-DB ontology language enables the use of the most commonly used
constructs in conceptual modelling (see [7]). Note that by taking away the cov-
ering axioms and considering only components containing single attributes this
ontology language corresponds exactly to DLR-Lite (see [8]). By virtue of the
assumption that components do not share attributes, it is not difficult to show
that the same reasoning mechanism of DLR-Lite can be used in our case. The
discussion on the actual reasoning tasks which can be employed in the context
of DLR-DB systems is out of the scope of this paper. Herewith we are mainly
interested of the use of the language to express data models extracted from the
relational data sources.

3 Ontology Extraction

Our proposed ontology extraction algorithm works in two phases. Firstly, a clas-
sification scheme for relations from the relational source is derived. Secondly,
based on this classification, the ontology describing the data source is extracted.
Moreover, the process generates a set of view definitions, expressing the mapping
between the database schema and the ontology. In this section we briefly sketch
the procedure, more details and the algorithms can be found in [6].

The principles upon our technique are based on best practices on relational
schema design from ER diagrams – a standard database modelling technique [9].
One benefit of this approach is that it can be shown that our algorithm, though
heuristic in general, is able to reconstruct the original ER diagram under some
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assumptions on the latter. Specifically, we consider ER models that support
entities with attributes,2 n-ary relationships which are subject to cardinality
constraints, and inheritance hierarchies (IS-A) between entities (including mul-
tiple inheritance) which may be constrained to be disjoint or covering. Roughly
speaking, we reverse the process of translating ER model to relational model.
As a result, we identify that relations representing entities have keys which are
not part of their foreign keys, and every such foreign key represents functional
binary relationship (i.e., one-to-one or one-to-many) with another entity. On the
other hand, relations that correspond to n-ary relationships with cardinalities
“many” for all participating entities have keys composed of their foreign keys.
Since we assume there is no IS-A between relationships, every such foreign key
references key of a relation resulting from (sub-)entity. When a relation has key
that is also its foreign key, and no other non-key foreign keys appear in that
relation, then, clearly, an inheritance relationship exists. If instead non-key for-
eign keys are present but the relation is the target of some foreign key, we are
sure that this relation corresponds to sub-entity. Otherwise, such relation might
also “look like” functional relationship (binary or n-ary), mapped directly to a
relation, and therefore relations of this type are classified as ambiguous relations
(see below).

The classification of the relations, based on their keys and foreign keys, can
be summarised as: base relation when the primary key is disjoint with every
foreign key; specific relation when the primary key is also a foreign key and it
has a single foreign key, or it is referred to by some relation;3 relationship relation
when the primary key is composed by all the foreign keys, which are more than
1. Any other relation is classified as ambiguous.

Once the relations in DB are classified according to the conditions defined
above, then the actual ontology extraction process returns a DLR-DB system
as output. For every base and specific relation ri the algorithm generates a
relationship Ri with the attributes in a one-to-one correspondence with non-
foreign key attributes of ri, and a single c-component, where PRi

(c) corresponds
to the key attributes of ri and thus functionality axiom funct(Ri[c]) is added to
K;a view is defined by projecting on all non-key foreign key attributes of ri.

Once relationships for base and specific relations are defined, associations
between those relationships must be identified. Specifically, a non-key foreign
key in a relation ri referencing relation, rj , determines the association between
relationships Ri and Rj . Thus, for each such foreign key, a relationship Rk is gen-
erated, having two components, ci-component and cj-component, where PRk

(ci)
and PRk

(cj) correspond to key attributes of ri and rj , respectively, where ci-
component is functional, i.e., we have funct(Rk[ci]) in K; a corresponding view
is defined by joining rj with ri and projecting on their keys. For expressing
an association, determined by Rk, between Ri and Rj the axioms of the form
Rk[ci] v Ri and Rk[cj ] v Rj are added to K. Furthermore, whenever the lat-
ter foreign key of ri participates in a nulls-not-allowed constraint, the axiom
Ri v Rk[ci] is generated stating mandatory participation for instances of Ri to

2 We do not deal with multi-valued attributes in this paper.
3 I.e., the relation appears on the right-hand side of some foreign key constraint.
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Rk as values for the ci-component; its participation to a unique constraint deter-
mines instead the functionality axiom funct(Rk[cj ]) meaning that every value of
the cj-component appears in it at most once; finally, appearance of the foreign
key of ri in the right-hand side of an inclusion dependency determines manda-
tory participation for values of the only component of Rj to the relationship Rk
as values for the cj-component, and thus the axiom Rj v Rk[cj ] is added to K.
For expressing an ISA between classes, for every specific relation ri the subclass
axiom Ri v Rj is added to K, where Rj is the relationship corresponding to
(base or specific) relation, rj , that the key foreign key of ri references. Addi-
tionally, each exclusion dependency on the set of specific relations induces the
disjointness axioms Ri disj Rk, for every pair of relations ri, rk appearing in the
exclusion dependency. Similarly, every covering constraint on the set of specific
relations induces the corresponding covering axiom in K.

Each relationship relation ri is accounted for by generating a relationship Ri,
with attributes in a one-to-one correspondence with those of ri, and n compo-
nents, where n is the number of foreign keys of ri. Each PRi

(cil) (l ∈ {1, . . . , n})
has sequence of attributes corresponding to the l-th foreign key attributes of ri;
the corresponding view is defined by projecting on all attributes of ri. Then, for
each foreign key of ri referencing relation rj (that is already represented with a
relationship Rj having a single component), the algorithm generates an axiom
Ri[cil ] v Rj stating that the role corresponding to the cil -component of Ri is of
type Rj . Furthermore, if this foreign key appears on the right-hand side of an
inclusion dependency, the axiom Rj v Ri[cil ] is added to K that states manda-
tory participation for instances of Rj to the relationship Ri as values for the cil
component.

Finally, the appropriate structures for ambiguous relations must be identi-
fied. As already discussed before, an ambiguous relation may correspond in ER
schema to either sub-entity, which also participates with cardinality “one” in
a binary relationship, or a functional relationship that was directly mapped to
a relation. Following the idea that all functional binary relationships should be
represented in a relational model with an embedded foreign key, e.g., in order
to obtain the relational schema with a minimum number of relations, and that
n-ary relationships (n ≥ 3) are relatively unusual, our heuristics “prefers” to
recover an inheritance relationship, and thus the algorithm generates the struc-
tures corresponding to those defined for specific relations. On the other hand, a
user could decide which is the “best” structure for ambiguous relations. In this
way, the ontology extraction task may be a completely automated procedure, or
semi-automated process with a user intervention.

As an example of the ontology extraction process, consider the relational
schema (primary keys are underlined) with constraints of Figure 1. At the initial
step of extraction process, relations Scholar, Publication and Department are
classified as base relations, i.e. their keys and foreign keys do not share any
attributes; IsAuthorOf relation is classified as relationship relation – its key
is entirely composed from foreign keys; while relations PostDoc and Professor
satisfy the conditions required for specific relations, i.e. the key ssn is their single
foreign key.
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Without going into details of the algorithm, in Table 1 we list the extracted
relationships of DLR-DB R together with the devised component structure P,
by considering the relation names and their corresponding attributes in the input
relational source. Starting with base and specific relations, we have the corre-
sponding relationships with single components. Since the component names for
the latter relationships are not relevant (they can be omitted), we choose a com-
mon name id for all the five of them.4 Figure 2 shows the extracted ontology
together with the corresponding ER diagram.

Relationship Component c PR(c) Additional attr. View definition
Scholar id ssn name πssn,name(Scholarr)
Publication id id title, year πid,title,year(Publicationr)
Department id no name πno,name(Departmentr)
PostDoc id ssn scholarship πssn,scholarship(PostDocr)
Professor id ssn salary πssn,salary(Professorr)
WorksFor employee ssn πssn,no(Departmentr on Scholarr)

dept no
IsAuthorOf author schSsn πschSsn,publId(IsAuthorOfr)

publication publId

Table 1. Extracted Schema.

4 Discussion and Related Work

Much work has been addressed on the issue of explicitly defining semantics
in database schemas [10, 7] and extracting semantics out of database schemas
[11, 12]. The work described in [10] provides algorithms that investigate data
instances of an existing legacy database in order to identify candidate keys of
4 For the sake of clarity, the naming of the components for relationships WorksFor and

IsAuthorOf, as well as the name of the WorksFor relationship itself, are determined
by domain knowledge.

Scholarr(ssn, name, deptNo) Publicationr(id, title, year)
IsAuthorOfr(schSsn, publId) Departmentr(no, name)
PostDocr(ssn, scholarship) Professorr(ssn, salary)

Scholarr [deptNo] ⊆ Departmentr [no]
IsAuthorOfr [schSsn] ⊆ Scholarr [ssn]
IsAuthorOfr [publId] ⊆ Publicationr [id]
PostDocr [ssn] ⊆ Scholarr [ssn]
Professorr [ssn] ⊆ Scholarr [ssn]
Scholarr [ssn] ⊆ IsAuthorOfr [schSsn]

Publicationr [id] ⊆ IsAuthorOfr [publId]
Departmentr [no] ⊆ Scholarr [deptNo]
unique(Scholarr, deptNo)
nonnull(Scholarr,deptNo)
PostDocr [ssn] ∩ Professorr [ssn] = ∅

Fig. 1. Relational schema with constraints.
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Scholar

PostDoc Professor

IsAuthorOf WorksFor

scholarship salary

ssn
name

Publication Department

id
title

year no name

publication employee dept1,n1,n 1,1

 { disjoint }

author 1,n

funct(Scholar[id])
funct(Publication[id])
funct(Department[id])
funct(PostDoc[id])
funct(Professor[id])
IsAuthorOf[author] v Scholar
IsAuthorOf[publication] v Publication
WorksFor[employee] v Scholar
WorksFor[dept] v Department

Scholar v IsAuthorOf[author]
Publication v IsAuthorOf[publication]
Scholar vWorksFor[employee]
Department vWorksFor[dept]
funct(WorksFor[employee])
PostDoc v Scholar
Professor v Scholar
PostDoc disj Professor

Fig. 2. Extracted ontology and corresponding ER diagram.

relations, to locate foreign keys, and to decide on the appropriate links between
the given relations. As a result, user involvement is always required. In our work
we instead assume the knowledge on key and foreign key constraints, as well
as non null and unique values on attributes, inclusion and disjointness between
relations, etc. exist in the schema.

The work in [12] propose transformations that are applied to produce the
re-engineered schema and handles the establishment of inheritance hierarchies.
However, it considers relations in BCNF and thus every relation is in a one-to-
one correspondence with an object in the extracted schema. The main idea of the
methodology described in [11] comes close to ours in the sense that it derives
classification for relations and attributes based on heuristics of what kind of
ER components would give rise to particular relations. Unlike the latter, our
proposed technique can be seen as a schema transformation as defined in [15].
Because of lack of space, we omit the proof that this transformation is indeed
equivalence preserving (for the actual proof and details see [6]).

The recent call for a Semantic Web arose several approaches in bringing
together relational databases and ontologies. Among them we mention [13],
where the authors describe an automatic mapping between relations and ontolo-
gies, when given as input simple correspondences from attributes of relations to
datatype properties of classes in an ontology. Unlike our approach, it requires a
target ontology onto which the relations are mapped to. On the other hand, the
approach of [14] extracts the schema information of the data source and converts
it into an ontology. However, the latter technique extracts only the structural
information about the ontology, so the constraints are not taken into account.

This paper describes an heuristic procedure for extracting from relational
database its conceptual view, where the wrapping of relational data sources by
means of an extracted ontology is done by associating view over the original data
to each element of the ontology. To represent the extracted ontology, instead of
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a graphical notation, we employ an ontology language thus providing a precise
semantics to extracted schema. Our extraction procedure relies on information
from the database schema and automatically extracts all the relevant semantics
if an input relational schema was designed using a standard methodology.

We are currently following several directions to continue the work reported in
this paper. First, conceptual modelling constructs as multi-valued attributes and
weak entities, alternative techniques for inheritance representation in relational
tables. To this purpose we are starting to experiment with real database schemas
to evaluate the quality of the extracted ontologies.
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Abstract. In this paper, we propose an approach to translating any ALC ontol-
ogy (possible inconsistent) into a logically consistent set of disjunctive datalog
rules. We achieve this in two steps: First we give a simple way to make anyALC
based ontology 4-valued satisfiable, and then we study a sound and complete
paraconsistent ordered-resolution decision procedure for our 4-valuedALC. Our
approach can be viewed as a paraconsistent version of KAON2 algorithm.

1 Introduction

The study of inconsistency handling in description logics can be divided into two funda-
mentally different approaches. The first is based on the assumption that inconsistencies
indicate erroneous data which is to be repaired in order to obtain a consistent knowl-
edge base [1]. The other approach yields to the insight that inconsistencies are a natural
phenomenon in realistic data which are to be handled by a logic, such as paraconsistent
logics which tolerates it [2–6]. Comprised with the former, the latter acknowledges and
distinguishes the different epistemic statuses between ”the assertion is true” and ”the
assertion is true with conflict”. In this paper, following [6], we study an approach to
reasoning with an inconsistent ALC ontology, which belongs to the second.

Considering applications of DLs, the reasoning algorithm is as important as the
semantics definition. Compared to the algorithm implemented in [6] by employing a
polynomial transformation algorithm which still may be time consuming for large on-
tologies, the process described in this paper which translate an ontology directly into
a satisfiable set of rules saves the preprocessing time. Compared to the algorithm pro-
posed in [4] which is a sequence calculus based procedure, our algorithm can benefit
directly from the technical details of the KAON2 implementation. Compared to the
work given in [3] where a tractable subsumption is discussed, our approach spells out
for both subsumption and instant checking reasoning tasks.

There exist two fundamentally reasoning algorithms which have been implemented
in DLs reasoners. The first historic approach is based on tableaux algorithms [7]. The

? We acknowledge support by the German Federal Ministry of Education and Research (BMBF)
under the SmartWeb project (grant 01 IMD01 B), by the EU under the IST project NeOn
(IST-2006-027595, http://www.neon-project.org/), by the Deutsche Forschungsgemeinschaft
(DFG) in the ReaSem project, and by China Scholarship Council.
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second approach is based on basic superposition (ordered resolution for ALC) real-
ized by KAON2 reasoner [8]. Our algorithm is based on an adaptation of the algorithm
underlying KAON2 for dealing with ALC4, a paraconsistent ALC. Theoretically, we
design a paraconsistent ordered-resolution for ALC4 which is different from other al-
gorithms in [3, 4] and which provides a way to extend KAON2 algorithm to reason with
inconsistent ontologies. Due to space limitations, proofs are omitted. They can be found
in a technical report under http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/parowltr.pdf.

The paper is structured as follows. In Section 2, we review briefly the syntax and se-
mantics of the paraconsistent description logic defined in our pervious work [6], where
more technical details and intuitions can be found. Section 3 gives the paraconsistent
resolution decision procedure and Section 4 studies how a set of consistent disjunctive
datalog rules can be obtained from a four-valued ALC ontology. Finally we conclude
this paper in Section 5.

2 The Four-valued Description Logic ALC4

2.1 Syntax and Semantics

Syntactically, ALC4 hardly differs from ALC. Complex concepts and assertions are
defined in exactly the same way. However, we allow three kinds of class inclusions,
corresponding to the three implication connectives in four-valued logic case. They are
called material inclusion axiom, internal inclusion axiom, and strong inclusion axiom,
denoted as C 7→ D, C @ D, and C → D, respectively.

Semantically, four-valued interpretations map individuals to elements of the domain
of the interpretation, as usual. For concepts, however, to allow for reasoning with in-
consistencies, a four-valued interpretation over domain ∆I assigns to each concept C a
pair 〈P,N〉 of (not necessarily disjoint) subsets of ∆I . Intuitively, P is the set of ele-
ments known to belong to the extension of C, while N is the set of elements known to
be not contained in the extension of C. P and N are not necessarily disjoint and mutual
complemental with respect to the domain.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2 to
concepts, such that the conditions in Table 1 are satisfied, where functions proj+(·) and
proj−(·) are defined by proj+〈P,N〉 = P and proj−〈P,N〉 = N.

For the semantics defined above, we ensure that a number of useful equivalences
from classical DLs, such as double negation law and Demorgen Law, hold, see [6] for
details.

The semantics of the three different types of inclusion axioms is formally defined in
Table 2 (together with the semantics of concept assertions). We say that a four-valued
interpretation I satisfies a four-valued ontology O (i.e. is a model of it) iff it satisfies
each assertion and each inclusion axiom in O. An ontology O is 4-valued satisfiable
(unsatisfiable) iff there exists (does not exist) such a model.
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Table 1. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P,N〉, where P,N ⊆ ∆I

R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

> 〈∆I , ∅〉
⊥ 〈∅,∆I〉

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N,P 〉, if CI = 〈P,N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

Table 2. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆

I \ proj−(CI
1 ) ⊆ proj+(CI

2 )
internal inclusion C1 @ C2 proj+(CI

1 ) ⊆ proj+(CI
2 )

strong inclusion C1 → C2 proj+(CI
1 ) ⊆ proj+(CI

2 ) and
proj−(CI

2 ) ⊆ proj−(CI
1 )

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

2.2 The satisfiability of ALC4 ontologies

Note that the four-valued semantics given in previous subsection does not assure that
every ALC4 ontology has 4-valued models.1 The following example illustrates this.

Example 1 Consider T = {> @ ⊥}. Since for any four-valued interpretation I ,
>I = 〈∆I , ∅〉 and ⊥I = 〈∅,∆I〉, where ∆I 6= ∅ for DL interpretations, T has no
four-valued model according to Table 2. The conclusion remains the same if other two
kinds of inclusion are used in T .

To make every ontology 4-valued satisfiable, we introduce the following substitu-
tion (Definition 1). The underlying intuition is that⊥ ≡ Au¬A and> ≡ At¬A hold
for any concept A under the classical semantics w.r.t. any ontology.

Definition 1 Given an ontology O, the satisfiable form of O, denote SF (O), is
the ontology obtained by replacing each occurrence of ⊥ in (O) with NA u ¬NA, and
replacing each occurrence of > in (O) with NA t ¬NA, where NA is a new atomic
concept.

1 The problem also exists for the 4-valued DL defined in [4] if > and ⊥ are used arbitrarily.
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Example 2 (Example 1 Continued) By Definition 1, SF (T ) = {NAt¬NA @ NAu
¬NA}. Obviously, SF (T ) has a 4-valued model I = 〈∆I , ·I〉, where NAI = 〈∆I ,∆I〉.
I is also a model of {NA t ¬NA 7→ NA u ¬NA} and {NA t ¬NA→ NA u ¬NA}. That
is, a 4-valued unsatisfiable ontology becomes 4-valued satisfiable.

Following proposition says the substitution doesn’t impact the classical inconsis-
tency.

Proposition 1 For any ontology O, the following two claims hold:

(1) SF (O) is 2-valued consistent if and only if O is 2-valued consistent.
(2) SF (O) always has at least one 4-valued model.

Note that claim 2 in proposition 1 doesn’t hold for 2-valued semantics, so we cannot
expect to make an inconsistent ontology 2-valued satisfiable in the same way. Because
of this proposition, we assume that all ontologies discussed in the rest have 4-valued
models.

3 Resolution-based Reasoning with ALC4

In this section, we basically follow [8, Chapter 4] to study a paraconsistent resolution
for ALC4, and indeed we have to assume that the reader is familiar with the KAON2-
approach because of space restrictions.

We first note that resolution relies heavily on the tertium non datur, and thus does
not lend itself easily to a paraconsistent setting. In particular, resolution cannot be based
on the negation present in paraconsistent logics, as in this case A∨B and ¬A∨C does
not imply B ∨ C. We thus start by introducing a second kind of negation, called total
negation, written ∼. To avoid confusion, we will refer to ¬ as paraconsist negation.
Notice that we do not extend our four-valued DLs to have the total negation as a concept
constructor. We rather use it only to provide a resolution-based decision procedure for
four-valued DLs.

Definition 2 Total negation ∼ on {〈P,N〉 | P,N ⊆ ∆} is defined by ∼〈P,N〉 =
〈∆ \ P,∆ \N〉.
The intuition behind total negation is to reverse both the information of being true and
of being false. By Definition 2, the double negation elimination law and Demogen Laws
also hold for total negation ∼.

An important reason to propose the total negation is that it provides a way to reduce
4-valued entailment relation |=4 to 4-valued satisfiability, because for any ontology
O and an axiom α, O |=4 α if and only if O ∪ {∼α} is 4-unsatisfiable. Moreover,
total negation can be used to obtain a representation of internal inclusion in terms of
clauses, where equisatisfiability retains, because (C @ D)I ∈ {t, >̈} if and only if
(∀x.(∼C tD)(x))I ∈ {t, >̈}. By these two points, we have following theorem shows
that 4-entailment can be converted into 4-unsatisfiability.

Theorem 2 Let O be a four-valued ALC4 ontology, C,D be concepts, I be an
interpretation and ι be a new individual not occurring in O. Then the following hold.
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1. O |=4 C(a) if and only if O ∪ {∼C(a)} is four-valued unsatisfiable.
2. O |=4 C 7→ D, O |=4 C @ D, O |=4 C → D if and only if O ∪ {∼(¬C tD)(ι)},
O ∪ {(C u ∼D)(ι)}, and O ∪ {(C u ∼D)(ι), (¬D u ∼¬C)(ι)} are four-valued
unsatisfiable, respectively.

3.1 Translating ALC4 into Clauses
To introduce clausal forms for ALC4 expressions, we first define an extended negation
normal form for ALC4 called quasi-NNF. We are inspired by [9].

Definition 3 A concept C is a quasi-atom, if it is an atomic concept, or in form ¬A
where A is an atomic concept. C is a quasi-literal, if it is a quasi-atomic concept, or
in form ∼L where L is a quasi-atomic concept. C is in quasi-NNF, if ∼ occurs only in
front of quasi-literals and ¬ does not occur in front of ∼.

To give an example, let A,B, and C be atomic concepts. Then (A∨∼¬B)t∀R.(∼C)
is in quasi-NNF. Based on the properties of∼, it is easy to check that allALC4 concepts
can be transformed into equivalent expressions in quasi-NNF.

We next translate the concepts into predicate logic. This is done by the standard
translation as e.g. spelled out in [8] in terms of the function πy – we just have to provide
for the total negation. We make one exception, namely for universal restriction, where
we set πy(∀R.C, x) = ∀y.(∼R(x, y) t C(y)). The obtained predicate logic formulae
(with total negation) can now be translated into clauses in the standard way, i.e. by
first casting them into Skolem form [10], which are adjusted for total negation in the
straightforward way. To avoid the exponential blowup and to preserve the structure of
formulae, we also can apply the structural transformation [11] to ALC4 as used in [8].
To do this, we define the paraconsistent Definitorial Form PDef(·) of ALC4 concepts
as follows. Note that total negation should be used.

PDef(C) =
{ {C} if C is a literal concept,
{∼Q t C|p} ∪ PDef(C[Q]|p) if p is eligible for replacement in C.

where C|p to be the position p in concept C, as defined in [10, 8].

Proposition 3 For an ALC4 concept C in quasi-NNF, {> @ C} is four-valued
satisfiable iff {> @ PDef(Di) | Di ∈ PDef(C)} is.

Following the above transformations step by step, any ALC4 concept can be trans-
lated into a set of first order predicate logic clauses (with total negation) in polynomial
size of the original concepts. We denote by Cls(C) the set of clauses which is obtained
by the just mentioned transformation of C. These clauses are predicate logic formulae
(with total negation). We give an example.

Example 3 The concept ¬(∼A u ∃R.(∀S.C)) is translated as follows.

¬(∼A u ∃R.(∀S.C))
in quasi-NNF: ∼¬A t ∀R.(∃S.¬C)

in PDef: {∼¬A t ∀R.Q,∼Q t ∃S.¬C}
in predicate logic: {∼¬A(x) ∨ ∼R(x, y) ∨Q(y),∼Q(x) ∨ S(x, f(x)),

∼Q(x) ∨ ¬C(f(x))}
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Based on the transformation described above, we finally can translate an ALC4
ontology O into a set of predicate logic clauses (with total negation) Ξ(O) which is the
smallest set satisfying the following conditions:

– For each ABox axiom α in ABox, Cls(α) ⊆ Ξ(O)
– For each axiom C 7→ D, each axiom C @ D, and each axiom C → D in TBox,

Cls(¬C tD) ⊆ Ξ(O), Cls(∼C tD) ⊆ Ξ(O), and Cls(∼C tD,∼¬D t¬C) ⊆
Ξ(O), respectively.

Theorem 4 Let O be an ALC4 ontology. O is 4-valued satisfiable iff Ξ(O) is 4-
valued satisfiable.

3.2 Ordered Resolution with Selection Function O4DL for ALC4

Given any fixed orderingÂ on ground quasi-atoms which is total and well-founded, we
can obtain an ordering on sets of clauses in standard way as stated in [8]. By a slight
abuse of notation, we use Â also for ÂL and ÂC where the meaning is clear from the
context. For example, if ¬A Â A Â B Â ¬B Â D, then [∼]¬A Â [∼]A Â [∼]B Â
[∼]¬[∼]B Â [∼]D and ∼A ∨ ¬B ≺ ¬A ∨B ≺ ∼¬A ∨D.

By a selection function we mean a mapping S that assigns to each clauseC a (possi-
bly empty) multiset S(C) of literals with the prefix ∼ in C. For example, both {∼¬A}
and {∼¬A,∼D} can be selected in clause ∼¬A ∨ ∼D ∨B ∨ ¬C.

An ordered resolution step with selection function can now be described by the
Inference Rule and Factorization Rule as follows, respectively:

C ∨A D ∨ ∼B
Cσ ∨Dσ and

C ∨A ∨B
(C ∨A)σ

,

where

– σ = MGU(A,B) is the most general unifier of the quasi-atoms A,B, and C,D
are quasi-clauses.

– Aσ is strictly maximal in Cσ ∨Aσ, and no literal is selected in Cσ ∨Aσ;
– ∼Bσ is either selected in Dσ∨∼Bσ, or it is maximal in Dσ∨∼Bσ and no literal

is selected in Dσ ∨ ∼Bσ.

Theorem 5 (Soundness and Completeness of O4DL) Let N be an ALC4 knowl-
edge base. Then Ξ(N) `O4DL

¤ iff N is four-valued unsatisfiable.

Although the inference rules are different from those of ALC, we find that similar way
of the selection of the literal ordering and selection function still provide us a decision
procedure for ALC4.

– The literal ordering Â is defined such that R(x, f(x)) Â ∼C(x) and D(f(x)) Â
∼C(x), for all function symbols f , and predicates R, C, and D.

– The selection function selects every binary literal which is preceeded by ∼.

Theorem 6 (Decidability) For an ALC4 knowledge base KB, saturating Ξ(KB)
by O4DL decides satisfiability of KB and runs in time exponential in |KB|.
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4 Translating ALC4 to satisfiable Disjunctive Datalog

We should distinguish the total negation and paraconsistent negation during the trans-
lation, while there is only one kind of negation in [8]. As the translation from ALC to
disjunctive datalog, we can perform all inferences among nonground clauses first, after
which we can simply delete all nonground clauses containing function symbols. The
remaining clause set consists of clauses without function symbols [8].

Definition 4 For an extensionally reduced ALC ontology O, the function-free ver-
sion of ontology O is defined as follows:

FF(O) = λ(Γ (OT )) ∪ Γ (OA) ∪ {HU(a) | for each individual a occurring in O}

where Γ (OT ) is the set of clauses obtained by saturating Ξ(OT ) by O4DL and then
deleting all the clauses containing functions, and Γ (OA) is the set of clauses ob-
tained by saturating Ξ(OA) by O4DL. And for a clause C, λ(C) = C ∪ {∼HU(x) |
for each unsafe variable x in C} and λ(Σ) = {λ(C) | for each clause C in Σ}.

Note that the total negation is used in the λ operator. Next, we introduce following
definition to simplify the statement of the translation process.

Definition 5 All the literals in FF(O) are in one of the following cases:

– Pure positive literal which is just an atom (i.e., without neither paraconsistent nega-
tion nor total negation in front);

– Paraconsistent negative literal which is constructed by a pure positive literal with
the paraconsistent negation occurring in its front.

– Total negative literal which is constructed by a pure positive literal or a paracon-
sistent negative literal with the total negation occurring in its front.

By this definition and Definition 3, positive quasi-literals include both pure positive lit-
erals and paraconsistent negative literals, while total negative literals are very negative
quasi-literals. To give an example, let A(x) be an atom, then it is a pure positive lit-
eral, ¬A(x) is a paraconsistent negative literal, and ∼¬A(x),∼A(x) are total negative
literals.

Definition 6 The disjunctive datalog DD4(O) corresponding to an ontology O is
defined by moving in each clause from FF(O)

– each pure positive liter into the rule head;
– each paraconsistent negative literal into the rule head as well and replacing it with

a fresh atom simultaneously;
– each total negative literal into the rule body and replacing its quasi-atom part with

a fresh atom simultaneously.

If KB is not extensionally reduced, then DD(KB) = DD(KB’), where KB’ is an exten-
sionally reduced knowledge base obtained from KB in the standard way [8].
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From section 2.2, we can see that every ontologyO can become 4-valued satisfiable
after appropriate rewriting. That is, by 4-valued semantics, meaningful conclusions al-
ways can be derived from even a classically inconsistent ontology. The first claim of the
following theorem shows that DD4(O) is always consistent as well such that untrivial
answers can be returned from it.

Theorem 7 Let KB be an ALC4 ontology. Then, the following claims hold:

1. DD4(Õ) is always satisfiable for any ontology O, where Õ is the ontology defined
in Definition 1.

2. O |=4 α if and only if DD4(O) |=c α, where α is of the form A(a) or R(a, b), and
A is an atomic concept.

5 Conclusions

In this paper, we work out for how to translate an ALC4 ontology to a consistent set
of disjunctive datalog rules, such that meaningful consequences can be deduced from a
possible inconsistent ontology.

Considering the algorithm described in this paper, it is rather apparent that all the
benefits from the KAON2 system – like the ability to handle large ABoxes – can also
be achieved by the paraconsisent version of KAON2. We will further study the similar
paraconsistent approach for more complex DLs in the future work.
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Abstract. In this paper, we propose an approach for measuring inconsistency in
inconsistent ontologies. We first define the degree of inconsistency of an inconsis-
tent ontology using a four-valued semantics for the description logic ALC. Then
an ordering over inconsistent ontologies is given by considering their inconsis-
tency degrees. Our measure of inconsistency can provide important information
for inconsistency handling.

1 Introduction

Real knowledge bases and data for Semantic Web applications will rarely be perfect.
They will be distributed and multi-authored. They will be engineered by more or less
knowledgeable people and often be created automatically from raw data. They will be
assembled from different sources and reused. Consequently, it is unreasonable to expect
such realistic knowledge bases to be always logically consistent, and methods for the
meaningful handling of such knowledge bases are being sought for.

Inconsistency has often been viewed as erroneous information in an ontology, but
this is not necessarily the best perspective on the problem. The study of inconsistency
handling in Artificial Intelligence indeed has a long tradition, and corresponding results
are recently being transferred to description logics, which underly OWL.

There are mainly two classes of approaches to dealing with inconsistent ontologies.
The first class of approaches is to circumvent the inconsistency problem by applying
a non-standard reasoning method to obtain meaningful answers [1, 2] – i.e. to ignore
the inconsistency in this manner. The second class of approaches to deal with logical
contradictions is to resolve logical modeling errors whenever a logical problem is en-
countered [3, 4].

However, given an inconsistent ontology, it is not always clear which approach
should be taken to deal with the inconsistency. Another problem is that when resolv-
ing inconsistency, there are often several alternative solutions and it would be helpful
to have some extra information (such as an ordering on elements of the ontology) to
decide which solution is the best one. It has been shown that analyzing inconsistency is
? We acknowledge support by the German Federal Ministry of Education and Research (BMBF)

under the SmartWeb project (grant 01 IMD01 B), by the EU under the IST project NeOn
(IST-2006-027595, http://www.neon-project.org/), by the Deutsche Forschungsgemeinschaft
(DFG) in the ReaSem project, and by China Scholarship Council.
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helpful to decide how to act on inconsistency [5], i.e. whether to ignore it or to resolve
it. Furthermore, measuring inconsistency in a knowledge base in classical logic can
provide some context information which can be used to resolve inconsistency [6–8].

There are mainly two classes of inconsistency measures in classical logic. The first
class of measures is defined by the number of formulas which are responsible for an
inconsistency, i.e. a knowledge base in propositional logic is more inconsistent if more
logical formulas are required to produce the inconsistency [9]. The second class con-
siders the propositions in the language which are affected by the inconsistency. In this
case, a knowledge base in propositional logic is more inconsistent if more propositional
variables are affected by the inconsistency [6, 10]. The approaches belonging to the sec-
ond class are often based on some paraconsistent semantics because we can still find
models for inconsistent knowledge bases in paraconsistent logics.

Most of the work on measuring inconsistency is concerned with knowledge bases
in propositional logic. In [13], the authors generalized the work on measuring incon-
sistency in quasi-classical logic to the first-order case. However, it is not clear how
their approach can be implemented because there is no existing work on implementing
first-order quasi-classical logic.

At the same time, there are potential applications for inconsistency measures for
ontologies, as they provide evidence for reliability of ontologies when an inconsistency
occurs. In a scenario, where ontologies are merged and used together, such evidence
can be utilised to guide systems in order to arrive at meaningful system responses.

In this paper, we propose an approach for measuring inconsistency in inconsistent
ontologies. We first define the degree of inconsistency of an inconsistent ontology using
a four-valued semantics for description logic ALC. By analyzing the degree of incon-
sistency of an ontology, we can either resolve inconsistency if the degree is high (e.g.
greater than 0.7) or ignore it otherwise. After that, an ordering over inconsistent ontolo-
gies is given by considering their inconsistency degrees. We then can consider those
ontology which are less inconsistent and more reliable.

This paper is organized as follows. We first provide some basic notions in four-
valued description logic ALC in Section 2. Our measure of inconsistency is then given
in Section 3. Finally, we discuss related work and conclude the paper in Section 4.

2 Four-valued Models for ALC

We assume that readers are familiar with the description logic ALC [11]. An ALC
ontology is a pair (T ,A), where T is the set of class inclusions of the form C v D and
A is the set of individual assertions in the formsC(a) andR(a, b). We use LO to denote
the set of all concepts, roles and individuals used in O, and assume the cardinality of
LO is finite, which is acceptable for applications.We review the four-valued semantics
for ALC here, and see to [2] for details.

A four-valued interpretation (4-interpretation for short) is a pair I = (∆I , ·I) with
∆I as the domain, but ·I is a mapping which assigns to each concept C a pair 〈P,N〉
of subsets of ∆I , and each role R a pair 〈RP , RN 〉 of subsets of (∆I)2, such that
the conditions in Table 1 are satisfied, where proj+ and proj− are functions defined

404 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 405 — #415 i
i

i
i

i
i

Table 1. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P,N〉, where P,N ⊆ ∆I

R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

> 〈∆I , ∅〉
⊥ 〈∅,∆I〉

C1 u C2 〈proj+(CI
1 ) ∩ proj+(CI

2 ), proj−(CI
1 ) ∪ proj−(CI

2 )〉
C1 t C2 〈proj+(CI

1 ) ∪ proj+(CI
2 ), proj−(CI

1 ) ∩ proj−(CI
2 )〉

¬C (¬C)I = 〈N,P 〉, if CI = 〈P,N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

as follows: proj+〈P,N〉 = P, and proj+〈RP , RN 〉 = RP ; proj−〈P,N〉 = N, and
proj−〈RP , RN 〉 = RN .

Intuitively, the first element P (e.g. proj+(CI)) of the four-valued extension of a
concept C is the set of elements known to belong to the extension of C, while the sec-
ond element N (e.g. proj−(CI)) is the set of elements known to be not contained in the
extension ofC. The intuition is similar for the semantics of roles.In order to reason with
inconsistency, we are free of these constrains, thus forming four epistemic states of the
individual assertions under an interpretation: (1) we know the individual is contained,
(2) we know the individual is not contained, (3) we have contradictory information,
namely that the individual is both contained in the concept and not contained in the
concept, (4)we have no knowledge whether or not the individual is contained. Next, we
use the four truth values {t, f, >̈, ⊥̈} from Belnap’s four-valued logic [12], which de-
note truth, falsity, contradiction, and incompleteness, respectively, to distinguish them.

Definition 1 For instances a, b ∈ ∆I , concept name C, and role name R:

CI(a) = t, iff aI ∈ proj+(CI) and aI 6∈ proj−(CI),
CI(a) = f, iff aI 6∈ proj+(CI) and aI ∈ proj−(CI),
CI(a) = >̈, iff aI ∈ proj+(CI) and aI ∈ proj−(CI),
CI(a) = ⊥̈, iff aI 6∈ proj+(CI) and aI 6∈ proj−(CI),
RI(a, b) = t, iff (aI , bI) ∈ proj+(RI) and (aI , bI) 6∈ proj−(RI),
RI(a, b) = f, iff (aI , bI) 6∈ proj+(RI) and (aI , bI) ∈ proj−(RI),
RI(a, b) = >̈, iff (aI , bI) ∈ proj+(RI) and (aI , bI) ∈ proj−(RI),
RI(a, b) = ⊥̈, iff (aI , bI) 6∈ proj+(RI) and (aI , bI) 6∈ proj−(RI).

By the correspondence defined above, we can define a four-valued interpretation in
terms of Table 1 or Definition 1. That is, the four-valued extension of a concept C can
be defined either as a pair of subsets of a domain or by claiming the the truth values for
each CI(a), where a ∈ ∆I .
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Table 2. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
inclusion C1 7→ C2 ∆

I \ proj−(CI
1 ) ⊆ proj+(CI

2 )

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

As to the semantics of inclusion axioms, it is formally defined in Table 2 (together
with the semantics of concept assertions), which means that C v D is true under an
interpretation I if and only if for each individual which is not known to be not contained
in the extension of C, it must be known to belong to the extension of D.

We say that a four-valued interpretation I satisfies (a model of) an ontology O iff
I satisfies each assertion and each inclusion axiom in O. An ontology O is four-valued
satisfiable (unsatisfiable) iff there exists (does not exist) a model for O. In this paper,
we denoteM4(O) as the set of four-valued models of an ontology O.

For an inconsistent ontology, it doesn’t have classical two-valued models, but it may
have four-valued models. For example, I = 〈{a}, ·I〉, under which AI = 〈{a}, {a}〉 is
a model of the ontology whose ABox = {A(a),¬A(a)} and whose TBox is empty.
However, an ontology does not always have four-valued model if top and bottom con-
cepts are both allowed as concept constructors. Take T = {> v ⊥} for example. For
any four-valued interpretation I , >I = 〈∆I , ∅〉 and ⊥I = 〈∅,∆I〉. T has no four-
valued model since (∆I \ proj−〈>I〉) = ∆I 6⊆ proj+〈⊥I〉 = ∅, where ∆I 6= ∅ for
DL interpretations. So in this paper we only consider the inconsistency measure of an
inconsistent ontology which has no > and ⊥ as concept constructors. Note that this
assumption is relatively mild, as > can always be replaced by A t ¬A.

3 Inconsistency Measure

In this section, we use four-valued models of inconsistent ALC ontologies to measure
their inconsistency degrees.

Definition 2 Let I be a four-valued model of an ontology O with domain ∆I , the in-
consistency set of I for O, written ConflictOnto(I,O), is defined as follows:

ConflictOnto(I,O) = ConflictConcepts(I,O) ∪ ConflictRoles(I,O),

where ConflictConcepts(I,O) = {A(a) | AI(a) = >̈, A ∈ LO, a ∈ ∆I}, and
ConflictRoles(I,O) = {R(a1, a2) | RI(a1, a2) = >̈, R ∈ LO, a1, a2 ∈ ∆I}

Intuitively, ConflictOnto(I,O) stands for the set of conflicting atomic individual asser-
tions. To define the degree of inconsistency, we still need following concepts.

Definition 3 For the ontology O and a 4-valued interpretation I ,

GroundOnto(I,O) = GroundConcepts(I,O) ∪ GroundRoles(I,O),
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where GroundConcepts(I,O) = {A(a) | a ∈ ∆I , A ∈ LO} and GroundRoles(I,O) =
{R(a1, a2) | a1, a2 ∈ ∆I , R ∈ LO}
Intuitively, GroundOnto(I,O) is the collection of different atomic individual assertions.

In order to define the degree of inconsistency, we use an assumption that only inter-
pretations with finite domains are considered in this paper. This is reasonable in prac-
tical cases because only finite individuals can be represented or would be used. This is
also reasonable from the theoretical aspect because ALC has finite model property —
that is, if an ontology is consistent and within the expressivity of ALC, then it has a
classical model whose domain is finite.

Definition 4 The inconsistency degree of an ontology w.r.t. a model I ∈ M4(O),
denote IncI(O), is a value in [0, 1] calculated in the following way:

IncI(O) =
|ConflictOnto(I,O)|
|GroundOnto(I,O)|

That is, The inconsistency degree of O w.r.t. I is the ratio of the number of conflicting
atomic individual assertions divided by the amount of all possible atomic individual as-
sertions ofO w.r.t. I . It measures to what extent a given ontology contains inconsistency
w.r.t. I .

Example 5 Consider Ontology O = (T ,A), where T = {A v B u ¬B},A =
{A(a)}. A model of O is as follows: I1 = (∆I1 , ·I1), where ∆I1 = {a}, AI1(a) = t,
and BI1(a) = >̈. For this model, GroundOnto(I1, O) = {A(a), B(a)}, and B(a) is
the unique element in ConflictOnto(I1, O). Therefore, IncI1(O) = 1

2 .

In [13], it has been shown that for a fixed domain, not all the models need to be
considered to define an inconsistency measure because some of them may overestimate
the degree of inconsistency. Let us go back to Example 5.

Example 6 (Example 5 Continued) Consider another model I2 of O: I2 = (∆I2 , ·I2),
where ∆I2 = {a}, AI2(a) = >̈, BI2(a) = >̈. I1 and I2 share a same domain. Since
|ConflictOnto(I2, O)| = |{B(a), A(a)}| = 2, we have I1 ≤Incons I2 by Definition
7. This is because ·I2 assigns contradiction to A(a). However, A(a) is not necessary
a conflicting axiom in four-valued semantics. Therefore, we conclude that IncI2(O)
overestimates the degree of inconsistency of O.

We next define a partial ordering onM4(O) such that the minimal elements w.r.t.
it are used to define the inconsistency measure for O.

Definition 7 (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-valued
models of ontology O such that |∆I

1| = |∆I
2|, we say the inconsistency of I1 is less than

or equal to I2, written I1 ≤Incons I2, if and only if IncI1(O) ≤ IncI2(O).

The condition |∆I1 | = |∆I2 | in this definition just reflects the attitude that only models
with the same cardinality of domain are comparative. As usual, I1 <Incons I2 denotes
I1 ≤Incons I2 and I2 6≤Incons I1, and I1 ≡Incons I2 denotes I1 ≤Incons I2 and
I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more consistent than I2.

The model ordering w.r.t. inconsistency is used to define the preferred models.
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Definition 8 Let O be a DL-based ontology and n(n ≥ 1) be a given cardinality,
the preferred models w.r.t ≤Incons of size n, written PreferModeln(O), are defined as
follows:

PreferModeln(O) = {I | |∆I | = n;∀I ′ ∈M4(O), |∆I′ | = n implies I ≤Incons I ′}
That is, PreferModeln(O) is the set of models of size nwhich are minimal w.r.t≤Incons.

The following theorem says that the cardinality of a domain is critical for measuring
the inconsistency degree of an ontology, while the element differences can be ignored.

Theorem 9 Let O be an ontology and n(≥ 1) be any given positive integer. Suppose
I1 and I2 are two four-valued models of O such that |∆I1 | = |∆I2 | = n, {I1, I2} ⊆
PreferModeln(O). The following equation always holds:

IncI1(O) = IncI2(O).

For simplicity of expression, we say an interpretation is well-sized if and only if
the cardinality of its domain is equal to or greater than the number of individuals in
O. Because of the unique name assumption of DL ALC, an interpretation can be a
model only if it is well-sized. Moreover, the following theorem asserts the existence of
preferred models among the well-sized interpretations.

Theorem 10 For any given ALC ontology O without concepts > and ⊥ in the lan-
guage, the preferred models among well-sized interpretations always exist.

Above we consider the inconsistency degrees of an ontology w.r.t. its four-valued
models, especially the preferred models. Now we define an integrated inconsistency
degree of an ontology allowing for different domains.

Definition 11 Given an ontology O and an arbitrary cardinality n(n ≥ 1), let In be
an arbitrary model in PreferModelsn(O). The inconsistency degree sequence of O, say
OntoInc(O), is defined as 〈r1, r2, ..., rn, ...〉, where rn = ModelInc(In, O) if In is well-
sized. Otherwise, let rn = ∗. We use ∗ as a kind of null value.

From theorem 9 and 10, the following property holds obviously.

Proposition 12 AssumeO is an inconsistent ontology andOntoInc(O) = 〈r1, r2, ...〉,
and N is the number of individuals of O, then

ri =
{ ∗ if 0 < i < N,
ri 6= ∗ and ri > 0 if i ≥ N.

This proposition shows that for an ontology, its inconsistency measure cannot be a
meaningless sequence — that is, each element is the null value ∗. Moreover, the non-
zero values in the sequence starts just from the position which equals to the number of
individuals in the ontology, and remains greater than zero in the latter positions of the
sequence.As for an example, we first measure an extreme inconsistent ontology.

Example 13 O = {C t ¬C v C u ¬C}. O is inconsistent. Obviously, for any four-
valued model I = 〈∆I , ·I〉 of O, C is assigned to 〈∆I ,∆I〉, so OntoInc(O) =
{1, 1, ...}.
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After the inconsistency degree is defined for each ontology, we can use it to com-
pare two ontologies one of which is less inconsistent. The ordering over inconsistent
ontologies is defined as follows:

Definition 14 Given two ontologies O1 and O2. Suppose OntoInc(O1) = 〈r1, r2, ...〉
and OntoInc(O2) = 〈r′1, r′2, ...〉. We say O1 is less inconsistent than O2, written
O1 ¹Incons O2, iff

rn ≤ r′n, for all n ≥ max{k, k′},
where k = min{i : ri 6= ∗}, k′ = min{j : r′j 6= ∗}.
According to proposition 12,¹Incons is well-defined. In Definition 14, we compare the
values from the position at which both sequences have non-null values because the null
value ∗ cannot reflect useful information about the inconsistency of the ontology.

To compare two ontologies with respect to the ordering ¹Incons, by Definition
14, we have to compare two infinite sequences, which is practically very hard. When
designing an algorithm to compare two ontologies, we can set a termination condi-
tion in order to guarantee that an answer will be obtained. Suppose time (resource) is
used up and 〈r1, ..., rn〉 and 〈r′1, ..., r′m〉 are the already obtained partial sequences of
OntoInc(O) and OntoInc(O′), respectively. Then we can say that O is approximatively
less inconsistent than O′, denotes by O -Incons O′, if and only if ri ≤ r′i for all
1 ≤ i ≤ min{m,n}.
Example 15 (Example 5 continued) Each preferred model I of O must satisfy that
(1) it assigns one and only one individual assertion in {B(a), A(a)} to contradictory
truth value >̈ — that is, BI(a) = >̈ and A(a) = t, or BI(a) = t and A(a) = >̈;
(2) it assigns other grounded assertions to truth values among the set {t, f, ⊥̈}. So
|ConflictOnto(I,O)| = 1. Consequently, OntoInc(O) = { 1

2 ,
1
4 , ...,

1
2n , ...}.

Suppose O1 = {A v B u ¬B,A v C,A(a)}. In its preferred models, the in-
dividual assertions related to C are not involved with contradictory truth value, so
OntoInc(O1) = { 1

3 ,
1
6 , ...,

1
3n , ...}. By definition 14, O1 ≺Incons O, which means that

O1 has less inconsistency percent than O does.

4 Related Work and Conclusion

To the best of our knowledge, this paper is the first work which can distinguish descrip-
tion logic based ontologies in many levels considering their different inconsistency de-
grees instead of only 0/1. In this paper, we mainly spells out forALC. The extension to
more expressive languages is direct by extending four-valued semantics for them.

Our work is closely related to the work of inconsistency measuring given in [13],
where Quasi-Classical models (QC logic [14]) are used as the underlying semantics. In
this paper, we use four-valued models for description logics as the underlying seman-
tics. This is because QC logic needs to translate each formula in the theory into prenex
conjunctive normal form (PCNF). We claim that this is not practical, especially for a
large ontology, because it may be quite time consuming and users probably do not like
their ontologies to be modified syntactically. In this paper, we can see that four-valued
models also provide us with a novel way to measure inconsistent degrees of ontologies.
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It is also apparent that the inconsistency measure defined by our approach can be used
to compute each axiom’s contribution to inconsistency of a whole ontology by adapt-
ing the method proposed in [8], thereby providing important information for resolving
inconsistency in an ontology.

In [13], every set of formulae definitely has at least one QC model because neither
the constant predicate t (tautology) nor the constant predicate f (false) is contained
in the language. However, corresponding to t and f , the top concept > and bottom
concept ⊥ are two basic concept constructors for ALC. This requirement leads to the
possible nonexistence of four-valued models of an ALC ontology. Due to the space
limitation, we presume that the ontologies do not use > and ⊥ as concept constructors.
The discussion for an arbitrary inconsistent ontology will be left as future work.

For practical implementations, we suggest that a termination condition be used.
In the further work, we will work on some guidance on selecting such a termination
condition and on how to measure the trade-off between early termination and accuracy.

For the implementation of our approach, we are currently working on the algorithm,
which will be presented in a future paper.
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Abstract. The Chemical Formulation Problem (Compounding Problem) con-
sists in modifying the chemical formulation of a compound in order to obtain
a new compound showing a set of desired performances. This paper presents a
computational model for the Compounding Problem based on the interpretation
of transformation actions on the compound structures as ABox updates. Possi-
ble transformations of the compounds are defined as transitions of a Labelled
Transition System (LTS), and the Compounding Problem has been defined as a
Heuristic Search Problem. In order to reduce the complexity of the search space
the paper presents an approach based on: (i) the representation of the ontologi-
cal constraints on the compounds’ structure in a TBox, and the representation of
compound formulations as ABoxes. (ii) The representation of the transitions of
a LTS as a set of actions producing updates on ABoxes; (iii) the definition of an
algorithm to check ABox consistency with respect to a specific axiom schema in
order to prune inconsistent branches of the search space.

1 Introduction

The Chemical Compound Formulation Problem (Compounding Problem) consists in
modifying the chemical formulation of a chemical compound in order to obtain a new
compound showing a set of desired performances. Reasoning on the structural and be-
havioral change dynamics of chemical compounds is a very hard combinatorial prob-
lem, even when a small number of chemical elements are taken into account. In fact, al-
though there are a number of mathematical methods for computational chemistry based
on quantitative and micro-level physical representations exist, their computational cost
grows largely with the complexity of the investigated substances [1]. For this reasons it
is challenging to overcome the computational intractability of the quantitative, mathe-
matical, compound representations, exploring a higher-level qualitative approach to the
Compounding Problem. This approach is based on the elicitation of the knowledge in-
volved in the practice of experts working in the field. According to a mereological point
of view, a compound is a blend of atomic chemical ingredients in various proportions
(its “formulation”), where each ingredient is chosen according to its different chemical
and physical properties. This perspective on chemical compounds has been supported
by repeated observations of expert practices, and can be naturally supported by an on-
tological representation based on DL; DL formulas provide a tool to specify both the
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ontological boundaries of the domain (TBox) and the representations of specific com-
pounds (ABox). Within this perspective, the structural representation of compounds
and their components need to be connected with their representation in terms of perfor-
mances and behavior, on the basis of which a compound is chosen.

The computational model is defined as a product of n possible labelled transition
systems (LTSs), each representing the domain entities at a given level of representa-
tion, and a set of morphisms between the LTSs. The states of each LTS are ABoxes
representing compound formulations, while transitions are compound transformation
actions. Morphisms establish relations between the different levels of representation in
order to associate, e.g. a set of performance parameters to a structural representation of
the chemical compound. Three representational dimensions are particularly relevant for
a number of different industrial compounds (e.g. drugs, rubber compounds, and so on):
(i) the structural dimension - a list of ingredients together with their quantity; (ii) the
behavioral dimension - a description of the outcomes of artificial lab tests, and (iii) the
teleological dimension - a description of the outcomes of tests conducted in the final
application environment.

An instance of a Compounding Problem consists in acting on a specific LTS in order
to obtain a compound fulfilling the requirements specified at other levels of the repre-
sentation. Given the morphisms between the three levels introduced above, our goal is
to produce changes on the structural level in order to meet the requirements specified
at the behavioral level and at the teleological level. This problem can be easily inter-
preted as a Planning Problem within the Heuristic Search paradigm [2]: the structural
representation of the given compound is the initial state, transitions represent possible
actions and the goal test is defined on the behavioral and teleological representation as-
sociated to compounds; however, the great number of actions that is possible to take on
every compound drastically boosts the branching factor compromising the feasibility of
the algorithmic approach.

The computational effort that is needed to explore this structure can be significantly
reduced by pruning the branches producing non admissible states, according to onto-
logical criteria. A compound formulation can be considered ontologically consistent if
it does not violate domain specific constraints imposed on its mereological composi-
tion. Our approach consists therefore in: (i) representing the ontological constraints on
the compounds’ structure in a TBox and the compounds structure in a ABox; (ii) repre-
senting the structural-level LTS as a set of actions producing updates on ABoxes; (iii)
formally define the notion of admissible action according to notion of ABox satisfiabil-
ity; (v) define an algorithm to check ABox satisfiability with respect to a specific axiom
schema in order to prune inconsistent branches of the search space.

The present computational model, developed in the context of a project made in
collaboration with the Business Unit Truck of Pirelli Tires [3], led to the design of a
system for the automatically resolution of chemical formulation problems in the indus-
trial domain of rubber compounds for tires [4]. In this paper we focus on the DL-related
aspects of our approach, and in particular on the interpretation of compound transfor-
mations as ABox updates, and on the algorithm for checking consistency of the updates;
while for further details about the implementation of the search algorithm we refer to
[4]. The next section presents the axioms defining the ontological integrity conditions
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for a chemical rubber compound formulation at the structural level. Section 3 further
describes the heuristic search space based on DL descriptions. Section 2 describes the
interpretation of the LTS transitions as ABox updates, and introduces the algorithm for
the ABox updates consistency checking. Concluding remarks end the paper.

2 TBox and ABox in the compounding knowledge scenario

For a comprehensive description of the TBox we refer to [5, 6]. In the following, we
present some core aspects of our ontological representation in the domain of tread rub-
ber compounding. The following formulas are expressed in the SIQ DL under Unique
Name Assumption. Let ≺ be a primitive role standing for “is a functional part of”; ≺
is a “composed” part-of relation in the sense of [7] (i.e. a part-of relation that is both
integral and functional). In particular, ≺ is not reflexive, not symmetric, and not transi-
tive. It is useful to introduce the inverse role “has functional part” (�) as � .=≺−. The
axioms in the structural-level TBox guarantee that if a model exists, then the model
describes the structure of a compound devoted to the production of tire in the industrial
field of interest.
TreadCompound ≡ Compound u (= 1 � .PolymericMatrix)

u (= 1 � .Vulcanization)

u (= 1 � .ProcessAid) u (= 1 � .Antidegradant)

u (= 1 � .ReinforcingFiller)

u ((≥ 0 � .Softener) u (≤ 1 � .Softener))

It is standard that a rubber compound devoted to tread tire production is made of at least
five essential systems [8]: (1) the PolymericMatrix; (2) the Vulcanization
system; (3) the ProcessAid; (4) the Antidegradant; (5) the ReinforcingFiller1.
PolymericMatrix ≡ System u (= 100 � .(NaturalRubber t ButadieneRubber))

Vulcanization ≡ System u ((≥ 1 � .Sulphur) u (≤ n � .Sulphur))

u ((≥ 1 � .(GroundElement u hasFamilyName.Accellerant))

u (≤ m � .(GroundElement u hasFamilyName.Accellerant)))

u ((≥ 2 � .ZincOxide) u (≤ p � .ZincOxide))

u ((≥ 2 � .StearicAcid) u (≤ p � .StearicAcid))

The PolymericMatrix is a system having 100 parts as a blend of natural and syn-
thetic rubber or, alternatively, 100 parts of natural or synthetic rubber alone. Parts of
the Vulcanization system are the Sulphur, the Oxide Zinc and the Stearic Acid in
a predefined quantity. A vulcanization system contains a given quantity of a element in
the family of the Accellerant.

ButadieneRubber ≡GroundElement u (= 1 ≺ .PolymericMatrix)

u hasStructure.(Cis t Trans) u hasFamilyName.Polymer

u hasMolecularWeight.NumericalValue

1 Since the syntax of SIQ does not admit individuals in the TBox; the m,n, p symbols of
the following formulas are interpreted as placeholders for appropriate integers according to
specific compounding domains.
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ButadieneRubber is a ground element and an exclusive part of the polymeric ma-
trix system. Butadiene rubber, that is member of the family of Polymers, is character-
ized by having a specific configuration (Cis or a Trans), and a molecular weight.

Descriptions of specific compounds are represented by means of ABox assertions.
Concept atoms in the ABoxes are all defined names of the TBox. Structural-level repre-
sentation of compounds is completely represented by the mereological role assertions
in the ABox, i.e. the assertions in the ABox concerning the � and ≺ roles between the
domain individuals. Moreover, the ABox specifies the quantity of all the ingredients
available for a given compounding process2.

3 The heuristic search space

Within a Heuristic Search paradigm, the compound formulations (ABoxes) represent
the states, while the transitions are interpreted as admissible transformation actions of
these formulations. The state space is defined as a product of LTSs.

Definition 1 (Labelled Transition System). A labelled transition system Γ is a struc-
ture 〈S, i, Λ,→〉, where (i) S is a set of states, with initial state i, (ii) Λ is a set of labels,
and (iii) →⊆ S × Λ × S is a ternary relation of labeled transitions. If p, q ∈ S and
α ∈ Λ, then (p, α, q) ∈→.

If the states of the LTSs are represented by sets of ABox assertions, the transitions
between these states (quantity increase and reduction, and substitution actions) that
define compound transformation actions can be viewed as ABox update operations.
Let θ be a transformation action whose effect is to increase the quantity of a given
ingredient3.

Definition 2 (Increase Transformation Action). Given a LTS S = 〈S, i, Λ,→〉, and
a state s ∈ S, let As be the ABox associated to s. Let As contain a set of assertions
of the form � (sysi,ingj), where sysi and ingj are individuals respectively of the
classes i and j, with i v System and j v GroundElement, and j is a base symbol
in the definition of the concept i. A transition θi,j ∈ {→} is an increase transformation
action for a given ingredient iff its application θi,jAs returns an updated ABox As′ =
As ∪ � (sysi,ing’j), where ingj 6= ing’j .

Once the levels of representation have been chosen and the respective LTSs have
been defined, the problem solving knowledge can be formally represented by means
of two morphisms, mapping states to states and transitions to transitions of the differ-
ent systems. Morphisms codify expert causal knowledge linking structural transforma-
tions on the compound to behavioral and teleological ones; they forecast the behavioral
and teleological effects of a structural transformation (e.g. a quantity increase of Silica
worsens the abrasive and resistance behaviors).

2 Ingredients can be intuitively considered as chemical “bricks” with a proper name, where a
brick is a fixed quantity of a given chemical substance.

3 The transformation actions of quantity reduction and substitution of chemicals have been de-
fined as ABox updates in a similar way.
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A morphism Γ → Γ ′ between transition systems can be introduced as a pair (σ, λ),
where σ is a function on states, preserving initial states, and λ is a partial function λ
on the transition labels. The morphism maps a transition of Γ to a transition of Γ ′: if
(p, α, q) is a transition in Γ then (σ(p), λ(α), σ(q)) is a transition in Γ ′ provided that
λ(α) is defined. Provided the suitable constraints on the transitions by means the in-
troduced morphisms, the definition of the product of n labelled transition systems is as
usual [9]. Suppose that the states s = 〈c, l, h〉 and s′ = 〈c′, l′, h′〉 are elements of a
product of three LTSs (where, c stands for compound structure, l for low-level behav-
iors and h for high-level performances). Let τ = (σ, λ), τ ′ = (σ′, λ′) are compounding
morphisms such that σ(c) = l and σ′(l) = h; these morphisms represent that a com-
pound structure c is associated to specific compound behaviors l and performances h.
Morphisms are necessarily given as inputs of the compounding problem. Then, the
application of the transition λi to s (creating a new state s′) is generated by the applica-
tion of a structural transformation action λC : C → C (mapping compound structures
to compound structures) such that λC(c) = c′. But the application of λC leads to a
partial state 〈c′, l, h〉 that is not well defined. In order to obtain a well defined state s′,
representing a feasible solution of the compounding problem, morphisms are exploited
applying the transformations associated to λC to obtain the other involved dimensions
(l′ and h′). Formally, the notion of “well defined transition” is introduced as follows:

Definition 3 (Well Defined Transition). Given the compounding morphisms τ, τ ′, two
states s = 〈c, l, h〉 and s′ = 〈c′, l′, h′〉 in the product, and a structural transformation
action λC . The triple (s, λi, s′) is a well defined transition, written (s, λi, s′) ∈→, iff
λC(c) = c′, τ(c′) = l′ and τ ′(l′) = h′. The state components l′ and h′ are obtained
by mapping the transition λC to appropriate transitions λL and λH . In particular, if
τ(c) = l, and λC(c) = c′, then there exists a state l′ such that λL(l) = l′, for some
λL = τ(λC), with τ(c′) = l′.

4 The compounding actions as ABox updates

Let us start with an example of update concerning the reinforcing filler system. Let T be
a TBox containing only the following terminological axiom (stating that a reinforcing
filler system must contain at least one and at most two parts of carbon black):

ReinforcingFiller v System u ((≥ 1 � .CarbonBlack)

u (≤ 2 � .CarbonBlack))

Let s be a state of the LTS associated to T . The following set of assertions A is a
fragment (that takes into account the composition of the reinforcing filler system) of the
complete description of a compound formulation: {ReinforcingFiller(rf0a01),

CarbonBlack(cb0a01),CarbonBlack(cb0a02),CarbonBlack(cb0a03),

� (rf0a01,cb0a01),� (rf0a01,cb0a02)}.
Let θ be a transformation action whose effect is to increase the quantity of the

carbon black contained in the reinforcing filler system. Considered as an ABox update,
the application of θ to A, written θA, returns the ABox A′ where
A′ = A ∪ {� (rf0a01, cb0a03)}. Let M be an interpretation that satisfies A w.r.t.
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T (M is said to be a model of A w.r.t. T ). In order to compute the consistency of the
updated ABox A′, the existence of a model M′ of A′ w.r.t. to T has to be checked.
Given the semantics of the cardinality constraint in T , the example shows that a similar
model does not exists: the insertion of � (rf0a01, cb0a03) produces the violation of
the at most cardinality constraint in T .

The above example can be generalized in order to define an algorithmic procedure
that check consistency of an ABox update w.r.t. to an invariant TBox for compounding.
The algorithm is aimed at checking consistency of updates that consist in insertion and
deletion of mereological individual assertions (i.e. the assertions involving ≺ and �
roles). This assumption covers all the relevant cases of ABox updates of our model for
chemical compound formulation. In order to achieve the generalization, we define the
notions of compounding TBox and of compounding ABox.

A TBox T is said to be a compounding TBox iff it contains a set of axioms with the
following syntactic form:

CCOMP ≡ Compound u (= 1 � .CSY S1)

. . .

u (= 1 � .CSY Sn)

u ((≥ 0 � .CSY Sn+1) u (≤ 1 � .CSY Sn+1))

. . .

u ((≥ 0 � .CSY Sn+m) u (≤ 1 � .CSY Sn+m))

CSY S ≡ System u ((≥ min1 � .CING1) u (≤ max1 � .CING1))

. . .

((≥ minn � .CINGn) u (≤ maxn � .CINGn))

CING ≡ GroundElement u (= 1 ≺ .CSY Sj )

u (f1.C1) u · · · u (fs.Cs)

In the above formula schema,CCOMP , CSY S , CING1 , . . . , CINGn
are concept names

for compounds, systems and ingredients respectively, and minj ,maxj are variable for
integers with minj ≤ maxj for 1 ≤ j ≤ n. The scheme can be instantiated in a num-
ber of different cardinality constraint axioms, fixing the quantity minj , and maxj of
a specific set of ingredient CING1 , . . . , CINGn a given functional system CSY Si must
contain.

For all the systems CSY Si
that are relevant for a given compounding problem, and

all the available chemicals CINGi
, let A be an ABox containing assertions of the fol-

lowing forms:

CCOMP (compound),CSY Si(sys), CING1(ing11
), . . . ,CING1(ing1j

)

. . .

CINGn(ingn1
), . . . ,CINGn(ingnj′ )

where sys and ing are variable names for individuals. The assertions inA define what
are the available systems and chemicals that could be parts of the compound. Given a
specific compounding domain, we assume that all the ABoxes involved in the process
contain an identical set of such assertions. During the compounding process, the system
can take a quantity increase for an ingredient in the compound, or a substitution of an

416 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 417 — #427 i
i

i
i

i
i

ingredient with a different one of the same family, but it cannot generate new chem-
icals from scratch. Therefore, the ABoxes differ only with respect to the compound
formulations they describe. An ABox A is said to be a compounding ABox iff it con-
tains a suitable set of axioms with the above syntactic form, plus a set of axioms like:
� (compound,sys), and � (sys,ing) for all systems and ingredients that participate
to a given compound.

Given a compounding TBox T and a compounding ABox A, and an interpretation
I = 〈∆, ·I〉 that is a model of A w.r.t. T , the algorithm computes if the application
of an increase transformation action θ generates an updated ABox A′ that is consistent
w.r.t. T 4.
INPUT: (i) a TBox T , an ABox A, an interpretation I such that I |= A and I |= T ;
(ii) an Increase Transformation Action θ.
OUTPUT: a satisfiable knowledge base K = 〈T ,A′〉, where A′ = θA, or ERROR.

1. If θ is an Increase Transformation Action and
θA = A′, A′ = A ∪ {� (sys,ingjn)}, for some system sys and ingredient
ingjn of the family j, with {CSY S(sys), INGj(ingj)} ⊂ A then

2. for each m, α := � (sys,ingjm), with α ⊂ A, n 6= m and
β := CSY S v System u ((≥ minj � .CINGj

) u (≤ maxj � .CINGj
)), with

β ⊂ T
3. if countOccurrence(α,A) = a and a ≥ minj and a ≤ maxj then
K = 〈T ,A′〉 is satisfiable else ERROR.

5 Concluding remarks and future work

The number of results about reasoning techniques and algorithms for ontology updat-
ing is still poor, and the update of ontological KBs remains a promising and challenging
field of research [10–12]. Our work exploited the notion of model of an ABox, once the
intensional level of the knowledge base has been specified. This means that, given an
ABox, the consistency check is always performed with respect to a TBox that we as-
sumed to be invariant. Even if the result of [11] forALC, is naturally inherited by SIQ,
we tried to define an algorithmic procedure to perform reasoning, e.g. the consistency
check for updated ABoxes w.r.t. a TBox, outside the logic itself.

In the context of the P-Truck Project, a specific experimental campaign has been de-
vised and encouraging results have been obtained from the application of several search
algorithms (namely A*, IDA*, Iterative Expansion and Branch and Bound) to a state
space defined and implemented according to the present knowledge model. The algo-
rithm for the consistency check of the ABox updates, has produced a significantly re-
duction of the expansion rate of the space, and an automatic system has been developed
and tested on a significant number of prototypical chemical compounding problems
(e.g. the problem of increasing the Tread Tear Resistance, the problem of increasing the
Rolling Resistance, together with a reduction of the Wet Handling, and the maintenance
of all the remaining performances) [13]. Future developments of our work are aimed at
a complete generalization of the introduced computational model, in order to define an
ABox updating algorithm for arbitrary DL-based mereological KBs.

4 We proceeded in a similarly way for reduction and substitution transformation actions.
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A Hypertableau Calculus for SHIQ

Boris Motik, Rob Shearer, and Ian Horrocks

University of Manchester, UK

Abstract. We present a novel reasoning calculus for the Description
Logic SHIQ. In order to reduce the nondeterminism due to general
inclusion axioms, we base our calculus on hypertableau and hyperres-
olution calculi, which we extend with a blocking condition to ensure
termination. To prevent the calculus from generating large models, we
introduce “anywhere” pairwise blocking. Our preliminary implementa-
tion shows significant performance improvements on several well-known
ontologies. To the best of our knowledge, our reasoner is currently the
only one that can classify the original version of the GALEN terminology.

1 Introduction

Modern Description Logic reasoners, such as Pellet [10], FaCT++ [15], and
RACER [5], are typically based on tableau calculi [1, Chapter 2], which demon-
strate (un)satisfiability of a knowledge base K via a constructive search for an
abstraction of a model of K. Despite numerous optimizations of the tableau
procedure, ontologies are still encountered in practice that cannot be handled
by existing systems. This is mainly because many different models might need
to be examined, and each model might be very large [1, Chapter 3]. The for-
mer problem is due to or-branching : given a disjunctive assertion C tD(s), a
tableau algorithm nondeterministically guesses that either C(s) or D(s) holds.
To show unsatisfiability of K, every possible guess must lead to a contradiction:
if assuming C(s) leads to a contradiction, the algorithm must backtrack and
assume D(s). This can clearly result in exponential behavior. GCIs—axioms of
the form C v D—are the main source of disjunctions: to ensure that C v D
holds, a tableau algorithm adds a disjunction ¬C t D(s) to each individual s
in the model. Various absorption optimizations [1, Chapter 9][7, 14] reduce the
high degree of nondeterminism in such a procedure; however, they often fail to
eliminate all sources of nondeterminism. This may be the case even for ontologies
that can be translated into Horn clauses (such as GALEN, NCI, and SNOMED),
for which reasoning without any nondeterminism should be possible in principle.

The size of the model being constructed is determined by and-branching—
the expansion of a model due to existential quantifiers. Apart from memory
consumption problems, and-branching can increase or-branching by increasing
the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources
of complexity. We focus on the DL SHIQ; however, our calculus should be
applicable to most DLs with known tableau algorithms. A SHIQ knowledge
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base is first preprocessed into DL-clauses—universally quantified implications
containing DL concepts and roles as predicates. The main inference rule for DL-
clauses is hyperresolution: an atom from the head of a DL clause is derived only if
all atoms from the clause body have been derived. On Horn clauses, this calculus
is deterministic, which eliminates all or-branching. Our algorithm can be viewed
as a hybrid of resolution and tableau, and is related to the hypertableau [2] and
hyperresolution [12] calculi.

Hyperresolution decides many first-order fragments (see, e.g., [4, 3] for an
overview). Unlike most of these fragments, SHIQ allows for cyclic GCIs of the
form C v ∃R.C, on which hyperresolution can generate infinite paths of succes-
sors. Therefore, to ensure termination, we use the pairwise blocking technique
from [6] to detect cyclic computations. Due to hyper-inferences, the soundness
and correctness proofs from [6] do not carry over to our calculus. In fact, certain
simpler blocking conditions for weaker DLs cannot be applied in a straightfor-
ward manner in our setting. To limit and-branching, we extend the blocking
condition from [6] to anywhere pairwise blocking : an individual can be blocked
by an individual that is not necessarily an ancestor. This significantly reduces
the sizes of the constructed models.

We have implemented our calculus in a new reasoner. Even with a relatively
näıve implementation, our system outperforms existing reasoners on several real-
world ontologies. For example, the deterministic treatment of GCIs significantly
reduces the classification time for the NCI ontology. Furthermore, the pairwise
anywhere blocking strategy seems to be very effective in limiting model sizes.
To the best of our knowledge, our reasoner is currently the only one that can
classify the original version of the GALEN terminology.

2 Algorithm Overview

To see how GCIs can increase or-branching and thus cause performance prob-
lems, consider the following knowledge base K1:

T1 = {∃R.A v A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)}(1)

To satisfy the GCI, a tableau algorithm derives (∀R.¬A tA)(ai), 0 ≤ i ≤ n and
(∀R.¬A tA)(bj), 1 ≤ j ≤ n. Assuming that ai are processed before bj , the al-
gorithm derives ∀R.¬A(ai), 0 ≤ i ≤ n and ¬A(bi), 1 ≤ i ≤ n, after which it de-
rives ∀R.¬A(bi), 1 ≤ i ≤ n− 1 and ¬A(ai), 1 ≤ i ≤ n. The ABox now contains
a contradiction on an, so the algorithm flips its guess on bn−1 to A(bn−1). This
generates a contradiction on bn−1, so the algorithm backtracks from all guesses
for bi. Next, the guess on an is changed to A(an) and the work for all bi is re-
peated. This also leads to a contradiction, so the algorithm must revise its guess
for an−1; but then, two guesses are again possible for an. In general, after revis-
ing a guess for ai, all possibilities for aj , i < j ≤ n, must be reexamined, which
results in exponential behavior. Note that none of the standard backtracking op-
timizations [1, Chapter 9] help us avoid this problem. Namely, the problem arises
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because the order in which the individuals are processed makes the guesses on ai
independent from the guesses on aj , i 6= j. It is difficult to estimate in advance
which order is optimal; in fact, the processing order is typically determined by
implementation side-effects (such as the data structures used to store K).

The GCI ∃R.A v A is not inherently nondeterministic: it is equivalent to
the Horn clause ∀x, y : [R(x, y) ∧A(y)→ A(x)]. By hyperresolution, we derive
the facts A(bn), A(an−1), . . . , A(a0), and eventually we drive a contradiction on
a0. These inferences are deterministic, so we can conclude that K1 is unsatis-
fiable without any backtracking. This example suggests that the way tableau
algorithms handle GCIs can be “unnecessarily” nondeterministic.

Absorption [1, Chapter 9] reduces the nondeterminism introduced by GCIs.
If possible, it rewrites GCIs as B v C with B an atomic concept; then, during
reasoning, it derives C(s) only if the ABox contains B(s). This localizes the
applicability of the rewritten GCIs. Absorption has been extended to binary
absorption [7], which rewrites a GCI to B1 uB2 v C, and to role absorption [14],
which rewrites a GCI to ∃R.> v C. Note, however, that the axiom ∃R.A v A
cannot be absorbed directly. It can be absorbed if it is rewritten as A v ∀R−.A.
In practice, it is often unclear in advance which combination of transformation
and absorption techniques will yield the best results. Therefore, implemented
absorption algorithms are guided primarily by heuristics.

Our algorithm can be seen as a generalization of absorption. It first trans-
lates GCIs into DL-clauses—universally quantified implications of the form∧
Ui →

∨
Vj , where Ui are of the form R(x, y) or A(x), and Vj are of the form

R(x, y), A(x), ∃R.C(x), > nR.C(x), or x ≈ y. DL-clauses are used in hyperres-
olution inferences, which derive some Vj , but only if all Ui are matched to asser-
tions in the ABox. This calculus is quite different from the standard DL tableau
calculi. For example, it has no choose-rule for qualified number restrictions [13],
and it can handle implications such as R(x, y)→ B(x) ∨A(y) (obtained from
∃R.¬A v B) that contain several universally quantified variables.

It is easy to see that and-branching can cause the introduction of infinitely
many new individuals. Consider the following (satisfiable) knowledge base K2:

T2 =
{
A1 v > 2S.A2, . . . , An−1 v > 2S.An, An v A1,
Ai v (B1 t C1) u . . . u (Bm t Cm) for 1 ≤ i ≤ n

}
A2 = {A1(a)}(2)

To check satisfiability of K2, a tableau algorithm builds a binary tree with each
node labeled with some Ai and an element of Π = {B1, C1} × . . .× {Bm, Cm}.
A näıve algorithm would try to construct an infinite tree, so tableau algorithms
employ blocking [6]: if a node a is labeled with the same concepts as some ancestor
a′ of a, then the existential quantifiers for a are not expanded. This ensures
termination; however, the number of elements in Π is exponential, so, with
“unlucky” guesses, the tree can be exponential in depth and doubly exponential
in total. In the best case, the algorithm can, for example, choose Bj rather than
Cj for each 1 ≤ j ≤ m. It then constructs a polynomially deep binary tree and
thus runs in exponential time.

To curb and-branching, we extend pairwise blocking [6] to anywhere pairwise
blocking, in which an individual can be blocked not only by an ancestor, but by
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any individual satisfying certain ordering requirements. This reduces the worst-
case complexity of the algorithm by an exponential factor; for example, on K2,
after we exhaust all members of Π, all subsequently created individuals will be
blocked. Such blocking can sometimes also improve the best-case complexity; for
example, on K2 our algorithm can create a polynomial path and then use the
individuals from that path to block their siblings.

3 The Satisfiability Checking Algorithm

Our algorithm consists of two phases: preprocessing and inferencing.

3.1 Preprocessing

The goal of the preprocessing phase is to transform a SHIQ knowledge base
into a normalized ABox (in which all concept assertions are of the form B(s)
or > nR.B(s) and all role assertions involve only atomic roles), and a collection
of DL-clauses, which we denote as Ξ(K) in the rest of this paper. We omit the
details of the transformation due to lack of space; the complete algorithm is
described in [9] and illustrated here by example.

Our calculus does not deal with transitive roles, so we transform the SHIQ
knowledge base into an equisatisfiable ALCHIQ knowledge base using the well-
known encoding described in [8, Section 5.2]. The next problem is that concepts
in ALCHIQ axioms can occur under implicit negation. We make negation ex-
plicit by moving all concepts to the right-hand side of the implication and putting
all concepts into negation-normal form. For example, the axiom

∃R.(C uD) v ∃S.(E t F )(3)

is rewritten as follows:

> v ∀R.(¬C t ¬D) t ∃S.(E t F )(4)

It is well known that näıve clausification of ALCHIQ axioms would result in
exponential blowup. We instead apply a variant of the well-known structural
transformation [11], which replaces complex concepts with new names and in-
troduces new axioms to define these names. Our goal, however, is to obtain
Horn DL-clauses whenever possible. As discussed in [9], if we are not careful
the structural transformation can destroy the Horn-ness of an axiom. Therefore,
we modify the transformation to replace a complex concept C with either A or
¬A, where A is a fresh atomic name. The polarity of the replacement concept
is chosen such that the axiom that defines the replacement will not introduce
additional nondeterminism into the final clause set; this condition is detected
by analyzing the structure of literals within the replaced concept. Applying our
structural transformation to (4) gives us the following axioms:

> v ∀R.¬Q1 t ∃S.Q2(5)
¬Q1 v ¬C t ¬D(6)
Q2 v E t F(7)
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Without complex subexpressions or implicit negation, the transformation to DL-
clauses is straightforward. Universal restrictions are rewritten using their first-
order-logic interpretations; e.g. ∀R.C is rewritten as ¬R(x, y) ∨ C(y). Negated
atoms are then moved to the antecedent of the DL-clause, and positive atoms
are moved to the consequent. The DL-clauses derived from (3) are as follows:

R(x, y) ∧Q1(y)→ ∃S.Q2(x)(8)
C(x) ∧D(x)→ Q1(x)(9)

Q2(x)→ E(x) ∨ F (x)(10)

3.2 The Hypertableau Calculus for DL-Clauses

We now present our hypertableau calculus for deciding satisfiability ofA ∪Ξ(K).

Definition 1. Unnamed Individuals. For a set of named individuals NI , the
set of all individuals NX is inductively defined as NI ⊆ NX and, if x ∈ NX ,
then x.i ∈ NX for each integer i. The individuals in NX \NI are unnamed. An
individual x.i is a successor of x, and x is a predecessor of x.i; descendant and
ancestor are the transitive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is of
the form A, > nR.A, or > nR.¬A, for A an atomic concept. The label of an
individual s and of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = {C | C(s) ∈ A and C is a blocking-relevant concept}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NX
containing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s.
By induction on ≺, we assign to each individual s in A a status as follows:

– s is directly blocked by an individual s′ iff both s and s′ are unnamed, s′ is
not blocked, s′ ≺ s, LA(s) = LA(s′), LA(t) = LA(t′), LA(s, t) = LA(s′, t′),
and LA(t, s) = LA(t′, s′), for t and t′ the predecessors of s and s′, resp.

– s is indirectly blocked iff its predecessor is blocked.
– s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
of the form R(t, t.i), R(t.i, t), C(t.i), u ≈ t.i, and u 6≈ t.i, where t is either s or
some descendant of s, i is an integer, and u is an arbitrary individual.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing
the individual s with the individual t in all assertions.

Derivation Rules. Table 1 specifies derivation rules that, given an ABox A
and a set of DL-clauses Ξ(K), derive the ABoxes A1, . . . ,An. In the Hyp-rule,
σ is a mapping from NV to the individuals occurring in A, and σ(U) is the atom
obtained from U by replacing each variable x with σ(x).

Derivation. For a normalized ALCHIQ knowledge base K = (R, T ,A), a
derivation is a pair (T, λ) where T is a finitely branching tree and λ is a function
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Table 1. Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ Ξ(K),
2. a mapping σ : NV → NA exists, for NA the set of individuals in A,
3. σ(Ui) ∈ A for each 1 ≤ i ≤ m,
4. σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then if n = 0, then A1 = A ∪ {⊥},
otherwise Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n.

≥-rule

If 1. > nR.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such that
{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,

then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh pairwise distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A and

2. s 6= t
then A1 := mergeA(s→ t) if t is named or if s is a descendant of t,

A1 := mergeA(t→ s) otherwise.

⊥-rule
If 1. s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A and

2. ⊥ 6∈ A
then A1 := A ∪ {⊥}.

ar(R, s, t) =


R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

that labels the nodes of T with ABoxes such that ( i) λ(ε) = A for ε the root of
the tree, and ( ii) for each node t, if one or more derivation rules are applicable
to λ(t) and Ξ(K), then t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are
the result of applying one (arbitrarily chosen) applicable rule to λ(t) and Ξ(K).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

In [6], the successor relation is encoded using role arcs, which point only
from predecessors to successors. Since our ABoxes contain only atomic roles,
role arcs can point in both directions, so we encode the successor relation in
the individuals. The ordering ≺ ensures that there are no cyclic blocks, so all
successors of nonblocked individuals have been constructed. Ancestor pairwise
blocking from [6] is obtained if ≺ is exactly the descendant relation.

Pruning prevents infinite loops of merge-create rule applications—the so-
called “yo-yo” effect. Intuitively, merging ensures that no individual “inherits”
successors through merging. In [6], the successors are not physically removed,
but are marked as “not present” by setting their edge labels to ∅. This has
exactly the same effect as pruning.

The relationship between our new calculus and knowledge base satisfiability
is given by the following theorem:

Theorem 1. A SHIQ knowledge base K is satisfiable if and only if each deriva-
tion from K′ = Ξ(K) contains a leaf node t such that λ(t) is clash-free; further-
more, the construction of each such derivation terminates.
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Table 2. Results of Performance Evaluation

Ontology HT HT-anc Pellet FaCT++ Racer

NCI 8 s 9 s 44 min 32 s 36 s
GALEN original 44 s — — — —

GALEN simplified 7 s 104 s — 859 s —

4 Implementation

Based on the calculus from Section 3, we have implemented a prototype DL
reasoner.1 Currently, it can only handle Horn DL-clauses—our main goal was
to show that significant performance improvements can be gained by exploiting
the deterministic nature of many ontologies.

To classify a knowledge base K, we run our algorithm on Ki = K ∪ {Ci(ai)}
for each concept Ci, obtaining an ABox Ai. If D(ai) ∈ Ai and D(ai) was de-
rived without making any nondeterministic choices, then K |= Ci v D. Since our
test ontologies are translated to Horn DL-clauses on which our algorithm is de-
terministic, D(ai) ∈ Ai iff K |= Ci v D. Thus, we can classify K with a linear
number of calls to our algorithm. This optimization is also applicable in standard
tableau calculi; the nondeterministic handling of GCIs, however, diminishes its
value. We also developed an optimization of anywhere blocking which caches the
signatures of unblocked nodes in completed models and uses them as blocking
candidates in new models; full details can be found in [9].

Table 2 shows the times that our reasoner, Pellet 1.3, FaCT++ 1.1.4, and
Racer 1.9.0 take to classify our test ontologies. To isolate the improvements
due to each of the two innovations of our algorithm, we evaluated our system
with anywhere blocking (denoted as HT), as well as with ancestor blocking [6]
(denoted as HT-anc). All ontologies are available from our reasoner’s Web page.

NCI is a relatively large (about 23000 atomic concepts) but simple ontology.
FaCT++ and RACER can classify NCI in a short time mainly due to an opti-
mization which eliminates many unnecessary tests, and the fact that all axioms
in NCI are definitional so they are handled efficiently by absorption. We con-
jecture that Pellet is slower by two orders of magnitude because it does not use
these optimizations, so it must deal with disjunctions.

GALEN has often been used as a benchmark for DL reasoning. The original
version of GALEN contains about 2700 atomic concepts and many GCIs similar
to (2). Most GCIs cannot be absorbed without any residual nondeterminism.
Thus, the ontology is hard because it requires the generation of large models with
many nondeterministic choices. Hence, GALEN has been simplified by removing
273 axioms, and this simplified version of GALEN has commonly been used
for performance testing. As Table 2 shows, only HT can classify the original
version of GALEN. In particular, anywhere blocking prevents our reasoner from
generating the same fragments of a model in different branches.

1 http://www.cs.man.ac.uk/~bmotik/HermiT/
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5 Conclusion

In this paper, we presented a novel reasoning algorithm for DLs that com-
bines hyper-inferences to reduce the nondeterminism due to GCIs with anywhere
blocking to reduce the sizes of generated models. In future, we shall extend our
reasoner to handle disjunction and conduct a more comprehensive performance
evaluation. Furthermore, we shall investigate the possibilities of optimizing the
blocking condition and heuristically guiding the model construction to further
reduce the sizes of the models created. Finally, we shall try to extend our ap-
proach to the DLs SHOIQ and SROIQ, which provide the logical underpinning
of the Semantic Web ontology languages.
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Expressive Querying over Fuzzy DL-Lite
Ontologies(∗)

Jeff Z. Pan1, Giorgos Stamou2, Giorgos Stoilos2, and Edward Thomas1

1 Department of Computing Science, University of Aberdeen, AB24 3UE, UK

2 Department of Computer Science, National & Technical Univ. of Athens,
Zographou 15780, GR

Abstract. Fuzzy Description Logics (f-DLs) have been proposed as for-
malisms capable of capturing and reasoning about imprecise and vague
knowledge. The last years, research in Description Logics, and also in f-
DLs, is largely focused on the development of languages where complexity
of query answering is as efficient as query answering in data bases. One
such example is the DL-Lite language and its fuzzy extension f-DL-Lite.
In the current paper we present various a variety of query languages by
which we can query a fuzzy DL-Lite knowledge base. Then, we present
a prototype implementation for querying f-DL-Lite ontologies.

1 Introduction

Recently there have been quite a few work on DL-based fuzzy ontology lan-
guages [11, 9, 10, 8, 12], which have been proposed as formalisms capable of cap-
turing and reasoning about imprecise and vague knowledge. In particular, Strac-
cia [12] extended the DL-Lite ontology language [2], which enables highly efficient
query answering procedures, to fuzzy DL-Lite. He showed that conjunctive query
answering in f-DL-Lite is quite similar to query answering in crisp DL-Lite, al-
though some technical details like top-k answering and a modification on the
knowledge base consistency algorithm of crisp DL-Lite need to be considered.

In this paper, we propose two novel query languages, which provide one with
different ways on querying fuzzy DL-Lite ontologies. More precisely, we allow
the users to specify threshold queries and general fuzzy queries. Comparing with
Straccia’s query language, the threshold query language is flexible as it allows
one to specify a threshold for each query atom (such as “tell me e-shops that
are popular [with degrees at least 0.8] and sell good books [with degrees at least
0.9]”), while the general fuzzy query language is a general form of Straccia’s
query language. Furthermore, we present algorithms for answering these queries
and report implementations as well as preliminary but encouraging evaluation
based on the ONTOSEARCH2, which is a query engine for both DL-Lite and
fuzzy DL-Lite.

(∗) This extended abstract is accompanied with an online technical report
(http://www.ontosearch.org/TR/f-DL-Lite.pdf), which contains more details in-
cluding algorithms and the proofs.
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2 f-DL-Lite

In the current section we will briefly introduce the fuzzy DL-Lite (which we call
f-DL-Lite) language [12], which extends DL-Lite core with fuzzy assertions of the
forms B(a) ≥ n,R(a, b) ≥ n, where B is basic class, R is a property, a and b are
individuals and n is a real number in the range [0, 1]. We assume that the reader
is familiar with DL-Lite; in a different case [1, 2] are the standard sources. We
only remind the form of conjunctive queries which we will use in the following.
A conjunctive query (CQ) q is of the form

q(X)← ∃Y .conj(X,Y ) (1)

where q(X) is called the head, conj(X,Y ) is called the body, X are called the
distinguished variables, Y are existentially quantified variables called the non-
distinguished variables, and conj(X,Y ) is a conjunction of atoms of the form
A(v), R(v1, v2), where A, R are respectively named classes and named properties,
v, v1 and v2 are individual variables in X and Y or individual names in O. The
semantics of f-DL-Lite ontologies is defined in terms of fuzzy interpretations
[11]. A fuzzy interpretation is a pair I = (∆I , ·I) where the domain ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps:

– an individual a to an element of aI ∈ ∆I ,
– a named class A to a membership function AI : ∆I → [0, 1], and
– a named property R to a membership function RI : ∆I ×∆I → [0, 1].

Using the fuzzy set theoretic operations [6], fuzzy interpretations can be extended
to interpret f-DL-Lite class and property descriptions. Following Straccia [12],
we use the Lukasiewicz negation, c(a)=1-a and the Gödel t-norm for interpreting
conjunctions, t(a, b) = min(a, b). The semantics of f-DL-Lite class and property
descriptions, and f-DL-Lite axioms are depicted in Table 1. Given the above
semantics, it is obvious that crisp assertions B(a), R(a, b) are special forms of
fuzzy assertions where n = 1.

Syntax Semantics

∃R (∃R)I(o1) = sup
o2∈∆I

{RI(o1, o2)}
¬B (¬B)I(o) = 1−BI(o)

C1 u C2 (C1 u C2)
I(o) = t(CI1 (o), CI2 (o))

R− (R−)I(o2, o1) = RI(o1, o2)
B v C ∀o ∈ ∆I , BI(o) ≤ CI(o)
Func(R) ∀o1 ∈ ∆I , ]{o2 | RI(o1, o2) > 0} = 1
B(a) ≥ n BI(aI) ≥ n
R(a, b) ≥ n RI(aI , bI) ≥ n

Table 1. Semantics of f-DL-Lite class and property descriptions, and f-DL-Lite axioms
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3 Querying f-DL-Lite Ontologies

In this section, we introduce two query languages for f-DL-Lite ontologies. The
first language extends conjunctive queries with thresholds for atoms in queries.
This is motivated by the extension of the instance checking problem which con-
siders a single fuzzy assertion. The second language is a general fuzzy query
language, which is a general form of query languages, such as the fuzzy thresh-
old query language and the query language proposed in [12].

3.1 Two New Query Languages

Threshold Queries As noted in [1] in DL-Lite the instance checking problem is a
special case of conjunctive queries. Since f-DL-Lite extends DL-Lite with fuzzy
assertions, it would be natural for a query language to allow users to specify fuzzy
assertions for atoms in queries. Thus, we define conjunctive threshold queries
(CTQ) which extend atoms A(v), R(v1, v2) in conjunctive queries of the form
(1) into the following forms A(v) ≥ t1, R(v1, v2) ≥ t2, where t1, t2 ∈ (0, 1] are
thresholds.

Example 1. We can query models who are tall with a degree no less than 0.7
and light with a degree no less than 0.8 with the following conjunctive threshold
query:

q(v)← Model(v) ≥ 1,Tall(v) ≥ 0.7, Light(v) ≥ 0.8.

It is obvious that threshold queries are more flexible than queries of the form (1)
in that users can specify different thresholds for different atoms in their queries.

Formally, given an f-DL-Lite ontology O, a conjunctive threshold query qT
and an evaluation [X 7→ S], we say O entails qT (denoted as O |=T qT ) if every
interpretation I of O satisfies the following condition: for each atom A(v) ≥
t1 (R(v1, v2) ≥ t2) of qT , we have AI(v)X 7→S ≥ t1 (resp. RI(v1, v2)X 7→S ≥ t2).
In this case, S is called a solution of qT . A disjunctive threshold query (DTQ)
is a set of conjunctive threshold queries sharing the same head.

General Fuzzy Queries Since f-DL-Lite associates assertions with degrees of
truth, another useful feature for its query language is to associate degrees of truth
with answers in answer sets of queries over f-DL-Lite ontologies. In threshold
queries, an evaluation [X 7→ S] either satisfies the query entailment or not;
hence, answers of such queries are crisp. In this subsection, we introduce general
fuzzy queries which allow fuzzy answers. Syntactically, general fuzzy conjunctive
queries (GFCQ) extend the atoms A(v), R(v1, v2) of conjunctive queries of the
form (1) into ones with the following form A(v) : k1, R(v1, v2) : k2, where k1, k2 ∈
(0, 1] are degrees. These syntactic extensions are similar with the ones proposed
for fuzzy-SWRL in [8]. Thus, the existential quantifier is interpreted as sup, while
we leave the semantics of the conjunction (G) and that of the degree-associated
atoms (a) open. To simplify the presentation of the semantics, we use a unified
representation atomi(v̄) for atoms in general fuzzy conjunctive queries.
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Given an f-DL-Lite ontology O, an interpretation I of O, a general fuzzy con-
junctive query qF and an evaluation [X 7→ S], the degree of truth of qF under
I is d = sup

S′∈∆I×...×∆I
{Gni=1 a(ki, atom

I
i (v̄)[X 7→S,Y 7→S′])}, where ki ( 1 ≤ i ≤ n)

and atomi are as mentioned above, G is the semantic function for conjunc-
tions and a is the semantic function for degree-associated atoms. S : d is called
a candidate solution of qF . When d > 0, S : d is called a solution of qF .
Furthermore, the semantic functions should satisfy the following condition: If
atomIi (v̄)[X 7→S,Y 7→S′] = 0 for all possible S′, d = 0.

A general fuzzy disjunctive query (GFDQ) is a set of general fuzzy conjunc-
tive queries sharing the same head. The disjunction is interpreted as the s-norm
(u) of disjuncts. In what follows, we give some example of the semantic functions
for conjunctions and degree-associated atoms.

1. Fuzzy threshold queries: If we use t-norms (t) as the semantic function for
conjunctions and R-implications (ωt) as the semantic function for degree-
associated atoms, we get fuzzy threshold queries, in which the degree of
truth of qF under I is d = sup

S′∈∆I×...×∆I
{tni=1 ωt(ki, atom

I
i (v̄)[X 7→S,Y 7→S′])}.

Given some S′, if for all atoms we have atomIi (v̄)[X 7→S,Y 7→S′] ≥ ki, since
ωt(x, y) = 1 when y ≥ x [6], we have d = 1; this corresponds to threshold
queries introduced earlier.

2. Straccia’s query language [12]: It is a special case of fuzzy threshold query
language, where all ki = 1. Since ωt(1, y) = y [6], the degree of truth of qF
under I is d = sup

S′∈∆I×...×∆I
{tni=1 atom

I
i (v̄)[X 7→S,Y 7→S′]}.

3. Fuzzy aggregation queries: if we use fuzzy aggregation functions [6], such as
G(x) =

∑n
i=1 xi, for conjunctions and a(ki, y) = ki∑n

i=1 ki
∗ y as the seman-

tic function for degree-associated atoms, we get fuzzy aggregation queries, in

which the degree of truth of qF under I is d = sup
S′∈∆I×...×∆I

∑n
i=1 ki∗atomI

i (v̄)[X 7→S,Y 7→S′]∑n
i=1 ki

.

4. Fuzzy weighted queries: If we use generalised weighted t-norms as the se-
mantic function for conjunction, we get fuzzy weighted queries, in which
the degree of truth of qF under I is d = sup

S′∈∆I×...×∆I
{minni=1 u(k − kit(k,

atomIi (v̄)[X 7→S,Y 7→S′]))}, where k = maxni=1 ki and u is a t-conorm (fuzzy
union). The main idea of this type of queries is that they provide an aggre-
gation type of operation, on the other hand an entry with a low value for a
low-weighted criterion should not be critically penalized. Moreover, lowering
the weight of a criterion in the query should not lead to a decrease of the
relevance score, which should mainly be determined by the high-weighted
criteria. For more details see [3].

3.2 Query Answering

This sub-section provides algorithms to answer the two kinds of queries (pre-
sented in the previous sub-section) over f-DL-Lite ontologies.
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Algorithms for answering queries in f-DL-Lite mainly consist of four steps
(like the algorithm for crisp DL-Lite [1]): (i) normalisation of the set T of the
class axioms of O by the procedure Normalise(T ), which returns the normalised
set T ′ of class axioms; (ii) normalisation and storage of the set A of individual
axioms in O by the procedure Store(A) that normalise A and returns the re-
lational database DB(A) of A, as well as checking the consistency of O by the
procedure Consistency(O, T ′); (iii) reformulation of the input query q against
the normalised set T of the class axioms by the procedure PerfectRef(q, T ′),
which returns a set Q of (conjunctive) queries; (iv) transformation of the set Q
of (conjunctive) queries into SQL queries by the procedure SQL(Q), as well as
the evaluation of SQL(Q) by the procedure Eval(SQL(Q), DB(A)).

Answering Threshold Queries Given an f-DL-Lite ontology O, a conjunctive
threshold query qT , the procedure AnswerT(O, qT ) computes the solutions of qT
w.r.t. O, following the above steps (i) - (iv).

Algorithm A-1: AnswerT(O,
qT )

1: T = Class-Axioms(O)
2: T ′ = Normalise(T ) //normalisation of

class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation

and storage of individual axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is incon-

sistent
7: end if
8: return Eval(SQLT(PerfectRefT(qT ,T ′)),

DB(A))

Algorithm A-2: SQLT(Q)

1: QS := ∅
2: for every query q in Q do
3: sc:=Select-Clause(q) //construct

the select-clause of q
4: fc:=From-Clause(q) //construct the

from-clause of q
5: wc1:=WC-Binding(q) //construct

the part of the where-clause about
binding

6: wc2:=WC-Threshold(q) //construct
the part of the where-clause that re-
lates to thresholds

7: QS := QS∪Construct-SQL(sc,fc,wc1,wc2)
8: end for
9: return QS

Theorem 1. Let O be an f-DL-Lite ontology, qT a conjunctive threshold query
and S a tuple of constants. S is a solution of qT w.r.t. O iff S ∈ AnswerT(O, qT ).

See the online TR(∗) for detailed explanations of the algorithms A-1 and A-2, as
well as the proof of Theorem 1.

Answering General Fuzzy Queries Similarly, given an f-DL-Lite ontology O, a
general fuzzy conjunctive query qF , the procedure AnswerF(O, qF ) computes the
solutions of qF w.r.t. O.
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Algorithm A-3: AnswerF(O, qF , a,
G)

1: T = Class-Axioms(O)
2: T ′ = Normalise(T ) //normalisation of

class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation

and storage of individual axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is incon-

sistent
7: end if
8: q = Remove-Degrees(qF ) //q is trans-

formed from qF by removing the de-
grees from qF

9: return Cal(qF ,EvalSQL(PerfectRef(q,
T ′)),DB(A)), a, G)

Algorithm A-4: Cal(qF , SS, a,G)

1: ANS := ∅
2: for every tuple S ∈ SS do
3: ANS := ANS∪ Cal-

Soln(qF , S, a,G) //Calculate the so-
lution S : d based on the semantic
functions a and G

4: end for
5: return ANS

Theorem 2. Let O be an f-DL-Lite ontology, qF a general fuzzy conjunctive
query and S : d a pair of a tuple of constants together with a truth degree, a a se-
mantic function for conjunctions and G a semantic function for degree-associated
atoms. S : d is a solution of qF w.r.t. O iff (S : d) ∈ AnswerF(O, qF ,a,G).

See the online TR(∗) for detailed explanations of the algorithms A-3 and A-4, as
well as the proof of Theorem 2.

4 Implementation and Evaluation

The fuzzy DL-Lite knowledge base was implemented by extending the DL-Lite
knowledge base system used in ONTOSEARCH2 [7]. In ONTOSEARCH2 we
slightly extend SPARQL to make fuzzy queries. In this section, we mainly focus
on the evaluations of the performance. Please refer to the online TR (∗) for more
details of the fuzzy extension of SPARQL.

We evaluated the performance of our system by modifying the Lehigh Uni-
versity Benchmark [5] to include fuzzy concepts, and restricted the semantic
complexity of the underlying ontology to that of DL-Lite. This allowed us to
create data sets of arbitrary size. Comparative benchmarking was performed
with ONTOSEARCH2, this is a non-fuzzy implementation of DL-Lite which
allowed us to determine the overhead of a fuzzy query compared to a normal
DL-Lite query. We added two fuzzy concepts to the ontology, “Busy” and “Fa-
mous”. The first of these was determined by the number of courses taught or
taken by a member of staff or student, the second is determined by the number of
papers published. The values are calculated using the s-shaped curve functions
kf (n) to calculate the fuzzy value for fame given n papers published, and kb(n)
to calculate the fuzzy value for busyness given n courses taken:

kf (n) = 2
1+exp(−0.1n) − 1 kb(n) = 2

1+exp(−0.4n) − 1

For GFCQs the we used a summation operation for a, a multiplication oper-
ation for G giving a semantics of weights.
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To test the system we created dl-lite datasets containing 1, 10 and 50 univer-
sities, and processed these to include the fuzzy concepts described above. Two
queries were created, the first simple instance retrieval of all “Famous” members
of staff. In CTQ form this had a threshold of ≥ 0.5 in GFCQ form the query
returned all staff members in order of Fame, and in DL-Lite form, this query
simply returned all members of staff. The second query found all busy students
which were taught by famous members of staff. The CTQ returned all students
with a busyness ≥ 0.5 who were taught by staff with fame ≥ 0.5, the GFCQ
returned a list of students sorted by a weight function based on their business
and the fame of any members of staff who taught them, the DL-Lite query sim-
ply returned a list of all students who were taught by any member of staff. The
results are shown in 2.

Table 2. Results of the fuzzy Lehigh University Benchmark queries

Query T [1] (ms) T [10] (ms) T [50] (ms)

CTQ-1 179 536 1061
GFCQ-1 220 683 1887
DL-Lite-1 152 422 891
CTQ-2 532 845 2922
GFCQ-2 520 973 3654
DL-Lite-2 494 892 2523

The performance of the fuzzy reasoner is in all cases close to the performance
of the crisp case reasoner for query answering. With small data sets, it is has
almost identical performance, particularly on more complex queries. As more
data must be evaluated, the performance drops slightly.

5 Conclusion and Outlook

DL-based fuzzy ontology languages have attracted much attention the last years.
That is mainly due to the fact that compared to other fuzzy formalisms, fuzzy
ontology languages provide an expressive and yet efficient way to perform rea-
soning over a fuzzy knowledge. In this paper, we report on evaluations of efficient
conjunctive query answering over fuzzy DL-Lite ontologies.

Although there have been quite a few work on fuzzy SQL, such as [4], the
closest work to ours is Straccia’s work on f-DL-Lite [12], since DL-Lite itself
goes beyond relational databases. Our paper builds on Straccia’s work [12], to
further propose two new expressive query languages accompanied with query
answering algorithms over f-DL-Lite not proposed in [12]. The first one is a
simple generalization of the instance checking (entailment) problem for fuzzy
DLs, while the second one consists of a very expressive fuzzy query language
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which goes beyond traditional conjunctive queries used in [12]. Actually this
query language can work as a framework and by giving different semantics to
its parts we can create different fuzzy query languages. Finally, our preliminary
evaluations indicate that the performance of the fuzzy query engine is at least
in many cases close to the performance of the crisp query engine.
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Abstract. Possibilistic logic provides a convenient tool for dealing with
inconsistency and handling uncertainty. In this paper, we propose pos-
sibilistic description logics (DLs) as an extension of description logics.
We give semantics and syntax of possibilistic description logics. Two
kinds of inference services are considered in our logics and algorithms
are provided for them. These algorithms are implemented using KAON2
reasoner.

1 Introduction

Dealing with uncertainty in the Semantic Web has been recognized as an im-
portant problem in the recent decades. Two important classes of languages for
representing uncertainty are probabilistic logic and possibilistic logic. Arguably,
another important class of language for representing uncertainty is fuzzy set
theory or fuzzy logic. Many approaches have been proposed to extend descrip-
tion logics with probabilistic reasoning, such as approaches reported in [14, 12,
10]. These approaches can be classified according to ontology languages, the
supported forms of probabilistic knowledge and the underlying probabilistic rea-
soning formalism. The work on fuzzy extension of ontology languages has also
received a lot of attention (e.g., [16]). By contrast, there is relatively few work
on combining possibilistic logic and description logic.

Possibilistic logic [5] or possibility theory offers a convenient tool for handling
uncertain or prioritized formulas and coping with inconsistency. It is very pow-
erful to represent partial or incomplete knowledge [4]. There are two different
kinds of possibility theory: one is qualitative and the other is quantitative. Qual-
itative possibility theory is closely related to default theories and belief revision
[7, 3] while quantitative possibility can be related to probability theory and can
be viewed as a special case of belief function [8].

The application of possibilistic logic to deal with uncertainty in the Semantic
Web is first studied in [13] and is then discussed in [6]. When we obtain an
ontology using ontology learning techniques, the axioms of the ontology are often
attached with confidence degrees and the learned ontology may be inconsistent
[11]. In this case, possibilistic logic provides a flexible framework to interpret the
confidence values and to reason with the inconsistent ontology under uncertainty.
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However, there exist problems which need further discussion. First, there is no
formal definition of the semantics of possibilistic description logics. The semantic
extension of possibilistic description logic is not trivial because we need negation
of axioms to define the necessity measure from a possibility distribution. Second,
there is no implementation of possibilistic inference in description logics.

In this paper, we discuss possibilistic extension of description logics. Both
syntax and semantics of possibilistic description logics are provided in Section
3. The inference services in possibilistic description logics are also given. After
that, we provide algorithms for implementing reasoning problems in Section 4.
Finally, we conclude this paper in Section 5.

We assume that the reader is familiar with description logics and refer to the
description logic handbook [1] for more details.

2 Possibilistic Logic

Possibilistic logic [5] is a weighted logic where each classical logic formula is
associated with a number in (0, 1]. Semantically, the most basic and impor-
tant notion is possibility distribution π: Ω → [0, 1], where Ω is the set of all
classical interpretations. π(ω) represents the degree of compatibility of inter-
pretation ω with available beliefs. From possibility distribution π, two mea-
sures can be determined, one is the possibility degree of formula φ, defined
as Π(φ) = max{π(ω) : ω |= φ}, the other is the necessity or certainty degree of
formula φ, defined as N(φ) = 1−Π(¬φ).

At syntactical level, a possibilistic formula is a pair (φ, α) consisting of a
classical logic formula φ and a degree α expressing certainty or priority 1. A
possibilistic knowledge base is the set of possibilistic formulas of the form B =
{(φi, αi) : i = 1, ..., n}. The classical base associated with B is denoted as B∗,
namely B∗ = {φi|(φi, αi) ∈ B}. A possibilistic knowledge base is consistent iff
its classical base is consistent.

Given a possibilistic knowledge base B and α∈(0, 1], the α-cut (strict α-cut)
of B is B≥α = {φ∈B∗|(φ, β)∈B and β≥α} (B>α = {φ∈B∗|(φ, β)∈B and β>α}).
The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{αi :
B≥αi is inconsistent}.

There are two possible definitions of inference in possibilistic logic.

Definition 1. Let B be a possibilistic knowledge base.

– A formula φ is said to be a plausible consequence of B, denoted by B`Pφ,
iff B>Inc(B) ` φ.

– A formula φ is said to be a possibilistic consequence of B to degree α, denoted
by B`π(φ, α), iff the following conditions hold: (1) B≥α is consistent, (2)
B≥α`φ, (3) ∀β>α, B≥β 6` φ.

1 In possibilistic logic, the weight of a possibilistic formula (φ, a) can be also considered
as possibility degree of the formula. However, in most applications of possibilistic
logic, we often consider the weight as certainty degree.
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3 Possibilistic Description Logics

In this section, we define the semantics and syntax of possibilistic DLs and
inference problems of it. We do not specify the underlying DL language, which
can be any (decidable) description logic.

3.1 Syntax

The syntax of possibilistic DL is based on the syntax of classical DL. A possi-
bilistic axiom is a pair (φ, α) consisting of an axiom φ and a weight α∈(0, 1]. A
possibilistic RBox (resp., TBox, ABox) is a finite set of possibilistic axioms (φ, α),
where φ is an RBox (resp., TBox, ABox) axoim. A possibilistic DL knowledge
base B = (R, T ,A) consists of a possibilistic RBox R, a possibilistic TBox T
and a possibilistic ABox A. We use R∗ to denote the classical DL axioms associ-
ated with R, i.e., R∗ = {φi : (φi, αi)∈R} (T ∗ and A∗ can be defined similarly).
The classical base B∗ of a possibilistic DL knowledge base is B∗ = (R∗, T ∗,A∗).
A possibilistic DL knowledge base B is said to be inconsistent if and only if its
classical base B∗ is inconsistent.

Given a possibilistic DL knowledge base B = (R, T ,A) and α∈(0, 1], the α-
cut of R is R≥α = {φ∈B∗|(φ, β)∈R and β≥α} (the α-cut of T and A, denoted
as T≥α and A≥α, can be defined similarly). The strict α-cut of R (resp., T , A)
can be defined similarly as the strict cut in possibilistic logic. The α-cut (resp.,
strict α-cut) of B is B≥α = (R≥α, T≥α,A≥α) (resp., B>α = (R>α, T>α,A>α)).
The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{αi :
B≥αi is inconsistent}.

We use the following example as a running example throughout this paper.

Example 1. Suppose we have a possibilistic DL knowledge base B = (R, T ,A),
where R = ∅, T = {(BirdvFly, 0.8), (HasWingvBird, 0.95)} and A = {(Bird
(chirpy), 1), (HasWing(tweety), 1), (¬Fly(tweety), 1)}. The TBox T states that
it is rather certain that birds can fly and it is almost certain that something
with wing is a bird. The ABox A states that it is certain that tweety has wing
and it cannot fly, and chirpy is a bird. Let α = 0.8. We then have B≥0.8 =
(R≥0.8, T≥0.8,A≥0.8), where R≥0.8 = ∅, T≥0.8 = {BirdvFly,HasWingvBird}
and A≥0.8 = {HasWing(tweety), ¬Fly(tweety), Bird(chirpy)}. It is clear that
B≥α is inconsistent. Now let α = 0.95. Then B≥α = (R≥0.95, T≥0.95,A≥0.95),
whereR≥0.95 = ∅, T≥0.95 = {HasWingvBird} andA≥0.95 = {HasWing(tweety),
¬Fly(tweety), Bird(chirpy)}. So B≥α is consistent. Therefore, Inc(B) = 0.8.

3.2 Semantics

The semantics of possibilistic DL is defined by a possibility distribution π over
the set I of all classical description logic interpretations, i.e., π : I → [0, 1].
π(I) represents the degree of compatibility of interpretation I with available
information. For two interpretations I1 and I2, π(I1) > π(I2) means that I1
is preferred to I2 according to the available information. Given a possibility
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distribution π, we can define the possibility measure Π and necessity measure N
as follows: Π(φ) = max{π(I) : I ∈ I, I |= φ} and N(φ) = 1−Π(¬φ), where ¬φ is
the consistency negation defined in [9]2. Given two possibility distributions π and
π′, we say that π is more specific (or more informative) than π′ iff π(I) ≤ π′(I)
for all I ∈ Ω. A possibility distribution π satisfies a possibilistic axiom (φ, α),
denoted π |= (φ, α), iff N(φ)≥α. It satisfies a possibilistic DL knowledge base B,
denoted π |= B, iff it satisfies all the possibilistic axioms in B.

Given a possibilistic DL knowledge base B = 〈R, T ,A〉, we can define a
possibility distribution from it as follows: for all I ∈ I,

πB(I) =
{

1 if ∀φi∈R∗ ∪ T ∗ ∪ A∗, I |= φi,
1−max{αi|I 6|= φi, (φi, αi) ∈ R ∪ T ∪ A} otherwise.

(1)

As in possibilistic logic, we can also show that the possibility distribution de-
fined by Equation 1 is most specific possibility distribution satisfying B. Let
us consider Example 1 again. I = 〈∆I , ◦I〉 is an interpretation, where ∆I =
{tweety, chirpy} andBirdI = {tweety, chirpy}, FlyI = {chirpy}, andHasWingI

= {tweety}. It is clear that I satisfies all the axioms except BirdvFly (whose
weight is 0.8), so πB(I) = 0.2.

We have the following theorem which says that consistency of a possibilistic
DL knowledge bases can be equivalently defined by the possibility distribution
associated with it.

Theorem 1. Let B be a possibilistic DL knowledge base and πB be the possibility
distribution obtained by Equation 1. Then B is consistent if and only if πB |= B,
where πB is the possibility distribution defined by Equation 1.

The proof of is clear by considering Condition (i) of the consistency negation.
Similar to possibilistic logic, we have the following result.

Proposition 1. Let B be a possibilistic DL knowledge base and πB be the pos-
sibility distribution obtained by Equation 1. Then Inc(B) = 1−maxI∈IπB(I).
Proposition 1 shows that the inconsistency degree of a possibilistic DL knowledge
base can be equivalently defined by the possibility distribution.

3.3 Inference in possibilistic DLs

We consider the following inference services in possibilistic DLs.

– Instance checking: an individual a is a plausible instance of a concept C
with respect to a possibilistic DL knowledge base B, written B |=P C(a), if
B>Inc(B) |= C(a).

2 There are two kinds of negations defined in [9]: consistency negation and coherence
negation. An axioms ψ is said to be a consistency-negation of an axiom φ, written
¬φ, iff it satisfies the following two conditions: (i) {φ, ψ} is inconsistent and (ii)
there exists no other ψ′ such that ψ′ satisfies condition (i) and Cn({ψ′})⊂Cn({ψ}).
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– Subsumption: a concept C is plausible subsumed by a concept D with respect
to a possibilistic DL knowledge base B, written B |=P CvD, if B>Inc(B) |=
CvD.

– Instance checking with necessity degree: an individual a is an instance of
a concept C to degree α with respect to B, written B |=π (C(a), α), if the
following conditions hold: (1) B≥α is consistent, (2) B≥α |= C(a), (3) for all
β>α, B≥β 6|=C(a).

– Subsumption with necessity degree: a concept C is subsumed by a concept
D to a degree α with respect to a possibilistic DL knowledge base B, written
B |=π (CvD,α), if the following conditions hold: (1) B≥α |= CvD, (2)
B≥α |= CvD, (3) for all β>α, B≥β 6|=CvD.

We illustrate the inference services by reconsidering Example 1.

Example 2. (Example 1 continued) According to Example 1, we have Inc(B) =
0.8 and B>0.8 = (R>0.8, T>0.8,A>0.8), where R>0.8 = ∅, T>0.8 = {HasWingv
Bird} and A>0.8 = {HasWing(tweety),¬Fly (tweety), Bird(chirpy)}. Since
B>0.8 |= Bird (tweety), we can infer that tweety is plausible to be a bird from
B. Furthermore, since B≥0.95 |= Bird(tweety) and B≥1 6|=Bird(tweety), we have
B |=π (Bird(tweety), 0.95). That is, we are almost certain that tweety is a bird.

4 Algorithms for Inference in Possibilistic DLs

In this section, we give algorithms for implementing possibilistic inference in
possibilistic DLs and analyze the computational complexity of the algorithms.

Algorithm 1 computes the inconsistency degree of a possibilistic DL knowl-
edge base using a binary search. The function Asc takes a finite set of numbers
in (0, 1] as input and returns a vector which contains those distinct numbers in
the set in an ascending order. For example, Asc(0.2, 0.3, 0.3, 0.1) = (0.1, 0.2, 0.3).
Let W = (β1, ..., βn) is a vector consisting of n distinct numbers, then W (i) de-
notes βi. If the returned inconsistency degree is 0, that is W (−1) = 0, it shows
the ontology to be queried is consistent.

Since Algorithm 1 is based on binary search, to compute the inconsistency
degree, it is easy to check that the algorithm requires plog2nq+1 satisfiability
checks using a DL reasoner in the worst case.

Algorithm 2 returns the necessity degree of an axiom inferred from a possi-
bilistic DL knowledge base w.r.t the possibilistic inference. We compute the in-
consistency degree of the input ontology. If the axiom is a plausible consequence
of a possibilistic DL knowledge base, then we compute its necessity degree using
a binary search (see the first “if” condition). Otherwise, its necessity degree is
0, i.e., the default value given to w. Note that our algorithm is different from
the algorithm given in [15] for computing the necessity of a formula in possibilis-
tic logic (this algorithm needs to compute the negation of a formula, which is
computationally hard in DLs according to [9]). We consider only subsumption
checking here. However, the algorithm can be easily extended to reduce instance
checking as well.
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Algorithm 1: Compute the inconsistency degree
Data: B = 〈T ,A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}, where n is

the number of axioms in the testing ontology B;
Result: The inconsistency degree d
begin

b := 0 // b is the begin pointer of the binary search
m := 0 // m is the middle pointer of the binary search
d := 0.0 // The initial value of inconsistency degree d is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0 // The special element −1 of W is set to be 0.0
e := |W | − 1 // e is the end pointer of the binary search
if B≥W (0) is consistent then

d:=0.0

else
while b ≤ e do

if b = e then
return b

m := p(b+ e)/2q
if B≥W (m) is consistent then

e := m− 1

else
b := m+ 1

d := W (b)

end

Proposition 2. Let B be a possibilistic DL knowledge base and φ be a DL ax-
iom. Deciding whether B |=P φ requires plog2nq+1 satisfiability check using a
DL reasoner, where n is the number of distinct certainty degrees in B. Further-
more, deciding whether B |=π (φ, α) requires at most plog2nq+plog2n − lq+1
satisfiability check using a DL reasoner, where where n is the number of distinct
certainty degrees in B and l is the inconsistency degree of B.

5 Conclusions and Future Work

We gave a possibilistic extension of description logics in this paper. Two kinds
of inference services were considered: one is a plausible consequence relation and
the other is a possibilistic consequence relation. Algorithms were given to check
the inference services and we implemented the algorithms in Java using KAON2
3 as the basic reference service. The source codes and some ontologies used for
testing can be downloaded from

http://radon.ontoware.org/incoquery.zip

To represent the weight for each axiom, we use an annotation property “Rat-
ing” to associate one value with the class defined. Thus the axioms starting
3 http://kaon2.semanticweb.org/
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Algorithm 2: Possibilistic inference with certainty degrees
Data: B = 〈T ,A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}; a DL

axiom φ.
Result: The certainty degree w associated with a query φ
begin

m := 0
w := 0.0 // The initial certainty degree of φ is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0
e := |W | − 1
compute l such that W (l) = Inc(B) //Inc(B) is computed by Algorithm 1
b := l + 1
if B≥W (b) |= φ then

while b ≤ e do
if b = e then

return b
m := p(b+ e)/2q
if B≥W (m) 6|=φ then

e := m− 1

else
b := m+ 1

w := W (b)

end

with this class also have the same value as their weights. Take the following
code as an example. The axioms Messaging v ¬Kerberos and Messaging v
¬GeneralReliabilityUsernamePolicy will have the same weight 0.345.

<owl:Class rdf:about="#Messaging">
<Rating rdf:datatype="http://www.w3.org/2001/XMLSchema#double">0.345
</Rating>
<owl:disjointWith rdf:resource="#Kerberos"/>
<owl:disjointWith rdf:resource="#GeneralReliabilityUsernamePolicy"/>

</owl:Class>

The advantage of this way to represent confidence values is that confidence
values and the ontology can be kept in the same owl file. So far, we only support
some simple queries like instance checking A(a) and subsumption A v B, where
a is an instance and A, B are concepts.

Possibilistic inference has been criticized for the “drowning problem”, i.e.,
all the axioms whose necessity degrees which are less than or equal to the in-
consistency degree of the possibilistic DL knowledge base do not contribute to
the inference. Several variants of possibilistic inference have been proposed in
classical logic to solve the drowning problem [2]. We plan to implement these
approaches in our future work.
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6. Didier Dubois, Jérôme Mengin, and Henri Prade. Possibilistic uncertainty and
fuzzy features in description logic: A preliminary discussion. In Capturing Intelli-
gence: Fuzzy Logic and the Semantic WEb, pages 101–113. Elsevier, 2006.

7. Didier Dubois and Henri Prade. Epistemic entrenchment and possibilistic logic.
Artif. Intell., 50(2):223–239, 1991.

8. Didier Dubois and Henri Prade. Possibility theory: qualitative and quantitative as-
pects. In Handbook of Defeasible Reasoning and Uncertainty Management Systems,
pages 169–226, 1998.

9. Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis, and Holger
Wache. Inconsistencies, negations and changes in ontologies. In Proc. of AAAI’06,
2006.

10. Rosalba Giugno and Thomas Lukasiewicz. P-shoq(d): A probabilistic extension of
shoq(d) for probabilistic ontologies in the semantic web. In Proc. of JELIA’02,
pages 86–97, 2002.

11. Peter Haase and Johanna Völker. Ontology learning and reasoning - dealing with
uncertainty and inconsistency. In Proc. of URSW’05, pages 45–55, 2005.

12. Jochen Heinsohn. Probabilistic description logics. In Proc. of UAI’94, pages 311–
318, 1994.

13. Bernhard Hollunder. An alternative proof method for possibilistic logic and its
application to terminological logics. Int. J. Approx. Reasoning, 12(2):85–109, 1995.

14. Manfred Jaeger. Probabilistic reasoning in terminological logics. In Proc. of KR’94,
pages 305–316, 1994.
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Abstract. We present a novel approach to logic-based bilateral negotiation in e-
commerce systems. We use Description Logics to describe both requests/offers
submitted by buyers and sellers, and relations among issues as axioms in a TBox.
Moreover, exploiting concept contraction in DLs, we are able to handle conflict-
ing information both in goods and services descriptions. We ground the approach
in a P2P e-marketplace framework, and introduce a logic-based alternating-offers
protocol. In such a protocol we exploit both knowledge representation tools and
utility theory to find the most suitable agreements.

1 Introduction

We study automated bilateral negotiation in peer-to-peer (P2P) e-marketplaces, where
buyers and sellers may want to submit articulate advertisements to find best available
counterparts, and price is obviously not the single issue to negotiate on. In such frame-
works, using a logic formalism it is possible to recognize that an advertisement for a
Notebook equipped with a Linux operating system actually fulfills a buyer’s request
for a PC having a Unix operating system. Or, conversely, that a buyer’s request for
a Notebook with Wi-Fi adapter is in conflicting with a seller’s supply for a Notebook
with Wired Adapter. To manage automated bilateral negotiation in such a framework we
introduce a novel logic-based alternating-offers protocol. The protocol merges both De-
scription Logics formalism and reasoning services, and utility theory, to find the most
suitable agreements. To this aim it takes into account existing logical relations between
issues in requests and offers and related utilities of agents, expressed through logical
formulas.

The roadmap to the remainder of this paper is as follows: next section presents an
outline of the whole approach. Then we move on the DL we adopt and related inference
services. We show the modeling of advertisements and then the protocol is presented
and discussed. Related work and discussion close the paper.

2 Negotiation Scenario

In order to outline the negotiation mechanism we define: the negotiation protocol, the
negotiation strategy[6], the utility function of the agents [7]. The assumptions charac-
terizing our negotiation mechanism are:
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one-to-many: the negotiation is a one-to-many negotiation, since the buyer’s agent
will negotiate simultaneously with others m different agents – each of them representing
a seller, whose offer has been previously stored in the system.

rationality: agents are rationals, they behave according to their preferences and
try to maximize their utilities [7, p.19] doing in each step the minimum possible con-
cession, i.e., the concession involving the minimum utility loss, see protocol Section
5.

incomplete information: each agent knows its utility function and ignores the op-
ponent disagreement thresholds and utility functions.

conflict deal: disagreement is better than an agreement iff the agent’s utility over
such an agreement is smaller than disagreement thresholds3 set by the agent before
negotiation starts. Therefore when the agent’s utility deriving from accepting an agree-
ment (or going on with the negotiation) and opting out it is the same, it will prefer not to
opt out [7]. The protocol we propose is inspired by Rubinstein’s alternating-offers one
[9]. In that setting an agent starts making an offer to its opponent, who can either accept,
make a counter-offer or exit the negotiation. If a counter-offer is made, the negotiation
goes on until one of the agent accepts an offer or exits the negotiation. In some cases
there is a negotiation deadline; if the deadline is reached before one agent has accepted
an offer, the negotiation ends in a conflict deal. Our protocol anyway is quite different
from that of Rubinstein; actually we consider multi-issue negotiation: buyer and seller
do not negotiate on a single item or on a single bundle of items, but on many issues,
which are related with each other through an ontology; such issues may also character-
ize a more complex item (e.g., in the computer domain a notebook equipped with Wi-Fi
adapter and DVD recorder). Differently from many alternating-offers protocols we do
not consider a time deadline.

The protocol is sorted out by a finite set of steps4: the negotiation always terminates
because either the agreement has been reached or because one agent opts out. The agent
who moves first is selected randomly for each negotiation. At each step the agent who
moves has two choices: concede or opt out, while the other one stands still. Agents are
forced to concede until a logical compatibility is reached between the initial request
and the initial supply, i.e., until the inconsistency sources are eliminated in both the
demand and the supply. At each step, amongst all the allowed concessions that satisfy
the concession criteria enforced by the protocol, the agent should choose the concession
that gives the highest utility to himself (and then the concession less decreasing its
utility): the minimal concession. Therefore a concession should be minimal w.r.t. the
utility loss paid by the agent who makes the concession [4]. The negotiation ends either
if a logical compatibility is reached (the negotiation succeeds) or if one agent opts out
(the negotiation ends in a conflict deal). For what concerns strategy, the main target of
the agent is to reach the compatibility, because only through compatibility it is possible
to reach an agreement. If it is its turn to move, an agent can choose to concede or opt

3 ”disagreement thresholds, also called disagreement payoffs, or reservation values, [. . . ] are the
minimum utility that each agent requires to pursue a deal ”[8].

4 In the following, for the sake of clarity, we always describe an interaction between only two
opposite agents; although notice that multiple negotiations can be performed at the same time,
among one agent and many candidate partners.
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out: if the utility of the agent at that step is smaller than its disagreement threshold,
then the agent opts out and the negotiation ends immediately. Otherwise, it will do a
concession. We define an agent’s utility function over all possible outcomes [7]:

up : {A ∪ {Opt}} → <

where p ∈ {β, σ}—β and σ stand for buyer and seller respectively— A is the set of all
possible agreements, Opt stands for Opt out.

3 Description Logics for negotiation

Here we refer to AL(D). Besides concepts and roles, AL(D) allows one to express
quantitative properties on objects such as year of building, length, weight and many
others by means of concrete domains. For the scope of the framework we propose in
this paper, it is sufficient to introduce only unary predicates =x (·) and >x (·) where
x ∈ D 5. Without loss of generality we assume that concrete domains we deal with are
admissible [1]. In order to model the domain knowledge and represents relationships
among elements, an ontology O is used in the form:

CN1 v CN2 CN1 v¬CN2

Formulas representing demands D and supplies S, are expressed as generic formulas
∃Ru∀R.C, so an example advertisement can be formalized as in the following formula:

PCu¬Notebooku (ram ≥ 1024)u (hdd ≤ 160) u∃hasOSu∀hasOS.linux
u∃monitor u ∀monitor.(LCDmonitor u (inch ≥ 17))

Notice that for what concerns numerical properties, also range expressions are al-
lowed in the form (f ≥ n) u (f ≤ n). Even though subsumption and satisfiability
are very useful reasoning tasks for matchmaking in e-commerce scenarios [3], there are
typical problems related to negotiation that need non-standard reasoning services. For
instance, suppose you have the buyer’s agent β with her demand represented by the con-
cept D and the seller’s agent σ with his supply represented by S. In case S uD vO ⊥
holds, how to suggest to β what in D is in conflict with S and conversely to σ what in
S is conflict withD? The above question is very common, among others, in negotiation
scenarios where you need to know “what is wrong” between D and S and negotiate on
it. In order to give an answer to the previous question and provide explanations, concept
contraction[3] can be exploited.

Concept Contraction . Given two concepts C1 and C2 and an ontologyO, where both
C1 u C2 vO ⊥ holds, find two concepts K (for Keep) and G (for Give up) such
that both C1 ≡ K uG and K u C2 6vO ⊥.

In other words K represents a contraction of C1 which is satisfiable with C2, whilst G
represents the reason why C1 and C2 are not compatible with each other. With concept
contraction, conflicting information both in β’s request w.r.t. σ’supply can be computed

5 Hereafter, for the sake of clarity we will use an infix notation instead of a prefix one to deal
with predicates over concrete domains e.g., (f ≤ n) = ¬ >n (f).
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and vice versa. Actually, for concept contraction minimality criteria have to be intro-
duced. Following the Principle of Informational Economy [5], for G we have to give
up as little information as possible. In [2, 3] some minimality criteria were introduced
and analyzed. In particular, if the adopted DL admits a normal form with conjunctions
of concepts as AL(D), G∃ minimal irreducible solutions can be defined.

Let C1 and C2 be two concepts such that C1 u C2 vO ⊥. For the correspond-
ing Concept Contraction problem Q, we say the solution 〈Girr,Kirr〉 problem is G-
irreducible if the following conditions hold:

1. Girr =
d
i=1...nGi where Gi is in the form ∃R iff C2 v ∀R.⊥; [G∃ minimal

condition]
2. K uGi u C2 vO ⊥, for any Gi, i = 1 . . . n;
3. if 〈G,K〉 is another solution to Q satisfying condition 1, then G v Girr.

4 Dealing with Incomplete Information

Information about supply/demand descriptions can be, in our setting, incomplete. This
may happen not only because some information may be unavailable, but also because
some details have been considered irrelevant by either the seller or the buyer when
they submitted their advertisements. Some user may find tiresome to specify a lot of
characteristics related e.g., to the brand or more technical characteristics of the product
the user can be unaware of. The most common approach to this problem is avoiding
incompleteness by forcing the user to fill long and tedious forms. There are several
ways to deal with incomplete information and the choice may influence a negotiation.

Under an open-world assumption we have two possible choices. First, we can keep
incomplete information as missing information: we do not know e.g., if the buyer is not
interested in a particular characteristic or he simply has forgotten to specify it. In this
case the system has to contact to buyer/seller to further refine her/his description. Ask-
ing the users to refine their descriptions before the negotiation process starts it seems
quite unrealistic, because of the amount of descriptions that can be stored in the sys-
tem itself. It appears more feasible to leave this phase after the negotiation process has
been performed with the counterparts in the e-marketplace, and only a small amount
of supplies/demands have been retrieved. For instance, the ones with the highest utility
product [9].

Once buyer and seller have refined their descriptions it is possible to start a new
negotiation (the so-called post-negotiation phase) where only the updated information
is negotiated.

On the other way, still in the open-world assumption setting, a second possible
choice can be to assume incomplete information as an any-would-fit assertion (don’t
care), so the system should cope with this incompleteness as is. Therefore also this
information will be presented in the final agreement.

5 A logic-based alternating-offers protocol

In this Section we show how to use DLs and a non-standard reasoning service, namely
Concept Contraction, to model an alternating-offer protocol taking into account the
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semantics of request and offers as well as the domain knowledge modeled within an
ontology.

For the sake of clarity and without loss of generality, from now on we consider
that the agent entering the marketplace is the buyer β and her potential partners are the
sellers’ agents σ.

First of all, the buyer’s demandD is normalized considering the equivalence ∀R.(Cu
D) ≡ ∀R.C u ∀R.D as a rewrite rule from left to right.

After the normalization D is then a conjunction of elements in the form

D =
l
k

∃Rk u
l
i

Ci (1)

where Ci ∈ {CN,¬CN, p(f),¬p(f),∀R.C} . As an example consider the concept in
Section 3. After the normalization it is then rewritten as PC u ¬Notebooku (ram ≥ 1024) u
(hdd ≤ 160) u∃hasOS u ∀hasOS.linuxu ∃monitor u ∀monitor.LCDmonitoru ∀monitor.(inch ≥ 17)

In the normalized form ∃Rk and Ci represent issues on which the user is willing to
negotiate on. The buyer is able to express her utilities on single issues or on bundles of
them. For instance, w.r.t. the previous request the buyer may set utility values on a single
issue PCas well as on the whole formula (ram ≥ 1024) u ∀monitor.LCDmonitor
(bundle of issue). We indicate these concepts with Pk — for Preferences.

Now, for eachPk the buyer β expresses a utility value uβ(Pk) such that
∑
i u

β(Pk) =
1. As usual, both agents’ utilities are normalized to 1 to eliminate outliers, and make
them comparable. Since we assumed that utilities are additive, the global utility is just
a sum of the utilities related to preferences.

uβ =
∑
k

uβ(Pk)

After single item’s utilities have been elicited, β set the disagreement threshold tβ
(see Section 2). The same for the seller.

5.1 The Protocol

Summing up, before the real negotiation starts (step 0) we have a demand D and a
supply S such that

D =
l
k

∃Rk u
l
i

Ci S =
l
l

∃Rl u
l
j

Cj

Based on Ci and Cj , the buyer and seller respectively, formulate their preferences Pk
(for the buyer) and Ph (for the seller) and for each of them set a utility value such that:∑

k

uβ(Pk) = 1
∑
h

uσ(Ph) = 1

Finally, both for β and σ we have the corresponding disagreement thresholds and
utility functions tβ , uβ and tσ , uσ .
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IfDuS vO ⊥ then the demand and the supply are in conflict with each other and β
and σ need to negotiate on conflicting information if they want to reach an agreement.
The negotiation will follow the alternating offers protocol as described in Section 2. At
each step, either β or σ gives up a portion of its conflicting information choosing the
item with the minimum utility. At the beginning, both β and σ need to know what are
the conflicting information. Notice that both agents β and σ know D and S, but they
have no information neither on counterpart utilities nor preferences. Both β and σ solve
two Concept Contraction problems, computing a G∃ minimal irreducible solution, and
rewrite D and S as:

D = Gβ0 uKβ
0 S = Gσ0 uKσ

0

In the above rewritingGβ0 andGσ0 represent respectively the reason whyD is in conflict
with S and the reason why S is in conflict with D. At a first glance it would seem
β needs only 〈Gβ0 ,Kβ

0 〉 and σ needs 〈Gσ0 ,Kσ
0 〉. We will see later that β needs also

information on σ in order to check its fairness during negotiation steps.
Since we compute G-irreducible solutions we can normalize Gβ0 and Gσ0 , following

the same procedure for D and S, as:

Gβ0 = Gβ(0,1) . . . uGβ(0,n) =
nl
i=1

Gβ(0,i) Gσ0 = Gσ(0,1) . . . uGσ(0,m) =
ml
j=1

Gσ(0,j)

In the previous formulas, indexes (0, i) and (0, j) represent the i-th and j-th conjunctive
element in Gβ and Gσat round 0.

Due to the logic adopted for D, S andO we have that: for each Gβ(0,i) there always
exists aCi in the normalized version ofD— as represented in equation (1) — such that
Gβ(0,i) = Ci. The same relation holds between each Gσ(0,j) and Cj in the normalized

form of S. Hence, some of Pk and Ph can be partially rewritten in terms of Gβ(0,i)
and Gσ(0,j) respectively. Since the information in Gβ0 and Gσ0 are the reason why an

agreement is not possible, then either β or σ will start conceding one of Gβ(0,i) or Gσ(0,j)
reducing their global utility of u(Gβ(0,i)) or u(Gσ(0,j)) respectively.

Suppose β starts the negotiation and gives upGβ(0,2) = C5 with P3 vO Gβ(0,2). Then
it reformulates its request as D1 =

d
k ∃Rk u

d
i=1..4,6.. Ci and sends it to σ. Notice

that since P3 vO Gβ(0,2), the global utility of β decreases to uβ1 =
∑
k=1..2,4.. u(Pk).

Now, σ is able to validate if β really changed its request to reach an agreement and
did not lie. To do so, σ computes 〈Gβ1 ,Kβ

1 〉 solving a concept contraction problem w.r.t.
the new demandD1 and checks ifGβ0 vO Gβ1 . In case of positive answer, then σ knows
that β did not lie and it continues the negotiation process. Otherwise it may decide to
leave the negotiation (conflict deal) or ask β to reformulate its counteroffer.

If the negotiation continues, σ computes its conflicting information w.r.t. to D1 and
rewrites S as S = Gσ1 u Kσ

1 where Gσ1 =
dm
j=1G

σ
(1,j): Again, for each G(1,j) there

exists a Cj in the normalized version of S. Hence, if σ decides to concede G(1,j), its
global utility decreases proportionally to the utility of Ph to which G(1,j) belongs to.
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Similarly to σ in step 0, β computes 〈Gσ1 ,Kβ
1 〉 and checks if Gσ0 vO Gσ1 in order to

check if σ lied.
The process ends when one of the following two conditions holds:

1. the global utility of an agent is lower than its disagreement threshold. In this case
the negotiation terminates with a conflict deal.
2. there is nothing more to negotiate on and the global utility of each agent is greater
than its disagreement threshold. In this case the negotiation terminates with an agree-
ment. The agreement A is computed simply as A = Dlast u Slast, where Dlast and
Slast are the request and the offer in the last step.

5.2 Minimum Concession

Since users can express an utility value also on bundles, whenever they concede an
issue as the minimum concession (in term of minimum global utility decrease), the set
of all the bundles in which the issue is present has to be taken into account. They choose
based on the utility of the whole set.

For instance, consider the buyer set as preferences the following ones:

P1 = ∀R.CN1 u
β
(P1) = 0.1

P2 = (f ≤ 200) u
β
(P2) = 0.4

P3 = ∀R.CN1 u ∀R.CN2 u
β
(P3) = 0.5

and at the n-th step the conflicting information is:

Gβn = ∀R.CN1 u (f ≤ 200)

Hence, β can concede whether ∀R.CN1 or (f ≤ 200). If it concedes ∀R.CN1 then
its global utility decreases of uβ(P1) + uβ(P3) = 0.6, while conceding (f ≤ 200)
its utility decreases of only uβ(P2) = 0.4. In this case the minimum concession is
(f ≤ 200).

5.3 The Algorithm

Here we define the behavior of agents during a generic n-th round of the negotiation
process. For the sake of conciseness, we present only the algorithm related to β’s be-
havior. The behavior of σ is dual w.r.t. to the one of β.
1-4 If there is nothing in conflict between the old Dn−1 and just-arrived Sn, then there
nothing more to negotiate on and the agreement is reached and computed. Notice that
while computing the final agreement we use the ”any-would-fit” approach to deal with
incomplete information (see Section 4).
5-11 If β discovers that σ lied on its concession, then β decides to exit the negotiation
and terminates with a conflict deal. If we want β ask σ to concede again it is straight-
forward to change the protocol to deal with such a behavior.
13-15 If after the minimum concession, the utility of β is less than its disagreement
threshold, then the negotiation ends with a conflict deal.
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ifDn−1 u Sn 6vO ⊥ then1
agreementA reached;2
returnA = Dn−1 u Sn;3

end4
if n > 0 then5

compute 〈Gσ
n, K

σ
n〉 fromDn−1 and Sn;6

ifGσ
n−1 6vO Gσ

n then7
σ lied;8
conflict deal: exit;9

end10
end11
compute minimum concessionGβ

(n−1,i);12
if uβ

n−1 < tβ then13
conflict deal: exit;14

end15
formulateDn deletingGβ

(n−1,i) fromDn−1;16
sendDn to σ ;17

Algorithm 1: The behavior of β at step n

6 Conclusion

We have motivated and illustrated a logic-based approach to bilateral negotiation in
P2P e-marketplaces, and proposed a DL-based alternating-offers protocol exploiting
Description Logics and related inference services and utility theory to find the most
suitable agreements. Work is ongoing on various directions, namely: extending the DL
adopted, finding a ”cheap” way to ensure that the reached agreement is Pareto-efficient,
and carry out large scale experiments with real advertisements.
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1 Introduction

In this paper we study conjunctive query answering in the description logics of theEL
family [2, 3, 7, 6, 5], in particular we consider the DLsEL, ELH, EL+, andEL++. The
EL family has been recently defined in order to identify DLs both having interesting
expressive abilities and allowing for tractable reasoning. While the standard reasoning
tasks (like concept subsumption and instance checking) have been analyzed in the past
for such logics, almost no result is known about answering conjunctive queries in the
logics of theEL family, with the exception of the lower complexity bounds which are
immediate consequence of the results in [8] (and of the characterization of instance
checking in [7, 3]).

More specifically, we present the following results:

1. we define a query-rewriting-based technique for answering unions of conjunctive
queries inEL. More precisely, we present an algorithm based on the idea of reduc-
ing query answering inEL to answering recursive Datalog queries. We also show
that this technique can be easily extended to deal withELH KBs;

2. based on the above technique, we prove that answering unions of conjunctive
queries inEL andELH is PTIME-complete with respect to both data complex-
ity (i.e., with respect to the size of the ABox) and knowledge base complexity (i.e.,
with respect to the size of the knowledge base) and is NP-complete with respect to
combined complexity (i.e., with respect to the size of both the knowledge base and
the query);

3. conversely, we prove that answering conjunctive queries is undecidable in both
EL+ andEL++.

As an immediate consequence of the above results, it turns out that if, besides the
standard reasoning tasks in DL, also conjunctive query answering is of interest, then
EL andELH still exhibit a nice computational behaviour, since they allow for tractable
query answering, while the two extensionsEL+ andEL++ do not show the same be-
haviour, since conjunctive query answering is undecidable in such DLs. Consequently,
EL+ andEL++ do not appear well-suited for applications requiring the full power of
conjunctive queries.

2 Preliminaries

In this section we briefly recall the logics in theEL family, in particular the DLsEL,
EL+, andEL++, and introduce query answering over knowledge bases expressed in
such description logics.

Proceeding of DL2007 - Regular Papers 451



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 452 — #462 i
i

i
i

i
i

EL and its extensions.EL [2] is the DL whose abstract syntax for concept expressions
is the following:C ::= A | ∃R.C | C1 u C2 | >, whereA is a concept name,R is a
role name, and the TBox is a set of concept inclusion assertions of the formC1 v C2.
ELH [7, 6] extendsEL by also allowing in the TBox simple role inclusion assertions
of the formR1 v R2, whereR1 andR2 are role names.EL+ [5] extendsEL by also
allowing in the TBox role inclusion assertions of the formR1◦· · ·◦Rn v Rn+1, where
eachRi is a role name. Finally,EL++ [3] extendsEL+ by allowing the new concept
expressions⊥, {a} and the concrete domain constructorp(f1, . . . , fn).

As usual in DLs, a knowledge base (KB)K is a pair〈T ,A〉 where the TBox is a set
of concept inclusions and role inclusions, and the ABoxA is a set of instance assertions
of the formA(a), R(a, b) whereA is a concept name,R is a role name, anda, b are
constant (individual) names. Notice that in all the DLs considered,T may contain cyclic
concept inclusions (GCIs) (as well as cyclic role inclusions inELH, EL+ andEL++).

The semantics of concept and role constructs is well-known [5]. The semantics of a
KB is defined as usual, based on the interpretation of concept and role expressions [4].
We point out that we do not impose the unique name assumption (UNA) on constant
names: however, our results also hold under the UNA.

As shown in [3],EL+ TBoxes admit a normal form, i.e., we can assume without
loss of generality that every concept inclusion in the TBox is in one of the following
forms:A1 v A2, A1 u A2 v A3, A1 v ∃R.A2, ∃R.A1 v A2, where eachA1, A2,
A3 is either a concept name or the concept>,R is a role name, and every role inclusion
is of the formR1 v R2 orR1 ◦R2 v R3, whereR1,R2,R3 are role names.

Unions of conjunctive queries.We now briefly recall conjunctive queries and unions
of conjunctive queries. To simplify the notation in the next sections, we use a Datalog-
like notation for such queries.

A Datalog rule is an expression of the formα :– body , in which the headα is an
atom (i.e., an expression of the formp(t1, . . . , tn) in which eachti is either a constant
or a variable) andbody is a set of atoms, such that each variable occurring inα also
occurs in some atom inbody .

A conjunctive query (CQ) over a DL-KBK is a Datalog rule using a special pred-
icate namepq (i.e., pq does not belong to the set of concept and role names occurring
in K) in the head of the rule, and whose body is a set of atoms whose predicates are
concept and role names occurring inK (notice that the predicatepq cannot occur in the
body of the rule). The arity ofq is defined as the arity ofpq. A Boolean CQ is a CQ
whose arity is zero. For a CQq, we denote bybody(q) the body of the Datalog rule
corresponding toq. A union of conjunctive queries (UCQ)Q overK is a set of CQs of
the same arity which use the same predicatepQ in the head of every rule.

For ease of exposition, and without loss of generality, from now on we only con-
sider Boolean queries, and thequery entailmentproblem. It is well-known thatquery
answeringof an arbitrary (non-Boolean) query can be reduced to query entailment.

The semantics of (Boolean) UCQs over DL-KBs is the usual one (see, e.g., [8]).
In the following, we study complexity of query entailment over DL-KBs. In partic-

ular, we considerdata complexity, i.e., the complexity with respect to the size of the
ABox, KB complexity, i.e., the complexity with respect to the size of both the ABox
and the TBox, andcombined complexity, i.e., the complexity with respect to the size of
both the KB and the query.
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3 Answering unions of conjunctive queries inEL and ELH
We now present an algorithm for answering unions of conjunctive queries posed to
EL-KBs. We start by introducing the auxiliary proceduresUnify, Roll-up, Normalize,
Rename, Rules, and0-Rules.

The procedureUnify. Given a UCQQ, Unify(Q) returns a UCQ obtained by adding
toQ all the possible unifications of terms for every conjunctive queryq in Q.

The procedureRoll-up. Given a UCQQ′, Roll-up(Q′) returns a rewriting of the query
Q′ obtained by expressing subtrees in the query throughEL concept expressions. For-
mally, we defineRoll-up(Q′) =

⋃
q∈Q′ Roll-up(q) whereRoll-up(q) returns the CQ

obtained from the CQq by exhaustively applying the following rewriting rules to the
atoms inbody(q):

1. if variabley only occurs in a binary atom of the formR(t, y), then replaceR(t, y)
with the unary atom∃R.>(t)

2. if variabley only occurs in unary atoms of the formC1(y), . . . , Cn(y), then replace
the above atoms with the 0-ary atom(C1 u . . . u Cn)0;

3. if variabley only occurs in unary atoms of the formC1(y), . . . , Cn(y) and in a
single binary atomR(t, y), then replace all the above atoms in whichy occurs with
the unary atom(∃R.C1 u . . . u Cn)(t);

4. if y is a variable which only occurs in an atom of the formR(y, z) wherez is a
variable different fromy, and there is another atom of the formR(t, z) in body(q),
then deleteR(y, z).

Notice that the query returned byRoll-up is not exactly a UCQ according to the
definition given in Section 2, since arbitrary concept expressionsC may occur as (both
unary and 0-ary) predicate symbols in the body of the CQs of the returned query. So we
call such a query anextendedUCQ.

The procedure Normalize. Given an EL TBox T and an extended UCQQ′,
Normalize(T , Q′) returns anEL TBox T ′ in normal form which: (i) is a conserva-
tive extension ofT ; (ii) defines all concept expressions occurring inQ′ andT ′; (iii) is
closed with respect to the entailed concept inclusions. More precisely,T ′ is such that:

– for every concept expressionC such thatT ′ contains a concept inclusion of the
formC v D orD v C, there exists a concept nameC ′ such thatT ′ |= C ′ ≡ C;

– for every concept expressionC such thatQ′ contains either a unary atom of the
form C(t) or a 0-ary atom of the form(C)0, there exists a concept nameC ′ such
thatT ′ |= C ′ ≡ C.

– T ′ is closed with respect to the entailment of simple concept inclusions, i.e., for
every pair of distinct concept namesA1, A2 occurring inT ′, if T ′ |= A1 v A2

thenA1 v A2 ∈ T ′.
From the existence of a linear normalization procedure forEL KBs and from the results
on entailment of concept inclusions inEL shown in [7], it follows that it is possible to
compute a TBoxT ′ satisfying the above conditions in polynomial time with respect to
the size ofT andQ′.
The procedureRename. Given an extended UCQQ′ and a normalizedEL TBox T ′,
Rename(Q′, T ′) returns the UCQ obtained fromQ′ by replacing each complex concept
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expressionC (i.e., such thatC is not a concept name) occurring inQ′ with the corre-
sponding concept nameC ′ in T ′ (i.e., the concept nameC ′ such thatT ′ |= C ′ ≡ C).
Since the presence of complex concept expressions is eliminated from the query re-
turned byRename(Q′, T ′), such a query corresponds to a set of ordinary Datalog rules.
The procedureRules. Given a normalizedEL TBox T ′, Rules(T ′) returns the set of
Datalog rules corresponding toT ′. More precisely,Rules(T ′) is the following set of
Datalog rules:

– the ruleA2(x) :–A1(x) for each concept inclusionA1 v A2 in T ′, whereA1, A2

are concept names;
– the ruleA3(x) :–A1(x), A2(x) for eachA1 u A2 v A3 in T ′, whereA1, A2, A3

are concept names;
– the ruleA2(x) :–R(x, y), A1(y) for each∃R.A1 v A2 in T ′, whereA1, A2 are

concept names.

Notice that concept inclusions of the formA1 v ∃R.A2 are not actually considered in
the computation ofRules(T ′).
The procedure0-Rules. Finally, to correctly handle 0-ary atoms in the query, we have
to define entailment of inclusions between 0-ary predicates with respect to the TBox
T ′. In particular, for every pair of concept namesA1, A2 occurring inT ′, we want to
decide whether the first-order existential sentence∃x.A1(x) → ∃y.A2(y) is satisfied
by every model ofT ′. Actually, entailment of such sentences can be decided in a way
very similar to entailment of concept inclusions. More precisely, we define inductively
the following relatioǹ ∃T ′ between concept names occurring inT ′:

– A `∃T ′ A for every concept nameA occurring inT ′;
– if A1 `∃T ′ A2 andA2 v A3 ∈ T ′ thenA1 `∃T ′ A3;
– if A1 `∃T ′ A2 andA2 v ∃R.A3 ∈ T ′, thenA1 `∃T ′ A3.

Based on the fact thatT ′ is closed with respect to entailment of inclusions between
atomic concepts, it can be shown that, for every pair of concept namesA1, A2 occurring
in T ′, the sentence∃x.A1(x)→ ∃y.A2(y) is satisfied by every model ofT ′ iff A1 `∃T ′
A2.

Then, based on the relatioǹ∃T ′ , we define the procedure0-Rules(T ′), which returns
the following set of Datalog rules:

– A0
2 :–A0

1 for each pair of concept namesA1, A2 such thatA1 `∃T ′ A2;
– A0 :–A(x) for each concept nameA.

The algorithm computeRewriting. We are now ready to define the algorithm
computeRewriting which, given anEL TBox T and a Boolean UCQQ, computes a
Datalog programP by making use of the procedures previously defined.

Algorithm computeRewriting(Q, T )
Input: Boolean union of conjunctive queriesQ, EL TBox T
Output: Datalog programP

Q′ := Unify(Q);
Q′ := Roll-up(Q′);
T ′ := Normalize(T , Q′);
Q′ := Rename(Q′, T ′);
P :=Q′ ∪ Rules(T ′) ∪ 0-Rules(T ′);
return P
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The algorithm computeQueryEntailment. The Datalog programP computed by
computeRewriting(Q, T ) can be used to decide entailment of the queryQ with respect
to everyEL-KB, as shown by the algorithmcomputeQueryEntailment(Q,K) defined
below. In the following,>(A) denotes the set of facts{>(a) | a is a constant occurring
in A}, whileMM(P) denotes the minimal model of a Datalog programP.

Algorithm computeQueryEntailment(Q,K)
Input: Boolean UCQQ (with head predicatepQ), EL-KB K = 〈T ,A〉
Output: true if K |= Q, false otherwise
P := computeRewriting(Q, T );
if MM(P ∪ A ∪>(A)) |= pQ
then return true else return false

In practice, the above algorithm simply evaluates the Datalog programP over the
ABox A (remember thatA is a set of ground atoms, henceP ∪ A is a Datalog pro-
gram) in order to decide whetherQ is entailed byK. The addition of the facts>(A) is
necessary in order to correctly handle the presence of the concept> in the query (more
precisely, in the evaluation of the Datalog program we consider> as a concept name,
i.e., an EDB predicate).

Correctness.We now show correctness of the algorithmcomputeQueryEntailment.

Theorem 1. LetK = 〈T ,A〉 be anEL-KB and letQ be a UCQ. Then,K |= Q iff
computeQueryEntailment(Q,K) returnstrue.

Proof (sketch). The proof of soundness of the technique is immediate. The proof of
completeness is based on the construction of a canonical model for a normalizedEL-
KB K through the definition of thechaseof K. The chase ofK (denoted bychase(K))
is a function which returns a generally infinite ABox and is inductively defined starting
from the initial ABoxA and adding facts toA based on the followingchase rules:

– chase-rule-1: if A(a) ∈ chase(K) andA v B ∈ T andB(a) 6∈ chase(K) then
addB(a) to chase(K);

– chase-rule-2: if A1(a) ∈ chase(K) andA2(a) ∈ chase(K) andA1uA2 v B ∈ T
andB(a) 6∈ chase(K) thenB(a) ∈ chase(K);

– chase-rule-3: if R(a, b) ∈ chase(K) andA(a) ∈ chase(K) and∃R.A v B ∈ T
andB(a) 6∈ chase(K) thenB(a) ∈ chase(K);

– chase-rule-4: if A(a) ∈ chase(K) andA v ∃R.B ∈ T and there is nob such that
bothR(a, b) ∈ chase(K) andB(b) ∈ chase(K) then addR(a, n) andB(n) to
chase(K), wheren is a constant that does not occur already inchase(K);

– chase-rule-5: if a is a constant occurring inchase(K) and>(a) 6∈ chase(K) then
add>(a) to chase(K).

The chase ofK is a generally infinite ABox which is isomorphic to acanonical model
of K, denoted byIchase(K). Such a model can be used to compute entailment of UCQs
in K, which is formally stated by the following property:

Lemma 1. For every Boolean UCQQ,K |= Q iff Ichase(K) |= Q.

Then, we use the chase to prove completeness of our algorithm. Let us consider
the first part of the algorithmcomputeRewriting, which ends with the execution of
Rename(Q′, T ′), With respect to this part of the rewriting, we prove the following:
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Lemma 2. Let Q′′ be the UCQ returned by Rename(Q′, T ′) in the algorithm
computeRewriting(Q, T ). If Ichase(K) |= Q′′ then there exists a CQq ∈ Q′′ and a
homomorphismH of body(q) in chase(K) such that, for every variablex occurring in
q,H(x) is a constant occurring inA.

Although the above lemma might seem rather obscure, it implies the following cru-
cial property: answering the query computed byRename(Q′, T ′) can actually be done
by first “grounding” the query (considering all the instantiations of the variables with
constants occurring inA) and then considering each atom in a separate way. So, the
above lemma shows that the first part of the rewriting reduces entailment of a UCQ to
entailment of single atoms.

Then, we consider the second part of the rewriting, i.e., the set of Datalog rules
generated byRules(T ′) and0-Rules(T ′). Here, we use the chase ofK to prove that
the Datalog programP ′ returned byRules(T ′) constitutes a correct encoding of the
entailment of unary and binary atoms (which correspond to standard instance checking
problems), in the sense that the minimal model ofP ′ ∪ A ∪ >(A) contains all ground
unary atomsA(a) such thatK |= A(a) and all ground binary atomsR(a, b) such that
K |= R(a, b); similarly, we prove that the Datalog program returned by0-Rules(T ′)
constitutes a correct encoding of the entailment of 0-ary atoms. Formally:

Lemma 3. LetK = 〈T ,A〉 be a normalizedEL-KB, letP ′ be the Datalog program
returned by Rules(T ), and letα be either an atom of the formA(a) whereA is a
concept name or an atom of the formR(a, b) whereR is a role name (a, b are constants
occurring inA). If K |= A(a) thenMM(P ′ ∪ A ∪ >(A)) |= α.

Lemma 4. LetK = 〈T ,A〉 be a normalizedEL-KB, letP ′ be the Datalog program
returned by 0-Rules(T ), and letA be a concept name occurring inT . If the sentence
∃x.A(x) is satisfied by every model forK, thenMM(P ′ ∪ A ∪ >(A)) |= A0.

From the above properties of the two parts of the rewriting, the thesis follows.ut
Complexity results. Based on the above algorithm, we can characterize the computa-
tional properties of entailment of UCQs inEL.

Theorem 2. Entailment of UCQs inEL is: (i) PTIME-complete with respect to data
complexity; (ii) PTIME-complete with respect to KB complexity; (iii) NP-complete with
respect to combined complexity.

Proof (sketch).PTIME-hardness with respect to data complexity has been proved in [8],
while NP-hardness with respect to combined complexity follows from NP-hardness of
simple database evaluation of a CQ [1]. Membership in PTIME with respect to KB
complexity follows from the fact that the proceduresNormalize, Rename, Rules, and
0-Rulesrun in time polynomial with respect to their input, which implies that the algo-
rithm computeRewriting runs in time polynomial with respect to the size ofT . Now,
since the Datalog programP returned bycomputeRewriting(Q, T ) has size polyno-
mial with respect toT , and the number of variables used in each rule ofP does not
depend onK, it follows that the minimal model ofP ∪ A ∪ >(A) can be computed in
time polynomial in the size ofK, thus the algorithmcomputeQueryEntailment(Q,K)
also runs in time polynomial in the size ofK. Finally, membership in NP with re-
spect to combined complexity follows from the fact that all the procedures executed by
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computeRewriting run in time polynomial with respect to their input, with the only ex-
ception of the procedureUnify, which runs in exponential time with respect to the size
of Q. However, if we consider a nondeterministic version of such a procedure, which
returns just one CQq′ obtained by choosing one CQq in Q and one substitution which
is applied toq, then the whole algorithmcomputeRewriting runs in time polynomial
with respect to the size of bothQ andT . Then, in a way analogous to the above proof
of PTIME-membership for KB complexity, it follows that this nondeterministic version
of the algorithmcomputeQueryEntailment(Q,K) also runs in time polynomial in the
size ofQ andK, which implies the thesis. ut

We remark that the above characterization with respect to data complexity was al-
ready stated in [12].

Extension toELH. Finally, the above technique for deciding entailment of UCQs can
be easily extended in order to deal withELH-KBs. The algorithmscomputeRewriting
and computeQueryEntailment are actually the same as before, the only differences
concern the proceduresRoll-up, Normalize, andRules. Specifically: (i) the procedure
Roll-up must take into account the presence of role assertions, since such inclusions
allow for additional eliminations of redundant binary atoms. More precisely, we add
to the previous definition ofRoll-up the following rule: ifR1 andR2 are distinct role
names,R1(t1, t2) andR2(t1, t2) occur inbody(q), andT |= R1 v R2, then delete
R2(t1, t2); (ii) the procedureNormalize(T , Q′) must be modified in order to account
for the presence of simple role inclusions in the TBox. A procedure for deciding entail-
ment of concept and role inclusions inELH TBoxes has been presented in [7]: such a
procedure shows that entailment of such inclusions can still be computed in polynomial
time; (iii) the procedureRulesalso adds a Datalog rule for each role inclusion in the
ELH TBox. More precisely, in the case of anELH TBox, the previous definition of the
set of rules returned byRules(T ′) is modified by adding the following condition: add
the ruleR2(x, y) :–R1(x, y) for each role inclusionR1 v R2 in T ′.

The above extension demonstrates that the computational characterization of entail-
ment of UCQs provided by Theorem 2 extends to the case ofELH-KB.

4 Undecidability of conjunctive query answering inEL+

We now show that the nice computational properties of answering conjunctive queries
in EL, shown in the previous section, do not extend toEL+ andEL++, since answering
conjunctive queries in such DLs is undecidable.

Theorem 3. Entailment of conjunctive queries inEL+ is undecidable.

Proof (sketch). We reduce the emptiness problem for intersection of context-free
languages, which is known to be undecidable [9], to conjunctive query entailment
in EL+. Consider two context-free grammarsG1 = 〈NT 1,Term, S1, P1〉, G2 =
〈NT 2,Term, S2, P2〉, whereNT 1 is the alphabet of nonterminal symbols ofG1, NT 2

is the alphabet of nonterminal symbols ofG2 (which is disjoint fromNT 1), Term is
the alphabet of terminal symbols (which is the same forG1 andG2 and is disjoint from
NT 1 ∪NT 2), S1 is the axiom ofG1, S2 is the axiom ofG2, P1 is the set of production
rules ofG1 andP2 is the set of production rules ofG2. W.l.o.g., we assume that no
production rule has an empty right-hand side. Now consider theEL+ KB K = 〈T ,A〉,
which usesTerm ∪NT 1 ∪NT 2 as the set of role names plus the concept nameC. The
TBox T is composed of: (i) the role inclusion assertions encoding the production rules
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in P1: e.g., ifP1 contains the production ruleX → UVW , we add toT the role inclu-
sionU ◦ V ◦W v X; (ii) the role inclusion assertions encoding the production rules
in P2; (iii) the role inclusion assertionC v ∃Ti.C for everyTi ∈ Term. Moreover, the
ABox A contains the only assertionC(a). Finally, consider the Boolean conjunctive
queryq of the formpq :– S1(a, y), S2(a, y), whereS1 is the axiom of grammarG1 and
S2 is the axiom of grammarG2.

We prove that the languageL(G1) ∩ L(G2) is non-empty iff〈T ,A〉 |= q. To this
aim, we make use of three auxiliary properties. Such properties make use of the notion
of chase of anEL+-KB, which extends in a straightforward way the chase forEL,
introduced in the proof of Theorem 1, by adding a chase rule for role inclusions.
Lemma 5. Letx andy be two terms inchase(K). There is at most one path of terminal
symbols betweenx and y in chase(K), i.e., a sequenceT1(z1, z2), . . . , Tk(zk, zk+1)
with z1 = x, zk+1 = y, and s.t. eachTi(zi, zi+1) ∈ chase(K) and eachTi ∈ Term.
Lemma 6. Letx andy be two terms inchase(K). Letπ be the path of terminal symbols
betweenx andy in chase(K). Then, for every nonterminal symbolN ∈ NT 1 (resp.,
for everyN ∈ NT 2),N(x, y) ∈ chase(K) iff N ⇒∗G1

π (resp., iffN ⇒∗G2
π).

Lemma 7. For every wordT1 . . . Tk in Term∗, there exists a pairx, y such that there
exists the path of terminal symbolsT1 . . . Tk betweenx andy in chase(K).

From the above properties, the thesis easily follows. ut
Obviously, the above theorem also implies undecidability of conjunctive query en-

tailment (and thus of conjunctive query answering) inEL++.
We point out that the above theorem has been independently proved by other authors

[11, 10].
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Combining Two Formalism

for Reasoning about Concepts?

(extended abstract)

N.V. Shilov, N.O. Garanina, and I.S. Anureev

A.P. Ershov Institute of Informatics Systems,
Lavren’ev av., 6, Novosibirsk 630090, Russia,
{shilov, garanina, anureev}@iis.nsk.su

Abstract. There are two major formalisms that are developed around
concepts. The first one is Formal Concept Analysis (FCA) by R. Wille
and B. Ganter. Roughly speaking, FCA is an extension of algebraic Lat-
tice Theory for knowledge representation. The second formalism, De-
scription Logic (DL), goes back to the universal terminological logic by
P.F. Patel-Schneider. It is closely related to modal and program logics.
DL is widely used for ontology research, design, and implementation.
Since both formalism use concepts and are used for closely related pur-
poses, it is very natural to compare and combine them.
In this paper we introduce and study variants of DL extended by three
constructs motivated by FCA. Intentional semantics of two of the new
constructs are new modalities that correspond to ‘intent’ and ‘extent’
(two major algebraic constructions of FCA). The third new construct is
a connective that is designed to express the ‘formal concept’ property. If
L is a variant of DL then we call L extended by these new constructs by
L for FCA and denote this logic by L/FCA.
We compare expressive powers of L/FCA and L(¬,−) – another variant
of L extended by role complement ¬ and inverse − simultaneously. We
demonstrate that L/FCA can be expressed in L(¬,−). It implies that
for the basic description logic ALC, ALC/FCA is decidable.

1 Basic Description Logics

Description logics [2] has originated from the universal terminological logic [9].
There exists many variants of description logics, but we will define only some of
them in this section1.

Definition 1. Syntax of every description logic is constructed from disjoint al-
phabets of concept, role, and object symbols CS, RS, and OS, respectively. The
? This research is supported in parts by joint grant RFBR 05-01-04003-a - DFG project

COMO, GZ: 436 RUS 113/829/0-1, by grant RFBR 06-01-00464-a, and Integration
Grant n.14 Siberia Branch, Russian Academy of Science.

1 We give detailed definition of description logics for avoiding ambiguities, since there
exists some difference in syntax notation between different research groups.
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sets of concept terms (or concepts) CT and role terms (or roles) RT are defined
by induction. The usual definition admits the following clauses2.

– (Concept terms)
• the top concept > and the bottom concept ⊥ are concept terms;
• any concept symbol is a concept term;
• for any concepts X and Y their union (X tY ) and intersection (X uY )

are concept terms;
• for any concept X its complement (¬X) is a concept term;
• for any role R and any concept X the universal (∀R. X) and existential

(∃R. X) restrictions are concept terms;
– (Role terms)

• the top role ∇ and the bottom role 4 are role terms;
• any role symbol is a role term;
• for any roles R and S their union (R t S), intersection (R u S), and

composition (R ◦ S) are terms;
• for any role R its complement (¬R), inverse (R−), and transitive closure

(R+) are role terms.

Concept and role terms altogether form the set of terminological expressions.

Definition 2.

– For any concepts X and Y , any roles R and S the following expressions are
called terminological sentences: X

.v Y , X .= Y , R
.v S, and R

.= S. A
TBox is a set of terminological sentences.

– For any concept X, any role R, and any object symbols a and b the following
expressions are called assertional sentences: a concept assertion a : X and a
role assertion (a, b) : R. An ABox is a set of assertional sentences.

– A knowledge base is a finite set of terminological and assertional sentences.
Every knowledge base consists of an appropriate TBox and ABox.

Definition 3. Semantics of any description logic is defined in Kripke-like ter-
minological interpretations. Every terminological interpretation is a pair (D, I),
where D is a set (that is called domain) and I is a mapping (that is called
interpretation function). This function maps object symbols to elements of D,
concept symbols to subsets of D, role symbols to binary relations on D: I =
IOS ∪ ICS ∪ IRS , where IOS : OS → D, ICS : CS → 2D, and IRS : RS → 2D×D.
The unique name assumption holds for this function: I(a) 6= I(b) for all differ-
ent object symbols a and b. The interpretation function can be extended to all
terminological expressions as follows.

– (Concept semantics)
• I(>) = D and I(⊥) = ∅;
• I(X t Y )) = I(X) ∪ I(Y ) and I(X u Y ) = I(X) ∩ I(Y );
• I(¬X) = D \ I(X);

2 We omit some constructs that can be treated as derived features.
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• I(∀R. X) = {s ∈ D : ∀t ∈ D(if (s, t) ∈ I(R) then t ∈ I(X))},
I(∃R. X) = {s ∈ D : ∃t ∈ D((s, t) ∈ I(R) and t ∈ I(X))};

– (Role semantics)
• I(∇) = D2 and I(4) = ∅;
• I(RtS) = I(R)∪ I(S), I(RuS) = I(R)∩ I(S), I(R ◦S) = I(R) ◦ I(S)

(righthand side ‘◦’ is composition of binary relations);
• I(¬R) = D2 \I(R), I(R−) = (I(R))−, and I(R+) = (I(R))+ (righthand

side ‘+’ is transitive closure of binary relations).

Definition 4. Semantics of sentences is defined in terminological interpreta-
tions in terms of satisfiability relation as follows:

– (D, I) |= a : X iff I(a) ∈ I(X);
– (D, I) |= X

.v Y iff I(X) ⊆ I(Y );
– (D, I) |= X

.= Y iff I(X) = I(Y );
– (D, I) |= (a, b) : R iff (I(a), I(b)) ∈ I(R);
– (D, I) |= R

.v S iff I(R) ⊆ I(S);
– (D, I) |= R

.= S iff I(R) = I(S).

This satisfiability relation can be extended on knowledge bases in a natural way:
for any knowledge base KBase, (D, I) |= KBase iff (D, I) |= φ for every sen-
tence φ ∈ KBase. In the case of (D, I) |= KBase, the terminological inter-
pretation (D, I) is said to be a (terminological) model for the knowledge base
KBase. Let us say that a knowledge base KBase entails a sentence ψ (and
write3 Kbase |= ψ) iff (D, I) |= ψ for every model (D, I) for KBase.

Definition 5. A concept X is said to be coherent (or satisfiable) with respect to
a knowledge base KBase iff there exists a terminological model (D, I) for KBase
such that I(X) is not empty. A knowledge base KBase is said to be satisfiable
iff the top concept > is coherent with respect to KBase.

Satisfiability problem is to check for input knowledge base KBase whether
it is satisfiable or not. It is well known that the problem is undecidable [2]
for description logic that admits all syntax constructs that are enumerated in
the definition 1. This undecidability boundary drives many researchers to study
of description logics with decidable satisfiability problem. An important role in
these studies belongs to a fragment that is called Attribute Language with Com-
plements (ALC) [11]. In simple words, ALC adopts role symbols as the only role
terms, concept symbols – as elementary concept terms, and permits ‘boolean’
constructs ‘¬’, ‘t’, ‘u’, universal and existential (but non-limited) restrictions
‘∀’ and ‘∃’ as the only concept constructs. The formal definition follows.

Definition 6. ALC is a fragment of DL that comprises concepts that are defined
by the following context-free grammar:

CALC ::=
CS|>|⊥|(¬CALC)|(CALC t CALC)|(CALC u CALC)|(∀RS. CALC)|(∃RS. CALC)
3 Let us write ‘|= ψ’ instead of ‘∅ |= ψ’ when knowledge base is empty.
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where metavariables CS and RS represent any concept and role symbols, respec-
tively. Semantics of ALC is defined in the standard way in accordance with Def-
inition 3.

Many description logics can be defined as extensions of ALC by concept
and/or role constructs. For example, the website [13] uses the following approach:
for any collection of concept and/or role constructs C&R, let ALC(C&R) be a
‘closure’ of ALC that admits all concept and/or role constructs in C&R. Formal
definitions follows.

Definition 7. A variant of DL is a description logic L with syntax that

– contains all concept and role symbols CS and RS,
– is closed under concept constructs ‘¬’, ‘t’, ‘u’, ‘∀’ and ‘∃’.

From the viewpoint of the above definition, ALC is the smallest variant4 of DL.

Definition 8. Let L be a variant of DL and C&R be a collection of concept
and/or role constructs. Then let L(C&R) be the smallest variant of DL that
includes L and is closed under all constructs in C&R.

For instance, ALC(¬,−) is an extension of ALC where any role symbol can be
negated and/or inverted. This variant of DL has decidable satisfiability problem
[11, 7].

2 Integrating FCA operations to DL

Basic Formal Concept Analysis (FCA) definitions below follow monograph [3].

Definition 9. A formal context is a triple (O,A,B) where O and A are sets
of ‘objects’ and ‘attributes’ respectively, and B ⊆ O × A is a binary relation
connecting objects and attributes. Let us say that a formal context (O,A,B) is
homogeneous5 iff O = A, i.e. the set of objects coincide with the set of attributes.

For example, for every terminological interpretation (D, I) and every role
r one can define a formal context (D,D, I(r)). It implies that every termino-
logical interpretation (D, I) defines a family of homogeneous formal contexts
(D,D, I(R)) indexed by role symbols R ∈ RS or by role terms R ∈ RT .

Vise verse, there is a number of ways how to define a terminological inter-
pretation for given formal contexts. For example, if we have a family of formal
contexts (Oj , Aj , Bj) indexed by elements of some set J , then we can adopt the
set of indices J as the alphabet role symbols RS, a set of symbols {oj , aj : j ∈ J}
as the alphabet of concept symbols CS, and define a terminological interpreta-
tion (D, I) where

4 Of course, ‘smaller’ description logics can be defined and examined by means of
stronger syntax restrictions.

5 ‘Homogeneous’ is our own non-standard FCA term.
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01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
01: Fun95 x
02: God93
03: God95 x
04: God98 x x x
05: Huc99 x
06: Huc02 x x
07: Kro94
08: Kui00 x x x x x x x
09: Leb99 x
10: Lin95 x
11: Lin97 x x x
12: Sah97 x x x
13: Sif97 x x x
14: Sne96 x x
15: Sne98C x x x x x x
16: Sne98R x x x x x x
17: Sne99 x x x x x x x x x
18: Sne00S x x x x x x x
19: Sne00U x x x x x x x
20: Str99 x x x
21: Til03S x x
22: Til03T
23: Ton99 x x x x
24: Tone01 x x x x x
25: Van98 x x x x

Table 1. Context Citations

– D = ∪j∈J (Oj ∪ Aj),
– I(j) = Bj ⊆ (Oj ×Aj) ⊆ D ×D for every j ∈ J ,
– I(aj) = Aj ⊆ D and I(oj) = Oj ⊆ D for every j ∈ J .

Table 1 represents an example of a homogeneous formal context Citations
from [10]. It represents citations between papers in some collection. In this par-
ticular case the set of objects (rows) and the set of attributes (columns) are both
equal to [1..25].

Two basic algebraic operations for formal contexts are upper and lower
derivations. These operations are used in the definition of a notion of a formal
concept, its extent and intent.

Definition 10. Let (O,A,B) be a formal context. For every set of objects X ⊆
O its upper derivation X↑ is the following set of attributes

{t ∈ A : for every s ∈ O, if s ∈ X then (s, t) ∈ B},
i.e. the collection of all attributes that are satisfied by all objects in X simultane-
ously. For every set of attributes Y ⊆ A its lower derivation Y ↓ is the following
set of objects

{s ∈ O : for every t ∈ A, if t ∈ Y then (s, t) ∈ B},
i.e. the collection of all objects that satisfy to all objects in Y simultaneously. A
formal concept is a pair (Ex, In) such that Ex ⊆ O, In ⊆ A, and Ex↑ = In,
In↓ = Ex; components Ex and In of the formal concept (Ex, In) are called its
extent and its intent respectively.
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For example, {3, 4}↑ = {2} and {2}↓ = {3, 4, 5, 9, 16, 17, 19} in the context
Citations. Pair ({1, 4, 10, 11, 14, 15, 16, 17, 18, 19, 23, 24} , {7}) is an example
of a formal concept in the formal context Citations.

Definition 11. Let L be a variant of DL. Then let L/FCA be a variant of DL
that is the closure of L with respect to two new formula constructors for the upper
and lower derivatives. Syntax of these two constructs is as follows: for every role
term R and every concept term X let (X↑R) and (X↓R) be concept terms too.
They are read as ‘upper derivative of X with respect to R’ and, respectively, as
‘lower derivative of X with respect to R’. For every terminological interpretation
(D, I),
– I(X↑R) = {t : for every s ∈ D, if s ∈ I(X) then (s, t) ∈ I(R)}, i.e. the

upper derivation of I(X) in a homogenous formal context (D,D, I(R));
– I(X↓R) = {s : for every t ∈ D, if t ∈ I(X) then (s, t) ∈ I(R)}, i.e. the

lower derivation of I(X) in a homogenous formal context (D,D, I(R)).

In particular, ALC/FCA is an extension of ALC where both derivative construc-
tors are allowed.

Proposition 1.

1. Let L be a variant of DL. For every role and concept terms within L the
following concepts of L/FCA and L(¬,−) are equivalent (i.e. have equal
semantics in every terminological interpretation):
(a) X↑R and ∀¬R−. ¬X,
(b) X↓R and ∀¬R. ¬X.

2. L/FCA can be expressed in L(¬,−) with linear complexity, i.e. every con-
cept X in L/FCA is equivalent to some concept Y in L(¬,−) that can be
constructed in linear time.

Proposition 2. For every terminological interpretation (D, I), every concept
terms X and Y of DL, and every role term R of DL the following holds:

a pair of sets (I(X) , I(Y )) is a formal concept
in the homogeneous formal context (D,D, I(R))

m
(D, I) is a terminological model

for the following two terminological sentences
X↑R .= Y and Y ↓R .= X.

Proposition 2 makes sense to the following definition.
Definition 12.
For any concept terms X and Y , for any role term R, let (X,Y )FC(R) be a
‘terminological sentence’ that is a shorthand (a notation or an abbreviation) for
the following pair of standard terminological sentences X↑R .= Y and Y ↓R .= X.
This notation is read as ‘(X,Y) is a Formal Concept with respect to R’.

The above propositions and the decidability of the satisfiability problem for
ALC(¬,−) [7] together imply the next corollary.
Corollary 1. The satisfiability problem for ALC/FCA (including terminological
sentences for formal concepts) is decidable.

464 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 465 — #475 i
i

i
i

i
i

3 Concluding Remarks

The primary target of our research was to make explicit relations between two
formalisms for reasoning about concepts. The first formalism, Formal Concept
Analysis (FCA), is of algebraic nature. The second one, Description Logic (DL),
is of logical nature. We have demonstrated in the present paper that FCA can
be ‘absorbed’ by DL at least from viewpoint of ‘abstract’ expressive power. It
implies that any collection set-theoretic (in)equalities written in terms of unin-
terpreted symbols for individual objects and attributes, for sets of objects and
attributes, for formal contexts and concepts, with aid of set-theoretic operations,
FCA operations for upper and lower derivative, intent and extent operations,
can be easy translated to a description logic knowledge base, so that the base
is satisfiable iff there is a formal context where all these (in)equalities realize si-
multaneously. Since the satisfiability problem is decidable for many Description
Logics, the realization problem for collections of (in)equalities of this kind can
be done (as a rule) automatically (i.e. by some algorithm).

At the same time in the present paper we give a partial answer to a question
from [12], whether a variant of Propositional Dynamic Logic (PDL) extended
by upper and lower derivations for atomic programs is decidable. PDL [5, 6] has
been introduced by M.J. Fischer and R.E. Ladner as an extension of the clas-
sical propositional logic and propositional modal logic K for reasoning about
partial correctness of structured nondeterministic programs. Many variants of
PDL have been studied extensively especially from the viewpoint of decidability
and axiomatizability. In particular, recently C. Lutz and D. Walther [8] have
proved that PDL with complement of atomic programs is decidable in exponen-
tial time (while it is well known that in general case PDL with complement is
undecidable).

Paper [12] has introduced and studied PDL/FCA – a variant of PDL ex-
tended by modalities inspired by Formal Concept Analyses (FCA). Formal se-
mantics of these modalities is upper and, respectively, lower derivations. (Please
refer [12] for discussion on utility of these modalities for program specification
and verification.)

Paper [12] has proved that PDL/FCA is more expressive than PDL, and has
interpreted a fragment of PDL/FCA without upper derivation in PDL with com-
plement. It implies decidability of PDL extended by extent of atomic programs
with exponential upper bound (since PDL with complement of atomic programs
is decidable [8]). It remains an open question whether PDL/FCA (without any
restriction for upper and lower derivations) is decidable and what is the expres-
sive power of this logic (with respect to PDL with complement). But now (due to
Corollary 1) we can claim that a fragment of PDL/FCA with atomic programs
is decidable (since this fragment is equal to ALC/FCA).

There is a number of research papers on combination of Formal Concept
Analysis with Description Logic for better knowledge processing6. But there are

6 For instance please refer a recent paper [1], but a survey of this topic is out of scope
of the present paper.
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few papers on comparison and integration of both formalism in one. We can
point just a single one [10] related to this topic. The cited paper has attempted
to develop in the framework of FCA an algebraic operation inspired by the
universal restriction of DL and to demonstrate an utility of it for analysis of
relational data. In accordance with [10], the attempt has resulted in a so-called
‘Relational Concept Analysis’ that had been implemented in an open platform
Galicia for lattices.

Acknowledgement: We would like to thank Prof. Karl Erich Wolff for
fruitful discussions of the research and for the comments on the draft of this
paper. We also would like to thanks an anonymous referee for pointing a paper
[4], where a construct corresponding to the lower derivation operator has been
considered before our research in a framework of description logics.
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Abstract. We outline DLMedia, an ontology mediated multimedia information
retrieval system, which combines logic-based retrieval with multimedia feature-
based similarity retrieval. An ontology layer may be used to define (in terms of a
DLR-Lite like description logic) the relevant abstract concepts and relations of the
application domain, while a content-based multimedia retrieval system is used for
feature-based retrieval.

1 Introduction

Multimedia Information Retrieval (MIR) concerns the retrieval of those multimedia ob-
jects of a collection that are relevant to a user information need.

Here we outline DLMedia, an ontology mediated Multimedia Information Retrieval
(MIR) system , which combines logic-based retrieval with multimedia feature-based sim-
ilarity retrieval. An ontology layer may be used to define (in terms of a DLR-Lite like
description logic) the relevant abstract concepts and relations of the application domain,
while a content-based multimedia retrieval system is used for feature-based retrieval.

2 The Logic-based MIR Model in DLMedia

Overall, DLMedia follows the Logic-based Multimedia Information Retrieval (LMIR)
model described in [9] (see [9] for an overview on LMIR literature. A recent work is also
e.g. [6]). Let us first roughly present (parts of) the LMIR model of [9]. In doing this, we
rely on Figure 1. The model has two layers addressing the multidimensional aspect of
multimedia objects o ∈ O (e.g. objects o1 and o2 in Figure 1): that is, their form and
their semantics (or meaning). The form of a multimedia object is a collective name for
all its media dependent, typically automatically extracted features, like text index term
weights (object of type text), colour distribution, shape, texture, spatial relationships (ob-
ject of type image), mosaiced video-frame sequences and time relationships (object of
type video). On the other hand, the semantics (or meaning) of a multimedia object is a
collective name for those features that pertain to the slice of the real world being rep-
resented, which exists independently of the existence of a object referring to it. Unlike
form, the semantics of a multimedia object is thus media independent (typically, con-
structed manually perhaps with the assistance of some automatic tool). Therefore, we
have two layers, the object form layer and the object semantics layer. The former rep-
resents media dependent features of the objects, while the latter describes the semantic
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Fig. 1. LMIR model layers and objects

properties of the slice of world the objects are about. The semantic entities (e.g., Snoopy,
Woodstock), which objects can be about are called semantic index terms (t ∈ T). The
mapping of objects o ∈ O to semantic entities t ∈ T (e.g., “object o1 is about Snoopy”) is
called semantic annotation. According to the fuzzy information retrieval model (e.g. [2]),
semantic annotation can be formalized as a membership function F : O× T→ [0, 1] de-
scribing the correlation between multimedia objects and semantic index terms. The value
F (o, t) indicates to which degree the multimedia object o deals with the semantic index
term t. Depending on the context, the function F may be computed automatically (e.g.,
for text we may have [4], for images we may have an automated image annotation (clas-
sification) tool, as e.g. [5]).

Corresponding to the two dimensions of a document just introduced, there are three
categories of retrieval: one for each dimension (form-based retrieval and semantics-based
retrieval) and one concerning the combination of both of them. The retrieval of informa-
tion based on form addresses, of course, the syntactical properties of documents. For
instance, form-based retrieval methods automatically create the document representa-
tions to be used in retrieval by extracting low-level features from documents, such as the
number of occurrences of words in text, or color distributions in images. To the contrary,
semantics-based retrieval methods rely on a symbolic representation of the meaning of
documents, that is descriptions formulated in some suitable formal language. Typically,
meaning representations are constructed manually, perhaps with the assistance of some
automatic tool.

A data model for MIR not only needs both dimensions to be taken into account, but
also requires that each of them be tackled by means of the tools most appropriate to it,
and that these two sets of tools be integrated in a principled way. DLMedia’s data model
is based on logic in the sense that retrieval can be defined in terms of logical entailment
as defined in the next section.

3 The DLMedia query and representation language

For computational reasons the particular logic DLMedia adopt is based on a DLR-Lite [3]
like Description Logic (DL) [1]. The DL will be used in order to both define the relevant
abstract concepts and relations of the application domain, as well as to describe the in-
formation need of a user.

Our DL is enriched with build-in predicates allowing to address all three categories of
retrieval (form-based, semantic-based and their combination). To support query answer-
ing, the DLMedia system has a DLR-Lite like reasoning component and a (feature-based)
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multimedia retrieval component. In the latter case, we rely on our multimedia retrieval
system MILOS 1.

In order to support reasoning about form and content, DLMedia provides a logical
query and representation language, which closely resembles a fuzzy variant DLR-Lite [3,
12, 11] with fuzzy concrete domains [10].

The concrete predicates that we allow are not only relational predicates such as
(x ≤ 1500) (e.g. x is less or equal than 1500), but also similarity predicates such as
(x simTxt ′logic, image, retrieval′), which given a piece of text x returns the system’s
degree (in [0, 1]) of being x about the keywords ’logic, image, retrieval’.

A fuzzy concrete domain (or simply fuzzy domain) is a pair 〈∆D, ΦD〉, where ∆D is an
interpretation domain and ΦD is the set of fuzzy domain predicates d with a predefined
arity n and an interpretation dD:∆n

D → [0, 1]. An axiom is of the form (m ≥ 1)

Rl1 u . . . uRlm v Rr ,
where Rl is a so-called left-hand relation and Rr is a right-hand relation with following
syntax (l ≥ 1):

Rr −→ A | ∃[i1, . . . , ik]R
Rl −→ A | ∃[i1, . . . , ik]R | ∃[i1, . . . , ik]R.(Cond1 u . . . u Condl)
Cond −→ ([i] ≤ v) | ([i] < v) | ([i] ≥ v) | ([i] > v) | ([i] = v) | ([i] 6= v) |

([i] simTxt ′k1, . . . , k
′
n) | ([i] simImg URN)

where A is an atomic concept, R is an n-ary relation with 1 ≤ i1, i2, . . . , ik ≤ n, 1 ≤
i ≤ n and v is a value of the concrete interpretation domain of the appropriate type. In-
formally, ∃[i1, . . . , ik]R is the projection of the relation R on the columns i1, . . . , ik (the
order of the indexes matters). Hence, ∃[i1, . . . , ik]R has arity k. ∃[i1, . . . , ik]R.(Cond1u
. . . u Condl) further restricts the projection ∃[i1, . . . , ik]R according to the conditions
specified in Condi. For instance, ([i] ≤ v) specifies that the values of the i-th column
have to be less or equal than the value v, ([i] simTxt ′k1 . . . k

′
n) evaluates the degree

of being the text of the i-th column similar to the list of keywords k1 . . . kn, while
([i] simImg URN) returns the system’s degree of being the image identified by the i-th
column similar to the object o identified by the URN (Uniform Resource Name 2). We fur-
ther assume that allRli andRr inRl1u. . .uRlm v Rr have the same arity. For instance
assume we have a relation Person(name, age, father name,mother name, gender)
then the following are axioms:

∃[1, 2]Person v ∃[1, 2]hasAge
// constrains relation hasAge(name, age)

∃[3, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(father name, name)

∃[4, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(mother name, name)

∃[3, 1]Person.(([2] ≥ 18) u ([5] =′ female′) v ∃[1, 2]hasAdultDaughter
// constrains relation hasAdultDaughter(father name, name)

Note that in the last axiom, we require that the age is greater or equal than 18 and the
gender is female. On the other hand examples axioms involving similarity predicates are,

∃[1]ImageDescr.([2] simImg urn1) v Child (1)

1 http://milos.isti.cnr.it/
2 http://en.wikipedia.org/wiki/Uniform_Resource_Name
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∃[1]T itle.([2] simTxt ′lion′) v Lion (2)

where urn1 identifies the image in Figure 2. The former axiom (axiom 1) assumes that
we have an ImageDescr relation, whose first column is the application specific image
identifier and the second column contains the image URN. Then, this axiom (informally)
states that an image similar to the image depicted in Figure 2 is about a Child (to a sys-
tem computed degree in [0, 1]).

Fig. 2. Service Model

Similarly, in axiom (2) we assume that an image is an-
notated with a metadata format, e.g. MPEG-7, the at-
tribute Title is seen as a binary relation, whose first
column is the identifier of the metadata record, and the
second column contains the title (piece of text) of the
annotated image. Then, this axiom (informally) states that an image whose metadata
record contains an attribute Title which is about ’lion’ is about a Lion. The following
example

∃[1]F vMultiMediaObject
∃[2]F v SemanticIndexTerm
∃[1, 2]F v ∃[1, 2]IsAbout

gives some constraints on the semantic annotation function F .
From a semantics point of view, DLMedia is based on fuzzy logic, both because the

the LMIR annotation model it is based on the fuzzy information retrieval model, as well
as each instance of atoms and relations may have a score, and, thus we have to define
how these scores are combined using the logical connectives of the language.

Given a fuzzy concrete domain 〈∆D, ΦD〉, an interpretation I = 〈∆, ·I〉 consists of
a fixed infinite domain ∆, containing ∆D, and an interpretation function ·I that maps
every atom A to a function AI :∆→ [0, 1] and maps an n-ary predicate R to a function
RI :∆n → [0, 1] and constants to elements of ∆ such that aI 6= bI if a 6= b (unique
name assumption). We assume to have one object for each constant, denoting exactly
that object. In other words, we have standard names, and we do not distinguish between
the alphabet of constants and the objects in ∆. Furthermore, we assume that the relations
have a typed signature and the interpretations have to agree on the relation’s type. For
instance, the second argument of the Title relation (see axiom 2) is of type String
and any interpretation function requires that the second argument of TitleI is of type
String. To the easy of presentation, we omit the formalization of this aspect and leave
it at the intuitive level. In the following, we use c to denote an n-tuple of constants, and
c[i1, ..., ik] to denote the i1, . . . , ik-th components of c. For instance, (a, b, c, d)[3, 1, 4]
is (c, a, d). Let t be a so-called T-norm, which is a function used to combine the truth of
“conjunctive” expressions. 3 Then, ·I has to satisfy, for all c ∈ ∆k and n-ary relation R:

(∃[i1, . . . , ik]R)I(c) = supc′∈∆n, c′[i1,...,ik]=cR
I(c′)

(∃[i1, . . . , ik]R.(Cond1 u . . . u Condl))I(c) =
supc′∈∆n, c′[i1,...,ik]=c t(R

I(c′), Cond1
I(c′), . . . , CondlI(c′))

3 t has to be symmetric, associative, monotone in its arguments and t(x, 1) = x. Examples of
t-norms are: min(x, y), x · y, max(x+ y − 1, 0).
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with ([i] ≤ v)I(c′) = 1 if c′[i] ≤ v, and ([i] ≤ v)I(c′) = 0 otherwise (and similarly for
the other comparison operators), while

([i] simTxt ′k1, . . . , k
′
n)
I
(c′) = simTxtD(c′[i],′ k1, . . . , k

′
n) ∈ [0, 1]

([i] simImg URN)I(c′) = simImgD(c′[i], URN) ∈ [0, 1] .

It is pretty clear that many other concrete predicates can be added as well.
Then, I |= Rl1 u . . . u Rlm v Rr iff for all c∈∆n, t(Rl1I(c), . . . , RllI(c)) ≤

RrI(c), where we assume that the arity of Rr and all Rli is n.
Concerning queries, a query consists of a conjunctive query of the form

q(x)← R1(z1) ∧ . . . ∧Rl(zl) ,

where q is an n-ary predicate, every Ri is an ni-ary predicate, x is a vector of variables,
and every zi is a vector of constants, or variables. We call q(x) its head and R1(z1) ∧
. . . ,∧Rl(zl) its body. Ri(zi) may also be a concrete unary predicate of the form (z ≤
v), (z < v), (z ≥ v), (z > v), (z = v), (z 6= v), (z simTxt ′k1, . . . , k

′
n), (z simImg URN),

where z is a variable, v is a value of the appropriate concrete domain, ki is a keyword
and URN is an URN. Example queries are:

q(x)←Child(x)
// find objects about a child (strictly speaking, find instances of Child)

q(x)←CreatorName(x, y) ∧ (y =′ paolo′), T itle(x, z), (z simTxt ′tour′)
// find images made by Paolo whose title is about ’tour’

q(x)← ImageDescr(x, y) ∧ (y simImg urn2)
// find images similar to a given image identified by urn2

q(x)← ImageObject(x) ∧ isAbout(x, y1) ∧ Car(y1) ∧ isAbout(x, y2) ∧Racing(y2)
// find image objects about cars racing

From a semantics point of view, an interpretation I is a model of a rule r of form
q(x)←φ(x,y), where φ(x,y) is R1(z1) ∧ . . . ∧ Rl(zl), denoted I |= r, iff for all
c∈∆n:

qI(c) ≥ sup
c′∈∆×···×∆

φI(c, c′) ,

where φI(c, c′) is obtained from φ(c, c′) by replacing every Ri by RIi , and the T-norm
t is used to combine all the truth degrees RIi (c′′) in φI(c, c′).

Finally, in DL-Media, we may also have so-called set of facts, i.e. a finite set of
instances of relations, i.e. a set of expressions of the form

〈R(c1, . . . , cn), s〉 ,

whereR is an n-ary predicate, every ci is a constant and s is the degree of truth (score) of
the fact. If s is omitted, as e.g. in traditional databases, then the truth degree 1 is assumed.
I |= 〈R(c1, . . . , cn), s〉 iff RI(c1, . . . , cn) ≥ s.

For instance, related to Figure 1, we may have the facts

〈F (o1, snoopy), 0.8〉 〈F (o2, woodstock), 0.6〉
Dog(snoopy) Bird(woodstock) .
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A DLMedia multimedia baseK = 〈F ,O〉 consists of a facts component F , and a axioms
componentO. I |= K iff I is a model of each component ofK. We sayK entailsR(c) to
degree s, denotedK |= 〈R(c), s〉, iff for each model I ofK, it is true thatRI(c)≥ s. The
greatest lower bound of R(c) relative to K is glb(K, R(c)) = sup{s | K |= 〈R(c), s〉}.

The basic inference problem that is of interest in DLMedia is the top-k retrieval
problem, formulated as follows. Given a multimedia base K and a query with head q(x),
retrieve k tuples 〈c, s〉 that instantiate the query predicate q with maximal score, and rank
them in decreasing order relative to the score s, denoted

ansk(K, q) = Topk{〈c, s〉 | s = glb(K, q(c))} .
From a reasoning point of view, the DLMedia system extends the DL-Lite/DLR-Lite
reasoning method [3] to the fuzzy case. The algorithm is a straightforward extension of
the one described in [12, 11]). Roughly, given a query q(x)← R1(z1) ∧ . . . ∧Rl(zl),
1. by considering O only, the user query q is reformulated into a set of conjunctive

queries r(q,O). Informally, the basic idea is that the reformulation procedure closely
resembles a top-down resolution procedure for logic programming, where each ax-
iom is seen as a logic programming rule. For instance, given the query q(x)← A(x)
and suppose that O contains the axioms B1 v A and B2 v A, then we can refor-
mulate the query into two queries q(x) ← B1(x) and q(x) ← B2(x), exactly as it
happens for top-down resolution methods in logic programming;

2. the reformulated queries in r(q,O) are evaluated over F only (which is solved by
accessing a top-k database engine [7] and a multimedia retrieval system), producing
the requested top-k answer set ansk(K, q) by applying the Disjunctive Threshold
Algorithm (DTA, see [12] for the details). For instance, for the previous query, the
answers will be the top-k answers of the union of the answers produced by all three
queries.

4 DLMedia at work

A preliminary prototype of the DLMedia system has been implemented. The architecture
is pretty similar to the QuOnto system 4. The main interface is shown in Figure 3.

In the upper pane, the currently loaded ontology component O is shown. Below it
and to the right, the current query is shown (“find a child”, we also do not report here the
concrete syntax of the DLMedia DL).

So far, in DLMedia, given a query, it will be transformed, using the ontology, into
several queries (according to the query reformulation step described above) and then the
conjunctive queries are transformed into appropriate queries (this component is called
wrapper) in order to be submitted to the underlying database and multimedia engine. To
support the query rewriting phase, DLMedia allows also to write schema mapping rules,
which map e.g. a relation name R into the concrete name of a relational table of the
underlying database. The currently supported wrappers are for (of course other wrappers
can be plugged in as well.)

– the relational database system Postgres; 5

4 http://www.dis.uniroma1.it/˜quonto/.
5 http://www.postgresql.org/
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Fig. 3. DLMedia main interface.

– the relational database system with text similarity MySQL; 6 and
– our multimedia retrieval system Milos, which supports XML data.

For instance, the execution of the toy query shown in Figure 3 (“find a child”) produces
the ranked list of images shown in Figure 4.

5 Conclusions

In this work, we have outlined the DLMedia system, i.e. an ontology mediated multime-
dia retrieval system. Main features (so far) of DLMedia are that: (i) it uses a DLR-Lite(D)
like language as query and ontology representation language; (ii) it supports queries
about the form and content of multimedia data; and (iii) is scalable -though we did not
address it here, query answering in DLMedia is LogSpace-complete in data complexity.
The data complexity of DLMedia directly depends by the data complexity of the under-
lying database and multimedia retrieval engines.
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Abstract. We present a non-standard interpretation for concept expressions in
ALCQ that defines approximate notions of subsumption based on approximat-
ing a subset of the concept and role names. We present the non-standard seman-
tics, and the corresponding notion of approximate subsumption, discuss its for-
mal properties and show that is can be computed by syntactic manipulations of
concept expressions.

1 Introduction

Description Logics are becoming more and more popular as a formalism for repre-
senting and reasoning about conceptual knowledge in different areas such as databases
and semantic web technologies. In particular, subsumption reasoning for expressive
ontologies has been used to compute matches between conceptual descriptions in the
context of different real world tasks including information integration, product and ser-
vice matching and data retrieval. In practical situations, however, it often turns out that
logical reasoning is inadequate in many cases, because it does not leave any room for
partial matches.

Recently, there are some efforts that try to address this problem by combining de-
scription logics with numerical techniques for uncertain reasoning in OWL, in particular
with techniques for probabilistic [1] and fuzzy reasoning [2]. These approaches are able
to compute partial matches by assigning an assessment of the degree of matching to the
subsumption relation. This degree of matching normally is a real number or an interval
between zero and one and therefore allows some ordering of the solutions. Although, in
principle this is a solution to the problem of computing the best partial match but defin-
ing an interpreting numerical assessments of uncertainty is a difficult problem. Further,
the reduction to a single numerical assessment of the mismatch does not allow different
users to discriminate between different kinds of mismatches.

In this paper, we propose a notion of approximate subsumption that supports the
computation of partial matches between complex concept expressions without relying
on a single number to represent the degree of mismatch. Instead, the approach describes
the degree of matching in terms of a subset of the aspects of the request that are met by
the solution. This approach allows the user to decide whether to accept a partial match
based on whether important aspects are missed or not. In order to implement this ap-
proach we borrow from the area of approximate deduction. In particular, we extend the
notion of S-Interpretations of propositional logic proposed in [3] to description logics
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and use the result notion of a non-standard interpretation of concept expressions to de-
fine an approximate subsumption operator that computes subsumption with respect to a
particular subset of the vocabulary used.

2 Approximation based on Sub-Vocabularies

In propositional logic, the vocabulary of a formula consists of a set of propositional
letters. A formula consists of a Boolean expression over these letters. A classical inter-
pretation I assigns to each letter either the value true or false. The semantics of negation
now implies that a letter and its negation cannot have the same truth value, in particular,
for all propositional letters p one of the following :

I(p ∧ ¬p) = false

I(p ∨ ¬p) = true (1)

Checking satisfiability of a formula relies on showing that there is no assignment of
truth values that satisfies this condition and makes the whole formula true. A possible
way for approximating satisfiability testing for propositional logic is now to restrict the
condition above to a subset of the propositional letters. This subset is denoted as S and
the corresponding interpretation is called an S-interpretation of the formula [3].

Depending on how the letters not in S are treated, an S-Interpretation is sound or
complete with respect to the classical interpretation. One kind of non-standard interpre-
tation called S-3 Interpretation assigns both, a letter and its negation to true.

I(p ∧ ¬p) = true, p 6∈ S (2)

When applying this interpretation to the satisfiability problem, we observe that formu-
las that were unsatisfiable before now become satisfiable. This means that the resulting
calculus is sound, but incomplete, because some results that could be proven using the
principle of proof by refutation can not be proven any more, because the conjunction of
the knowledge base with the negation of the result to be proven becomes satisfiable un-
der the new interpretation. The counterpart of S-3 interpretation are S-1 Interpretations
that assign false to both a letters and their negation if the letters are not in the set S.

I(p ∨ ¬p) = false, p 6∈ S (3)

Following the same argument as above, S-1 Interpretations define a complete but un-
sound calculus for propositional logic. In both cases, the advantage of the approach is
that we can decide which parts of the problem to approximate by selecting an appropri-
ate set of letters S. Therefore the approach provides a potential solution to the problem
of partial matching described above.

The idea of our approach is now to apply the underlying idea of S-Interpretations
to the Description Logic ALCQ which covers most of the expressive power of OWL
in order to support approximate subsumption reasoning where parts of the vocabulary
are interpreted in the classical way and other parts are approximated. In fact, Cadoli
and Schaerf do propose an extension of S-Interpretations to Description logics, but
they define S not in terms of a subset of the vocabulary, but in terms of the structure
of the concept expression [4]. In [5] it has been shown that this way of applying S-
Interpretations to description logics does not produce satisfying results on real data.
In this paper, we therefore propose an alternative way of defining S-Interpretations for
description logics which is closer to the notion of S-Interpretations in propositional
logic. The idea is to interpret description logics as an extension of propositional logic,
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where class names correspond to propositional letters1. As for propositional logic, we
select a subset of the class names that is interpreted in the classical way and approximate
class names not in this set. In particular, a classical interpretation (∆I , I) of class names
requires that a concept name and its negation form a disjoint partition of the domain:

C
I ∩ (¬C)I = ∅

C
I ∪ (¬C)I = ∆

I (4)

We can now define approximations for description logics by relaxing these require-
ments for a subset of the concept names. The corresponding S-3 and S-1 Interpretations
are very similar to the ones for propositional logic. In particular, for S-3 Interpretations
we have.

C
I ∩ (¬C)I = ∆

I
, C 6∈ S (5)

This means that both, C and ¬C are mapped to ∆I by the interpretation. As a con-
sequence, the concept name C cannot cause a clash in a tableaux proof and therefore,
constraints that force a certain value to be of type C will be ignored in a subsumption
proof. The resulting subsumption operator is sound, but incomplete. For S-1 Interpreta-
tions, we have

C
I ∪ (¬C)I = ∅, C 6∈ S (6)

which means that both C and ¬C are mapped to the empty set. In a tableaux proof,
all attempts to construct a model that involves a variable of type C will fail. The cor-
responding subsumption operator is complete, but unsound with respect to classical
subsumption.

While approximation based on concept names is a straightforward application of
the notion of S-1 and S-3 interpretations, things become more complicated if we want
to extend the approach to relation names. In Description Logics relations are used to
formulate constraints that apply to all members of a certain class. The most general
formulation of these constraints is in terms of qualified number restrictions. Qualified
number restrictions have the following form (≤ n r.C) or (≥ n r.C) where n is a
positive natural number (including zero ), r is the name of a binary relation and C is
a concept expression. In a tableaux these qualified number restrictions are a second
potential source of inconsistency besides the negation operator. In particular, we have

(≤ n r.C)I ∩ (≥ m r.C)I = ∅ for all n < m

on the other hand, we have

(≤ nr.C)I ∪ (≥ mr.C)I = ∆
I for all n ≥ m

We can use this analogy to extend the notion of S-1 and S-3 interpretations to qualified
number restrictions in the following way. For S-3 Interpretations we define that

(≤ n r.C)I ∪ (≥ m r.C)I = ∆
I for all r 6∈ S (7)

In particular, we weaken the condition for the expression to become the universal con-
cept by making it independent of the values for m and n. Further, we claim that the
conjunction of qualified number expressions can never be the empty concept, i.e.

(≤ n r.C)I ∩ (≥ m r.C)I 6= ∅ for all r 6∈ S (8)

1 In fact, a description logic that just contains the Boolean operators is equivalent to proposi-
tional logic.
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This leaves us with a weaker interpretation, because inconsistencies arising from the
relations not in the set S cannot be detected. For S-1 interpretations, we make analogous
claim by demanding that the union of two qualified number restrictions can never be
the universal concept

(≤ n r.C)I ∪ (≥ m r.C)I 6= ∆
I for all r 6∈ S (9)

Further, we strengthen the interpretation by claiming that the intersection of the two
qualified number restrictions on the same relation and concept is always inconsistent

(≤ n r.C)I ∩ (≥ m r.C)I = ∅ for all r 6∈ S (10)

This gives us a stronger version of the semantics, because any two assertions using this
relation in combination with the same concept expression C leads to an inconsistency2.
The result is a complete but unsound subsumption operator. This unsound approxi-
mation operator is exactly what we need for specifying the notion of a partial match,
because it forces a match on the constraints involving class names from S and treats
constraints involving classes not in S as optional. Using subsumption operators with
different sets S, we can focus on different aspects of the matching task and also rank
results based on the number of requirements met. In the following, we will therefore
concentrate on complete, but unsound approximations of subsumption reasoning for
concept expressions based on the idea described above. In particular, we will formally
specify non-standard interpretations and define a family of approximate subsumption
operators that can be used to compute partial matches.

3 Non-Standard Semantics

In the following, we introduce a non-standard interpretation for concept expressions in
the logic ALCQ. A limited vocabulary is a subset S ⊆ V of the concept and relation
names occurring in a concept expression. Our aim is to define approximate reasoning
in Description Logics based on such a subset of the vocabulary. For this purpose, we
define an upper and a lower approximation of an interpretation I with respect to a set
S referred to as I+

S and I−S respectively. We call I+
S an upper approximation and I−S a

lower approximation of I with respect to S.

Definition 1 (Lower Approximation). A lower approximation of an interpretation I
with respect to S is a non standard interpretation (∆I , I−S ) such that:

A
I−

S =


AI A ∈ S
∅ otherwise

(11)

(¬C)
I−

S = ∆
I − C

I+
S (12)

(C uD)
I−

S = C
I−

S ∩D
I−

S (13)

(C tD)
I−

S = C
I−

S ∪D
I−

S (14)

(≥ n r.C)
I−

S =

8><>: {x|#{y.(x, y) ∈ rI ∧ y ∈ C
I−

S } ≥ n} r ∈ S

{x|#{y.(x, y) ∈ rI ∧ y ∈ C
I−

S } ≥ ∞} otherwise

(15)

(≤ n r.C)
I−

S =

8><>: {x|#{y|(x, y) ∈ rI ∧ y ∈ C
I+

S } ≤ n} r ∈ S

{x|#{y|(x, y) ∈ rI ∧ y ∈ C
I+

S } ≤ 0} otherwise

(16)

2 As we will see later, it is sufficient if the two restrictions use concept expressions that are
logically equivalent
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where (∆I , I+
S ) is an upper approximation as defined in definition 2

Definition 2 (Upper Approximation). An upper approximation of an interpretation I
with respect to S is a non standard interpretation (∆I , I+

S ) such that:

A
I+

S =

(
AI A ∈ S

∆I otherwise
(17)

(¬C)
I+

S = ∆
I − C

I−
S (18)

(C uD)
I+

S = C
I+

S ∩D
I+

S (19)

(C tD)
I+

S = C
I+

S ∪D
I+

S (20)

(≥ n r.C)
I+

S =

8><>: {x|#{y.(x, y) ∈ rI ∧ y ∈ C
I+

S } ≥ n} r ∈ S

{x|#{y.(x, y) ∈ rI ∧ y ∈ C
I+

S } > 0} otherwise

(21)

(≤ n r.C)
I+

S =

8><>: {x|#{y|(x, y) ∈ rI ∧ y ∈ C
I−

S } ≤ n} r ∈ S

{x|#{y|(x, y) ∈ rI ∧ y ∈ C
I−

S } < ∞} otherwise

(22)

where (∆I , I−S ) is a lower approximation as defined in definition 1

A nice property of this definition is that it ensures the existence of a negation normal
form that can be computed using the same transformation rules as usually.

Corollary 1 (Negation Normal Form). For every concept expression C there is an ex-
pression nnf(C) in negation normal form such that nnf(C)I

−
S = CI

−
S and nnf(C)I

+
S =

CI
+
S

Another useful property of the non standard interpretation is that it makes concept
expressions strictly more general for upper and strictly more specific for lower approx-
imations. This property which we call monotonicity is important in order to be able to
guarantee formal properties of approximation methods defined based on this interpreta-
tion. Therefore the following theorem describes a central property of approximation in
description logics.

Lemma 1 (Monotonicity). Given a non-standard interpretation as defined above, the
following equation holds for all concept expressions C:

C
I−

S ⊆ C
I ⊆ C

I+
S (23)

We can generalize the theorem by observing that the standard interpretation is an
extreme case of the non-standard interpretation with S = V . In particular, the gen-
eral version of monotonicity says that for upper approximations removing names from
the set S will make concepts expressions strictly more general. Conversely, for lower
approximations concept expressions become less general when we remove concept or
relation names from the set S. The corresponding general property is defined in the
following theorem:

Lemma 2 (Generalized Monotonicity). Given a non-standard interpretation as de-
fined above and two sub-vocabularies S1 and S2 with S1 ⊆ S2, the following equations
hold for all concept expressions C:

C
I−

S1 ⊇ C
I−

S2 C
I+

S1 ⊆ C
I+

S2 (24)
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The generalized monotonicity property is interesting, because it allows us to succes-
sively compute more precise upper and lower approximations of a concept by adding
names to the set S. This is convenient in cases where users provide a preference order
over the vocabulary indicating the relative importance of different aspects of a concept.
In this case, use the preference relation provided by the user to determine a sequence of
approximations to be used in the matching process.

4 An Approximate Subsumption Operator
Up to now, we have only considered interpretations as such. As our aim is to develop
approximate notions of subsumption as a basis for approximate matching, we now have
to define the notion of approximate subsumption based on the non-standard interpreta-
tion defined above. It turns out, that this can be done in a straightforward way using the
standard definition of the subsumption operator as:

∀I : I |= C v D ⇔ (C u ¬D)I = ∅

The idea is now to use this definition and replace the standard interpretation I by a
the lower approximation I−S with respect to a certain sub-vocabulary S. Based on the
choice of S, this defines different subsumption operators with certain formal properties
that will be discussed in the following.

Definition 3 (Approximate Subsumption). Let S ⊆ V be a subset of the concept
names and (∆I , I−S ) a lower approximation, then the corresponding approximate sub-
sumption relation v

S
is defined as follows

∀I : I |= (C v
S

D) ⇔def (C u ¬D)
I−

S = ∅ (25)

We say that C is subsumed by D with respect to sub-vocabulary S.

The monotonicity of the non-standard interpretation has an impact on the formal
properties of the approximate subsumption operator. In particular, we can establish a
relation between the subset of the vocabulary considered and the strength of the sub-
sumption operator. The more concepts we exclude from the set S the weaker the sub-
sumption operator as well as the matches we can compute get. This implies that if we
can prove subsumption with respect to a particular set S the subsumption relation also
holds for all subsets of S. Conversely, if we fail to prove subsumption with respect to a
set S, we can be sure that the subsumption relation does also not hold with respect to
any superset of S. These properties are stated formally in the following theorem.

Theorem 1 (Properties of Approximate Subsumption). Let f be a lower approxima-
tion, then the following equation holds:

0@C v
S2

D

1A ⇒
0@C v

S1
D

1A for S1 ⊆ S2 (26)

0@C 6v
S1

D

1A ⇒
0@C 6v

S2
D

1A for S1 ⊆ S2 (27)

These properties allow us to develop approximation strategies by successively se-
lecting smaller subsets of concepts to be considered for matching and trying to compute
the corresponding subsumption relation until we succeed.
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5 Computing Approximate Subsumption

A nice feature of our approach is that it can actually be implemented by simply per-
forming syntactic modifications on concept expressions. In particular, in order to check
whether a statement C v

S
D holds, we take the expression (C u ¬D) and transform it

into a concept expression that simulates the non-standard interpretation. For the lower
approximation, the corresponding transformation (.)− is defined as follows

(A)− → ⊥ if A ∈ S

(¬A)− → ⊥ if A ∈ S

(¬C)− → ¬(C)+

(C uD)− → (C)− u (C)−

(C tD)− → (C)− t (C)−

(≤ n r.C)− → (≤ 0 r.(C)+) if r ∈ S

(≤ n r.C)− → (≤ n r.(C)+) if r 6∈ S

(≥ n r.C)− → (≥ max r.(C)−) if r ∈ S

(≥ n r.C)− → (≥ n r.(C)−) if r 6∈ S

Here max is an integer number that is larger than any other number occurring in any
qualified number restriction in the concept expression. This is sufficient to model the
interpretation that requires less than an infinite number of r-successors. Analogously, we
define a transformation function (.)+ that creates a concept expression that simulates
the upper approximation of a concept expression. This transformation is defined as
follows:

(A)+ → > if A ∈ S

(¬A)+ → > if A ∈ S

(¬C)+ → ¬(C)−

(C uD)+ → (C)+ u (C)+

(C tD)+ → (C)+ t (C)+

(≤ n r.C)+ → (≤ max − 1 r.(C)−) if r ∈ S

(≤ n r.C)+ → (≤ n r.(C)−) if r 6∈ S

(≥ n r.C)+ → (≥ 1 r.(C)+) if r ∈ S

(≥ n r.C)+ → (≥ n r.(C)+) if r 6∈ S

We again use the numbermax for modeling an infinite number of r-successors. Further,
we have to use the condition ≥ 1 instead of < 0 which is equivalent. It can be shown
that these rewriting rules provide a way for computing approximate subsumption as
stated by the following theorem.

Theorem 2 (Syntactic approximation I). Let C and D be concept expressions in
ALCQ, then I |= C v

S
D if and only if (C u ¬D)− is unsatisfiable.

It turns out that the equivalence of a concept expression and its normal form and
the symmetry of upper and lower approximation with respect to negation can be used to
define an alternative way of computing approximate subsumption based on the syntactic
manipulations shown above
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Theorem 3 (Syntactic approximation II). Let C and D be concept expressions in
ALCQ, then I |= C v

S
D if and only if I |= (C)− v (D)+

This means that we have two rather straightforward ways of computing approximate
subsumption using standard DL reasoners.

6 Discussion

We presented an approach for computing approximate subsumption between concept
expressions in ALCQ based on a subset of the vocabulary used in the expressions. The
approach solves some of the problems of classical reasoning in description logics, in
particular, the inability to accept imperfect matches between concepts without having
to leave the realms of formal logic. As a side-effect, the subset of the vocabulary also
provides us with a qualitative characterization of the mismatch between the expressions,
which is clearly an advantage over numerical approaches for dealing with imperfect
matches. An approach for partial matching in description logics that is more similar
to ours is reported in [6]. This approach, however, cannot deal with disjunction and
qualified number restrictions.
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Speeding up Approximation with nicer Concepts

Anni-Yasmin Turhan? and Yusri Bong

Theoretical Computer Science, TU Dresden, Germany
{turhan, bong}@tcs.inf.tu-dresden.de

Abstract. Concept approximation is an inference service for Descrip-
tion Logics that provides “translations” of concept descriptions from
one DL to a less expressive DL. In [4] a method for optimizing the com-
putation of ALC-ALE-approximations of ALC-concept descriptions was
introduced. The idea is to characterize a certain class of concept de-
scriptions for which conjuncts can be approximated independently. In
this paper we provide relaxed conditions for this class of ALC-concept
descriptions, extend this notion to number restrictions and report on a
first implementation of this method for ALCN -ALEN -approximation.

1 Motivation

Approximation is a non-standard inference service in Description Logics (DLs)
introduced in [3]. Approximating a concept description, defined in one DL, means
to translate this concept description to another concept description, defined in
a second, typically less expressive DL, such that both concepts are as closely
related as possible with respect to subsumption. Like other non-standard in-
ferences such as computing the least common subsumer (lcs) or matching of
concepts, approximation has been introduced to support the construction and
maintenance of DL knowledge bases.

The building of ontologies can be assisted by employing the bottom-up ap-
proach, where new concepts can be derived from a collection of already exist-
ing ones by computing their commonalities. This task is typically realized by
computing the lcs. If the employed DL provides disjunction, the lcs is just the
disjunction of the input concepts. Thus, a user inspecting this concept does
not learn anything about their commonalities. By using concept approximation,
however, one can make the commonalities explicit to some extent by first ap-
proximating the concepts in a sub-language which does not provide disjunction,
and then computing the lcs of the approximations. Besides this approximation
is used to compute semantically closely related versions of expressive knowledge
bases to port knowledge bases between different systems or to integrate different
knowledge bases. Moreover, users who are no DL experts can be supported in
comprehending a knowledge base written in an expressive DL by offering them
a simplified view of it obtained by approximation.

A worst case double exponential algorithm for approximating ALCN - by
ALEN -concept descriptions was presented in [2]. A first implementation of ap-
proximation presented in [3] revealed that run-times for concepts of moderate size
? This work was partially supported by EU FET TONES (grant IST-2005-7603).
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is already a couple of seconds. For an interactive application as the bottom-up
construction faster run-times are desirable. In [4] the following approach to op-
timize computation of approximations was presented: Instead of approximating
a concept C as a whole, a significant amount of time could be saved by split-
ting C into its conjuncts and approximating them separately. If, for instance,
C consists of two conjuncts of size n then the approximation of C takes some
ab2n

steps while the conjunct-wise approach would just take 2abn

. Unfortunately,
splitting an arbitrary input concept at conjunctions leads to incorrect approxi-
mations. A class for which this conjunct-wise approximation still produces the
correct result is the class of so-called nice concepts. Moreover, a characterization
of nice concepts is also an important prerequisite for another way of optimizing
computations of concept approximation, namely, non-naive use of caching. Say,
we want to approximate C u D, where C and D are complex ALCN -concept
descriptions. Now, if C uD is nice and we have cached the approximation of C,
we only need to compute the approximation of D and conjoin it with the cached
result, instead of computing the whole approximation from scratch.

2 Preliminaries

We assume that the reader is familiar with the basic notions of DLs, see [1]. Con-
cept descriptions are inductively defined based on a set of concept constructors
starting with a set NC of concept names and a set NR of role names. The DL
ALE provides the constructors conjunction, existential and value restrictions as
well as primitive negation, i.e., only concept names can be negated. ALC extends
ALE by full negation and disjunction. ALCN (ALEN ) adds number restrictions
to ALC (ALE). For the syntax and model theoretic semantics of the mentioned
concept constructors, see [1]. In addition to the usual definition, we require that
TBoxes are unfoldable, i.e., their concept definitions are acyclic and unique. In
order to approximateALCN -concept descriptions by ALEN -concept descriptions,
we need to compute the lcs in ALEN .

Definition 1 (lcs). Given ALEN -concept descriptions C1, . . . , Cn with n ≥ 2,
the ALEN -concept description C is the least common subsumer (lcs) of C1, . . . , Cn

iff (i) Ci v C for all 1 ≤ i ≤ n, and (ii) C is the least concept description with
this property, i.e., if C ′ satisfies Ci v C ′ for all 1 ≤ i ≤ n, then C v C ′.

As already mentioned, in ALCN the lcs trivially exists since lcs(C, D) ≡ C t
D. To obtain a more meaningful concept description, we first approximate the
ALCN -concept descriptions and then compute their lcs.

Definition 2 (approximation). Let L1 and L2 be two DLs, and let C be
an L1- and D be an L2-concept description. Then, D is called an L1 − L2-
approximation of C (written D = approxL2

(C)) iff (i) C v D, and (ii) D is
minimal with this property, i.e., C v D′ and D′ v D implies D′ ≡ D for all
L2-concept descriptions D′.

484 Proceeding of DL2007 - Regular Papers



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 485 — #495 i
i

i
i

i
i

Intuitively, an approximation of anALCN -concept description is anALEN -concept
description that is more general than the input concept description but minimal
w.r.t. subsumption.

2.1 Computation Algorithm for ALCN -ALEN -approximations

We sketch the computation algorithm for ALCN -ALEN -approximations briefly—
for its exact definition refer to [2]. In case an approximation of an ALCN -concept
C that uses names defined in a TBox is to be computed, then these names
have to be first replaced by their definition. If C is equivalent to > (⊥), its
approximation is > (⊥), otherwise the concept description is normalized. First,
the concept description is transformed into negation normal form (NNF). Second,
the obtained concept description is transformed into ALCN -normal form (ALCN -
NF). In this step conjunctions are distributed over the disjunctions. In order to
describe the disjuncts obtained by the ALCN -NF, some notation is needed to
access the different parts of a concept description C.

– prim(C) denotes the set of all (negated) concept names and ⊥ occurring on
the top-level of C;

– valr(C) := C1 u · · · u Cn, if value restrictions of the form ∀r.C1, . . . , ∀r.Cn

exist on the top-level of C; otherwise, valr(C) := >;
– exr(C) := {C ′ | there exists ∃r.C ′ on the top-level of C};
– minr(C) := max{k | C v (≥ k r)} (Note that minr(C) is always finite.);
– maxr(C) := min{k | C v (≤ k r)}; if there exists no k with C v (≤ k r),

then maxr(C) := ∞.

Now, an ALCN -concept description C in ALCN -NF is of the form C = C1t . . .t
Cn with Ci :=l
A∈prim(Ci)

A u
l

r∈NR

( l
C′∈exr(Ci)

∃r.C ′ u∀r.valr(Ci)u(≥ minr(Ci) r)u(≤ maxr(Ci) r)
)
,

for all i = 1, . . . n, where the concept descriptions valr(Ci) and C ′ again are in
ALCN -normal form and Ci is removed from the disjunction in case Ci ≡ ⊥.

Next, implicit information captured in the concept description is made ex-
plicit. Due to space limitations, we can only give an intuition in which combina-
tions of concept constructors information is induced. For a thorough discussion
refer to [6] or [2]. In case of the number restrictions appearing in the concept
description (≥ minr(C) r) and (≤ maxr(C) r) already make induced information
explicit. At-least restrictions can be induced by incompatible existential restric-
tions, e.g., ∃r.A u ∃r.¬A induces (≥ 2 r). At-most restrictions can be induced
only by value restrictions equivalent to ∀r.⊥ implying (≤ 0 r). Vice versa, value
restrictions can be induced by (≤ 0 r). Furthermore, value restrictions can be
implied, if the minimal number of r-successors required by either at-least or
by incompatible existential restrictions coincide with maxr(C). For example in
(≤ 2 r)u (∃r.AuB)u (∃r.Au¬B) the value restriction ∀r.A is induced. Induced
value restrictions are denoted ind-valr(C).
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Input: ALCN -concept description C. Output: ALCN −ALEN -approximation of C.

1. If C ≡ ⊥ then c-approxALEN (C) := ⊥ elseif C ≡ > then c-approxALEN (C) := >.

2. Otherwise, transform C into ALCN -normal form C1 t · · · t Cn and return

c-approxALEN (C) :=
uA∈T

i prim(Ci)A

u (≥ min{minr(Ci) | 1 ≤ i ≤ n} r) u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r)

u d
(C′

1,...,C′
n)∈

ind-exr(C1)×···×ind-exr(Cn)

∃r.lcs{c-approxALEN (C′
i u valr(Ci)) | 1 ≤ i ≤ n}

u ∀r.lcs{c-approxALEN (ind-valr(Ci)) | 1 ≤ i ≤ n}

Fig. 1. The computation algorithm for ALCN -ALEN -approximation.

Induced existential restrictions are obtained if ||exr(C)|| > maxr(C). In this
case the existential restrictions have to be merged. More precisely, such a merging
must yield maxr(C) existential restrictions s.t. the set exr(C) is partitioned and
only consistent existential restrictions are obtained. Moreover, valr(C) has to be
propagated onto each existential restriction. The induced existential restrictions
are obtained by computing the commonalities of all ways of obtaining valid
mergings.

Figure 1 displays the computation algorithm forALCN -ALEN -approximation.
In the computation of the approximation as well as in the computation of
ind-valr(C) and ind-exr(C) the lcs for ALEN is used, which was introduced in [6].

3 Nice concepts for Approximation

In general, the computation of an approximation cannot be split at the con-
junction because of possible interactions—in case of ALC-ALE-approximation
between existential and value restrictions on the one hand and inconsistencies in-
duced by negation on the other. For example, the approximation c-approxALE(∃r.>u
(∀r.A t ∃r.A)) yields ∃r.A while the conjunct-wise version c-approxALE(∃r.>) u
c-approxALE(∀r.A t ∃r.A) only produces ∃r.>. In [4] those concept descriptions
were called nice for which this strategy still produces the correct result.

Definition 3 (nice concepts). Let C := C1u· · ·uCn be a L1-concept descrip-
tion. C is nice if approxL2

(C) ≡ approxL2
(C1) u · · · u approxL2

(Cn).

For these concept descriptions interactions between conjuncts are excluded. Since
the use of nice concept descriptions is to speed-up approximation, it is impor-
tant that the conditions to distinguish these concept descriptions can be tested
easily. Therefore the test for nice concept descriptions should be based on sim-
ple discrimination conditions. To this end the conditions for nice ALC-concept
descriptions given in [4] are sound, but not complete:

1. The restrictions are limited to one type per role-depth: on every role depth
of a nice concept either no ∀-restrictions or no ∃-restrictions occur.
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2. A concept name and its negation may not occur on the same role-depth of
a nice concept.

It is shown in [4] that for ALC-concept descriptions fulfilling these conditions
conjunct-wise approximation is correct. The above conditions are intuitive and
easy to test, but very strict. Consider the concept description (∃r.∃s.A t B) u
(∃t.∀s.¬A tC), which violates both conditions. However, we get the correct re-
sult, if the conjuncts are approximated independently, since the relevant concept
descriptions are nested in existential restrictions for different roles. In general, a
concept description can still be approximated conjunct-wise, if the “interacting”
concept descriptions are reachable via different role paths. Too strict conditions
to distinguish nice concept descriptions would rule out too many concept de-
scriptions that could actually be approximated conjunct-wise. In these cases
the “expensive” approximation must be applied. In order to be able to classify
more concept descriptions as nice, we devise relaxed conditions for nice concept
descriptions.

3.1 Nice ALCN -concept descriptions

The conditions for nice ALCN -concept descriptions have to take into account
the information induced by number restrictions in combination with other con-
cept constructors, i.e., the interactions we sketched in Section 2.1. For exam-
ple, consider the ALCN -concept description C = C1 u C2, where the conjuncts
are: C1 = (∃s.A) u (∃s.¬A) t ⊥ and C2 = (≤ 1 s) t B. Now, if we approx-
imate C conjunct-wise we obtain c-approxALEN (C1) = (∃s.A) u (∃s.¬A) and
c-approxALEN (C2) = >, yielding (∃s.A) u (∃s.¬A) u > as the combined re-
sult. Due to the incompatibilities between C1 and C2 for the information on
the role s, the disjunction in C2 collapses to B. The approximation yields
c-approxALEN (C) = (∃s.A) u (∃s.¬A) u B, which is more specific than the
conjunct-wise approximation.

To devise syntactic conditions to detect nice ALCN -concept descriptions, we
introduce notation to access the numbers in number restrictions. For an ALCN -
concept description C and a role r let at-leastr(C) (at-mostr(C)) denote the
maximal (minimal) number appearing in at-least (at-most) restrictions on the
top-level of C or, if the top-level of C has no at-least restriction, 0 (at-most
restriction,∞.) Next, we specify the notion of sub-concept descriptions accessible
by a role path, that will be used in the conditions for nice concept descriptions.

Definition 4. Let a Qr-path (denoted ρ) be defined as ρ = (Q r)∗ for Q ∈ {∃, ∀}
and r ∈ NR and let λ denote the empty Qr-path. Let C be an ALCN -concept
description and ρ be a Qr-path, then sub(C, ρ) :=

– prim(C) ud
s∈NR

(≤ at-mosts(C) s) u (≥ at-leasts(C) s), if ρ = λ,

– sub(valr(C), ρ′), if ρ = ∀ r · ρ′ and valr(C) 6≡ >,

–
⋃

C′∈exr(C) sub(C ′, ρ′), if ρ = ∃ r · ρ′,
– ∅, otherwise.
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Based on role-paths we can give necessary conditions for nice ALCN -concept
descriptions, which additionally relax the necessary conditions given in [4] for
nice ALC-concept descriptions.

Definition 5 (necessary conditions for nice ALCN -concept descriptions).
Let C be an ALCN -concept description in NNF. Then C is nice, if for every Qr-
path ρ with C1, C2 ∈ sub(C, ρ) and C ′

1, C
′
2 denoting C1, C2 in ALCN -NF and all

r ∈ NR it holds

1. ||{∃ | at-leastr(Ci) 6= 0, i ∈ {1, 2}} ∪ {∃ | exr(C1) ∪ exr(C2) 6= ∅}|| +
||{∀ | at-mostr(Ci) 6= ∞, i ∈ {1, 2}} ∪ {∀ | di∈{1,2} valr(Ci) 6≡ >}|| ≤ 1, and

2. prim(C1) ∪ prim(C2) does not contain a concept name and its negation.

The Condition 1 rules out three constellations for sub-concept description acces-
sible via the same Qr-path: (1) concept descriptions that induce role successors
(either by existential or by at-least restrictions) and that have a possibly induced
value restriction and (2) concept descriptions with contradicting number restric-
tions and (3) concept descriptions that require merging of existential restric-
tions. Condition 2 rules out concept descriptions that have a concept name and
its negation accessible via the same Qr-path. To show that concept descriptions
fulfilling the conditions from Definition 5 can be approximated conjunct-wise,
we adapt the proof from [4] in [7]. The following lemma is central in the proof
of the correctness of the characterization of nice concepts.

Lemma 1. For 1 ≤ i ≤ 2, let Ci and Di be ALEN -concept descriptions such that
C1 uC2 uD1 uD2 is a nice concept description. Then it holds that lcs{Ci uDj |
i, j ∈ {1, 2}} ≡ lcs{C1, C2} u lcs{D1, D2}.
The following theorem states our claim that approximations of ALCN -concept
descriptions fulfilling the conditions from Definition 5, can be obtained by a
conjunction of approximations of the conjuncts from the original concept.

Theorem 1. Let C uD be a nice ALCN -concept description, then
c-approxALEN (C uD) ≡ c-approxALEN (C) u c-approxALEN (D).

The claim is proved by induction over the sum of the nesting depths of u and
t on every role level in C and D. For the induction step a case distinction
is made depending on whether C or D are conjunctions or disjunctions. If at
least one concept description is a disjunction the approximation is defined as the
lcs of all ALCN -normalized and approximated disjuncts (if one of the concept
descriptions is a conjunction, it firstly has to be distributed over the disjunction).
The main idea then is to use Lemma 1 to transform single lcs calls of a certain
form into a conjunction of lcs calls which eventually leads to the conjunction of
the approximations of C and D. The full proof can be found in [7].

Now, the actual ALCN -ALEN -approximation algorithm can be adapted by
first testing whether a concept description is nice and then performing conjunct-
wise approximation for each conjunct and conjoin the results. The algorithm
performs the nice test at the beginning of every recursive call, unless the current
(sub-)concept description is already known to be nice.
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4 Implementation

The implementation of approximation for nice ALCN -concept descriptions re-
quires little changes in the implementation of the approximation algorithm. The
major part to implement is the tester for nice concept descriptions nice-p .
Since this test has to be performed at the beginning of every approximation
computation, the implementation must be very efficient.

The procedure nice-p in our implementation realizes the necessary condi-
tions for nice ALCN -concept descriptions from Definition 5. Our implementation
of the nice test employs a couple of optimizations. Firstly, some steps are only
taken on demand, such as unfolding and the transformation into NNF. Fur-
thermore, nice-p stores information of a certain named concept, say C, in a
so-called info-table, where the key of this info-table is a path ρ and the value is
the sub(C,ρ). This enhances the checking of the conditions from Definition 5 “on-
the-fly”. Suppose that while unfolding and transforming concept C, we encounter
the concept name A inspecting Qr-path ρ. Then, we update the info-table of C
by adding the concept name A to the value of the key ρ. Before we add A, we
first check whether adding A violates Condition 2 in Definition 5. A similar pro-
cedure is carried out, if we encounter number, value and existential restrictions
during the unfolding and transformation. Furthermore, our implementation does
not only use dynamic programming to re-use results obtained during the current
computation on whether a concept is already known to be nice or not, but caches
these results. Based on this cache the already obtained information on whether
a named concept is nice or not is re-used in subsequent runs of nice-p .

We extended the implementation of ALCN -ALEN -approximation from our
non-standard inference system Sonic [8] to the use of nice ALCN -concepts in a
naive way. This way the full potential of the conjunct-wise application of con-
cepts is not yet used. One can in addition implement a caching strategy based
on nice concepts in the following way: if we want to approximate a conjunction
that is nice and we have computed the approximation of some of its conjuncts
already, we only need to conjoin the cached values with the freshly computed ap-
proximations of the remaining conjuncts. The implementation of this technique
is future work.

5 First tests

Although our implementation is not yet mature, we can already report on some
experiences. Most importantly, it was unknown whether nice concepts do appear
in TBoxes from real-world applications and if, how frequently. We tested our
implementation of nice-p on the DICE TBox, which is a medical knowledge base
from the intensive care domain, see [5]. The DICE TBox contains about 3500
concepts, of which 3249 have a (primitive) definition, and DICE is an unfoldable
TBox. Originally, this TBox uses ALCQ (and disjointness statements), we used
a variant of it pruned down to ALCN for our tests. It turned out that this
knowledge base has 493 nice concepts satisfying the necessary conditions from
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Definition 5. These are concepts not only with a nice sub-concept description,
but which are nice “completely”. So a first result of our test is that nice ALCN
concepts do appear in knowledge bases from practical applications. In case of
the DICE knowledge base about 14.3% of all named concepts with a definition
are nice. This might not seem very much at first, but indicates that for many
concepts significant parts of the unfolded concept descriptions are nice and can be
approximated independently. The run-time we measured for each call of nice-p
when testing all concepts in DICE, was 0.91s on the average. This run-time
includes the time needed for unfolding and transforming the concept into NNF—
steps that the approximation algorithm requires anyway.

We tested our implementation of conjunct-wise ALCN -ALEN -approximation
on those 463 concepts from the DICE knowledge base that are nice. It turned out
that the implementation of the ordinary approximation algorithm needed 1.89s
per concept on the average, while the nice approximation needed 1.44s. This is a
speed-up of about 24%. Taking into account that the time for nice approximation
included the time for the nice-p test, one can say that it performed reasonably
well.

In this paper we have extended necessary conditions for nice concepts to ALCN -
concepts. The notion of nice concepts is the basis for the two optimization tech-
niques for concept approximation: non-naive caching and conjunct-wise approx-
imation. A first test of our implementation of nice concepts showed that these
kind of concepts do appear in knowledge bases from practical application and
that conjunct-wise approximation results in a substantial performance gain.
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2. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximating ALCN -concept descrip-
tions. In Proc. of the 2002 Description Logic Workshop (DL 2002), 2002.
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DLclog: A Hybrid System Integrating Rules and

Description Logics with Circumscription ?

Fangkai Yang and Xiaoping Chen

Multi-Agent System Lab
University of Science and Technology of China, Hefei, China

Abstract. In this paper, we propose DLclog, a new hybrid formalism
combining Description Logics and Logic Programming for Semantic Web
serving as an extension to DL + log[19]. Negative dl-atoms are allowed
to occur in the bodies of the rules, and we extend NM-Semantics of
DL+ log to evaluate dl-atoms with circumscriptive models of DL ontol-
ogy in the sense of parallel circumscription rather than classical models.
In this way, negative dl-atoms are treated in nonmonotonic way under
Extended Closed World Assumption, and the formalism still remains
faithful to NM-Semantics, DL and LP. Finally, we present decidability
and complexity result for a restricted form of DLclog.

1 Introduction

The problem of adding rules to Description Logics is currently a hot research
topic, due to the Semantic Web applications of integrating rule-based systems
with ontologies. Practically, most research work[3, 16{19] in this area focuses
on the integration of Description Logic with datalog rules or its non-monotonic
extensions, and DL+ log[19] is a powerful result of a series of hybrid approaches:
DL-log[16], r-hybrid KB[18], r+-hybrid KB[17], which de�ne integrated models
on the basis of single models of classical theory.

However, there is a severe limitation in DL+ log that DL predicates cannot
occur behind "not" in rules. This syntactical restriction makes it impossible
to use rules to draw conclusions by the results currently underivable from DL
ontology, which cannot satis�es practical needs such as closed world reasoning
and modeling exceptions and defaults for DL predicates[12]. To overcome this
limitation requires to introduce negative dl-atoms in the body of the rules and
interpret them with a nonclassical semantics, which is a nontrivial generalization
of NM-Semantics of DL+log. As DL adopts Open World Assumption(OWA), we
must introduce a kind of closed world reasoning to DL ontology to interpret the
unknown results as negation. Such closed world reasoning must be transparently
integrated into the framework of NM-Semantics in order that the generalized
semantics remains faithful to NM-Semantics, DL and LP. Finally, the de�nition
of the semantics should be concise, model-theoretical and if possible, decidable.

? This work is supported by NSFC (60275024) and 973 Programme (2003CB317000)
of People's Republic of China.
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In this paper, a new hybrid formalism DLclog is presented to achieve this
goal. We allow DL predicates occurring behind "not" in rules, and extend NM-
Semantics of DL + log to be Nonmonotonic Circumscriptive Semantics(NMC-
Semantics). In NMC-Semantics, dl-atoms in rules are evaluated under the cir-
cumscriptive models of the DL ontology in the sense of McCarthy's parallel
circumscription[10] rather than classical models as in NM-Semantics. Parallel
circumscription is a general form of circumscription formalizing Closed World
Assumption(CWA)[15], and is equivalent to Extended CWA[6] which avoids sev-
eral anomalies in CWA. By parallel circumscription, "not" in negative dl-atoms
are interpreted in a nonmonotonic manner closely similar to the treatment of
"not" in Logic Programming(LP). As circumscriptive models serve as an inter-
mediate models only used to evaluate dl-atoms, NMC-semantics remains faithful
to DL, LP and NM-Semantics of DL+ log, in that users can switch DLclog KB
to any of these formalisms by syntactical restriction. When DLclog is restricted
to the form that ontologies are written in ALCIO or ALCQO and roles are not
allowed to occur under "not" in rules, NMC-Satis�ability is NEXPNP-complete.

The rest of the paper is organized as follows. Section 2 presents the motivation
of our formalism. Section 3 presents the syntax and semantics of DLclog. Section
4 presents the decidability and complexity results. Related work is presented in
Section 5 and Section 6 ends with conclusion and future work. We assume that
the readers be familiar with McCarthy's parallel circumscription[10, 14].

2 Motivation

In this section, we focus on clarifying the motivation of our solution. We analyze
the semantic characterizations of "not" in LP, show how negative dl-atoms can
be interpreted in similar way, and �nally, present the solution to capture this
semantics. Note that we adopt Standard Names Assumption[18], so we can use
the same symbol to denote a constant and its interpretation.

Simply applying NM-Semantics of DL + log to evaluate negative dl-atoms
by classical models is implausible, as in follwing example. We use "j=NM" to
denote the satis�ability of NM-Semantics of DL+ log.

Example 1. For a KB K = (O;P)

O P
:seaside � notSC seasideCity(x) portCity(x); O(x); not notSC(x)
portCity(Barcelona) O(Barcelona)

We have two classical models ofO: I1 and I2, where notSC(Barcelona) 2 I1,
notSC(Barcelona) =2 I2. Evaluating with I1, the rule in P is blocked due to
negative dl-atoms, thus for the stable model J1, seasideCity(Barcelona) =2 J1,
while with I2, the rule functions, with seasideCity(Barcelona) 2 J2. As a result,
K 2NM seasideCity(Barcelona). However, we hope to obtain
seasideCity(Barcelona): since notSC(Barcelona) is unknown to O, the �rst
rule should function.
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The problem with the above example is that in the convention of nonmono-
tonic reasoning and LP, ground atom "not p(x)" is interpreted as "if :p(x) can
be consistently assumed". Whether an assumption can be consistently assumed
depends on two facts, which obviously cannot be achieved by NM-Semantics:
(1) it is currently underivable and, (2) it is justi�ed in the ultimate extension of
the theory[9]. We hope to interpret notSC(Barcelona) in this form. In Example
1, notSC(Barcelona) is underivable from O. When it comes to justi�cation, we
�nd that :notSC(Barcelona) cannot be justi�ed by the stable models of the
rules because notSC is not involved in the stable models. Alternatively, it should
be justi�ed by the fact that the extension of O remains consistent after being
completed with asserted assumptions, i.e. I2 [ f:notSC(Barcelona)g is consis-
tent. Therefore, we claim that :notSC(Barcelona) is consistently assumed. So
the task we left with is to specify a proper way to complete the extension of the
classical part. Naturally, CWA[15] is a candidate, in which a classical model is
completed with the negation of underivable facts, but potential anomalies occur.

Example 2. For a DLclog KB K = (O;P) as follows.

O P
M � P tQ r(x) O(x); not P (x)

M(a) r(x) O(x); not Q(x)
O(a)

With the standard CWA, the completed extension is J = f:P (a);:Q(a);
M(a)g which is a contradiction: J is no longer a model of O. On the contrary, we
would rather prefer to use two classical models J1 and J2 to evaluate dl-atoms,
with f:P (a); Q(a)g � J1 and fP (a);:Q(a)g � J2.

A similar proposal is to evaluate negative dl-atoms by whether it is entailed
from DL ontology, but integrating "interaction via entailment" complicates the
framework of "interaction via single model" of NM-Semantics, and makes the re-
sulted semantics tedious and ill-de�ned. Finally, our decision is to use Extended
CWA[7]. Its semantics is model-theoretically formalized by parallel circumscrip-
tion[10], and a circumscriptive model is also a classical model. Note that in
Example 2, J1 and J2 are the models of a circumscribed theory CIRC[O;P;Q].

3 DLclog: Syntax and Semantics

Based on the motivation above, we present the syntax and semantics of DLclog.
Syntax

We partition the alphabet of predicates � into three mutually disjoint sets
� = �C [ �R [ �D, where �C is an alphabet of concepts names, �R is an
alphabet of role names and �D is an alphabet of Datalog predicates. The syntax
of DLclog KB is de�ned as follows.

De�nition 1. A hybrid knowledge base K is a pair (O;P), where O is the a
description logic ontology (T ;A) as its TBOX and ABOX, and P is a �nite set
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of Datalog:;_ rules of following form:

R : H1(X1) _ : : : _Hk(Xn) RB1(Y1); : : : ; RBm(Ym);

not RBm+1(Ym+1); : : : ; not RBs(Ys);

CB1(Z1); : : : ; CBn(Zn);

not CBn+1(Zn+1); : : : ; not CBt(Zt):

where Hi(Xi), RBi(Yi), CBi(Zi) are atoms, Xi, Yi, and Zi are vectors of vari-
ables. Let C denote a set of countably in�nite constant names. And

- each Hi is either a DL predicate or a Datalog predicate.
- each RBi is a Datalog predicate, and RBi(Yi) is called a rule-atom.
- each CBj is a DL predicate, CBj(Zj) is called a dl-atom.
- (DL-safeness)every variable of R must appear in at least one of the RBi(Yi)(1 �
i � m).

In this version of our work, we only consider DLclog with DL-safeness. In-
troducing weak safeness[19] will be included in our future work. Besides, we use
M(P) to denote the set of DL predicates occurring under "not" in P.

Let P and Z be two disjoint sets of predicates and A is the �rst order theory
containing P and Z. Use CIRC[A;P ;Z] to denote the parallel circumscription
of A, in which the extensions of the predicates in P are minimized and the
interpretations of the predicates in Z are �xed[10, 14]. We use CIRC[A;P ] to
denote the parallel circumscription CIRC[A;P ;Z] with Z = ;, indicating that
all other predicates' interpretations can vary to support the minimization.
Semantics

Like DL+log, in the de�nition of the semantics of DLclog we adopt Standard
Names Assumption[18, 19]: every interpretation is de�ned over the same �xed,
countably in�nite domain �, and the alphabet of constant C is such that it is
in the same one-to-one correspondence with � in each interpretation. Under
SNA, with a bit abuse of the notation, we can use the same symbol to denote
both a constant and its semantic interpretation, and reformulate the notion of
satisfaction in FOL accordingly. Such reformulation doesn't change any standard
DLs' consequences. See [18, 12] for the details.

Given a set of constants C, the ground instantiation of P with respect to C,
denoted by gr(P; C), is the program obtained from P by replacing every rule
R in P with the set of rules obtained by applying all possible substitutions of
variables in R with constants in C.

Based on the motivation discussed in Section 2, we present the de�nition of
semantics. Following is a generalization of the projection � in DL+ log to the
case of negative dl-atoms.

De�nition 2. Given an interpretation I over an alphabet of predicates �0 �
� and a ground program gr(P; C) over the predicates in �, the projection of
gr(P; C) with respect to I, denoted by �(gr(P; C); I) is the program obtained
from gr(P; C) as follows. Let r(t) denote the literal (either unary or binary) in
gr(P; C), for each rule R 2 gr(P; C),
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- delete R if there exists an atom r(t) in the head of R such that r 2 �0 and
t 2 rI ;

- delete each atom r(t) in the head of R such that r 2 �0 and t =2 rI ;
- delete R if there exists a positive literal r(t) in the body of R such that r 2 �0

and t =2 rI ;
- delete each positive literal r(t) in the body of R such that r 2 �0 and t 2 rI ;
- delete R if there exists a negative atom not r(t) in the body of R such that
r 2 �0 and t 2 rI ;

- delete each negative atom not r(t) in the body of R such that r 2 �0 and
t =2 rI ;

Based on this de�nition, dl-atoms can be eliminated by projecting with an
interpretation on �R [ �C . Then one can obtain its stable model via Gelfond-
Lifschitz reduction[7]. In following we de�ne the Nonmonotonic Circumscriptive
Semantics(NMC-Semantics) for DLclog.

De�nition 3. (Nonmonotonic Circumscriptive Semantics, NMC-Semantics)For
a hybrid KB K = (O;P) and C the set of individuals explicitly stated in O, let
U , V, W be sets of interpretations on language �C [ �R, �C [ �R and �D,
respectively. A structure M = (U ;V;W) is the Nonmonotonic Circumscriptive
Model (NMC-Model) of K, denoted asM j=NMC K, if and only if

- for each I 2 U , I j= O.
- for each I 2 V, I j= CIRC[O;M(P)].
- for each J 2 W, J is a stable model of �(gr(P; C); Ic) where Ic 2 V.

We call U ;V;W the classical part, circumscriptive part, and stable part of the
NMC-model. K is NMC-satis�able if and only if it has an NMC-model without
any part as ;. c denotes a tuple of constants. A ground atom p(c) is NMC-entailed
by K, denoted as K j=NMC p(c), if and only if

- if p is a DL predicate, for each interpretation I 2 U , I j= p(c).
- if p is a rule predicate, for each interpretation J 2 W, J j= p(c).

We use an example to illustrate this treatment.

Example 3. We use the hybrid KB of Example 1, and analyze three cases.

1. Querying seasideCity(Barcelona). With NMC-Semantics, negative dl-atom
"not notSC(x)" is satis�ed in circumscriptive models containing :notSC
(Barcelona), in which notSC is circumscribed. This is the only model used
for evaluating dl-atoms. Thus we obtain K j=NMC seasideCity(Barcelona).

2. Query notSC(Barcelona). As in Example 1, O have two models I1 and I2.
Thus we have O 2NMC notSC(Barcelona) rather than O j=NMC :notSC
(Barcelona). We can see that in NMC-Semantics, circumscriptive models
don't a�ect reasoning with O, which remains to be monotonic and classical.

3. Circumscriptive models can introduce nonmonotonicity to reasoning with
rules by negative dl-atoms, Once we add "notSC(Barcelona)" into O, we
obtain K j=NMC :seasideCity(Barcelona).
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NMC-Semantics is the generalization of DL+log. When there are no negative
dl-atoms, we have U = V, and DLclog is reduced to DL + log in both syntax
and semantics. Obviously, we have the following result.

Proposition 1. For a DLclog KB K = (O;P), when there are no negative dl-
atoms in P, K is NMC-satis�able i� K is NM-satis�able in the sense of DL+log.

NMC-Semantics is also faithful to DL and LP, in that DL and LP are the
restricted forms of DLclog.

Proposition 2. For a DLclog KB K = (O;P), (i) if P = ;, K is NMC-
satis�able i� O is classically satis�able. (ii) if O = ;, K is NMC-satis�able
i� P has stable model(s).

NMC-Semantics is nonmonotonic. Negative dl-atoms evaluated by circum-
scriptive models add nonmonotonicity features to rules. Consequently, reasoning
with DL is monotonic and with OWA, while reasoning with rules is nonmono-
tonic and with CWA.

Proposition 3. Given a DLclog KB K = (O;P), O0, P 0 are sets of DL formu-
lae and rules such that O[O0 and P [P 0 are consistent. K0 = (O[O0;P [P 0),
and p(c) is a query such that K j=NMC p(c). Then (i) K0 j=NMC p(c) holds if
p(c) is a DL query. (ii) K0 j=NMC p(c) may not hold if p(c) is a rule query.

4 Decidability and Complexity

In this section, we restrict DLclog to the case that the DL ontology is written
in ALCIO or ALCQO, and roles are not allowed under "not" in rules. We leave
the decidability of general DLclog relative to NMC-Satis�ability as an open
problem.

As the satis�ability of Datalog:;_ program P, which is NEXPNP-Complete
in [4], can be trivially reduced the NMC-satis�ability of (;;P), we have following
proposition.

Proposition 4. NMC-satis�ability of K = (O;P) is NEXPNP-hard.

Furthermore, we remind of the exponential hierarchy NEXP� NPNEXP �
NEXPNP �2-EXP, and obtain following result.

Proposition 5. For a restricted DLclog KB K = (O;P), deciding satis�ability
of NMC-Semantics of K is NEXPNP-complete.

Proof. (Sketch)NMC-Satis�ability can be determined by calling three oracles in
an non-deterministic framework (due to the consideration of space, the proof of
correctness is omitted here.). For all the ground dl-atoms in gr(P; C), guess its
partition (GP ; GN ). (1) Check the satis�ability of following ALCIO or ALCQO
KB: O [ fC(a)jC(a) 2 GP g [ f:C(a)jC(a) 2 GNg [ f9R:b(a)jR(a; b) 2 GP g [
f:9R:b(a)jR(a; b) 2 GNg in PSPACE or NEXPNP[20]. (2) The dl-atoms in
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gr(P; C) can be evaluated with (GP ; GN ) in polynomial time, and obtain a pro-
gram PD without dl-atoms. Checking the existence of stable models for PD is
in NEXPNP[4]. (3) Let GNP = fr(t)jr 2M(P) ^ r(t) 2 GP )g, GNN = fr(t)jr 2
M(P)^r(t) 2 GN )g and :GNN = f:r(t)jr(t) 2 GNNg, check whether there ex-
ists a interpretation Ic such that Ic j= CIRC[O;M(P)] and GNP [:GNN � Ic
is NEXPNP by being reduced to checking the satis�ability of ALCIO or ALCQO
with counting formulae[1]. As it is an non-deterministic process, we obtain the
upper bound of NEXPNP. Together with Proposition 4, we �nish the proof for
completeness.

5 Related Work

DLclog follows from a series of "r-hybrid" work [16{19] which are hybrid ap-
proaches de�ning integrated models on the basis of single models of classical
theory. We inherit the framework of these methods. By introducing negative
dl-atoms and use parallel circumscription to evaluate them, we obtain the se-
mantics with nonmonotonic features treating negative dl-atoms, while it remains
faithful to previous work and to both DL and LP.

In dl-program[3], DL predicates in rules are treated as queries to the ontology,
in which the evaluation of DL-atoms in rules are actually by entailment of DL
ontology rather than models, as in our method. Thus, the semantics framework is
di�erent from ours. Besides, DLclog cannot pass facts from rules to DL ontology.

CLP[8] is a method by introducing open domain to Answer Set Programming.
It allows DL-predicates occurring under "not" in rules, but the models of rules
must be organized in tree-like manner to obtain decidability. Finally, CLP can
be used to simulate several expressive DLs. This is a homogenous method.

Recently, there are some "full-integration" methods proposed. [2] proposed to
use First Order Autoepistemic Logic[5] as a host language to accommodate DL
and rules. [12, 13] proposed to build a hybrid KB in the framework of the logic
of MKNF. Both of the methods treat DL and LP in a uniform logic rather than
integrating existing formalisms, and by introducing modal operators, dl-atoms
are treated in precisely the same way as rule-atoms. Compared with these work,
instead of extending language, our formalism is based on a hybrid, modular
semantics integrating classical semantics, circumscription and stable model.

6 Conclusion and Future Work

In this paper, we present a hybrid formalism DLclog as both semantic and syn-
tactic extension of Rosati's DL + log by allowing negative dl-atoms occurring
in the body of the rules. To obtain the stable models of the rules, dl-atoms
are evaluated by the circumscriptive models of the DL ontology in the sense of
parallel circumscription. In this way, the negative dl-atoms are treated nonmono-
tonically and is closely similar to the treatment of "not" in LP. This formalism
strengthens the nonmonotonic expressing and reasoning ability of DL+ log, and
remains faithful to the NM-Semantics of DL + log, DL and LP. Besides, when
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roles do not occur under "not" in rules and ontologies are written in ALCIO
and ALCQO, NMC-satis�ability is a NEXPNP-complete problem.

As our future work, we will compare DLclog with full integration methods.
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Abstract. Contrasting to Description Logics (DLs), there are some inherent 
shortcomings in classical fuzzy Description Logics (FDLs). For example, they 
no longer satisfy the complementary laws. In this paper, to analyze these 
shortcomings derived from Zadeh semantics, an improved fuzzy set definition 
using Boolean lattices is approached, whereas, the analogous definition of 
Zadeh Fuzzy Set can only use a distributive lattice. Therefore, an improved 
FDL in Web Computing Environment, using Boolean lattices rather than the 
interval [0,1] to represent fuzziness, is constructed. Finally, some probable 
extensions of the chosen lattice are discussed.  

Keywords: Fuzzy Description Logic, Zadeh Fuzzy Set, Web Computing. 

1   Introduction 

Web Computing are the ways we managing, organizing, sharing and exchanging web 
resources (e.g. data and services) on the Web by means of web technologies, e.g. 
Semantic Web and Web Services. Among these technologies, Description Logics 
(DLs) [1] provide a logical reconstruction of object-centric and frame-based 
knowledge representation languages as essential means to describe web resources and 
to infer on them; Furthermore, Fuzzy Description Logics (FDLs) [2] extend DLs with 
capabilities of representing and reasoning on fuzziness of Web resources. 

In this paper, rather than going on advocating their advantages, we will talk about 
some shortcomings of classical FDLs and try to find a solution. We proceed as 
follows. In the following section, taking f-ALC [2] as example, we focus on classical 
FDLs’ shortcomings (e.g. unsatisfactory of the complementary laws) derived from 
their Zadeh semantics. Then, in Section 3, an improved FDL in Web Computing, 
using a proper Boolean lattice rather than the interval [0,1] to represent fuzziness, is 
constructed. In Section 4, some probable extensions of the chosen lattice are 
discussed. At last, Section 5 concludes and presents some topics for further research. 
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2   Analysis on Shortcomings of Classical FDLs 

2.1   The Problems 

As mentioned in [2], complementary laws never hold in classical FDLs. To make it 
clear, let’s take f-ALC, a simple FDL whose detail can be found in [2], as an 
illustration. In f-ALC, a fuzzy interpretation I  satisfies some Zadeh style equations 
like: for all ∈∆d I , ( ) ( ) 0=d⊥

I , ( ) ( ) 1=dF I , ( ) ( ) ( ( ), ( ))=C D d min C d D dI I I , 
( ) ( ) ( ( ), ( ))=C D d max C d D dI I I , and ( ) ( ) 1 ( )¬ = −C d C dI I . Obviously, 
( ) ( ) 0¬ =C C dI  and ( ) ( ) 1¬ =C C dI  no longer hold. That is, ¬ ≠C C ⊥ and 

¬ ≠C C F . What’s more, serious to say, this is not the only issue, there are more 
implicit problems in classical FDLs, as depict in following examples. 
Example 1. Consider the fuzzy KB 1 1 1( , )=K T A �, where 

1 { , , }= Fowl Animal Reptile Animal Fowl Reptile ⊥T  , 

1 { : 0.6, : 0.3}= = =archaeopteryx Fowl archaeopteryx ReptileA  . 

Suppose 1 = :α archaeopteryx Fowl Reptile  and 2 = :α archaeopteryx Fowl Reptile . Easy 
to see, the conclusion 1 {0.6,0.3} 0.3α = =min  conflicts with the fuzzy axiom 
Fowl Reptile ⊥. The other conclusion 2 {0.6,0.3} 0.6α = =max  conflicts with the 
more reasonable fuzzy value 0.6 0.3 0.9+ = . Therefore, conjunction and disjunction 
of fuzzy concepts have the probability of causing conflicts in fuzzy KBs which are 
originally consistent.  
Example 2. Consider another fuzzy KB 2 2 2( , )=K T A�, where 2 { }= C D ⊥T  and 
every model I  of 2K  should satisfy (i) for all ∈∆d I , ( ) ( )≤C d D dI I ; (ii) there 
always exists a ∈∆d I  so that ( ) 0>C dI . We can infer that C D  and ≠C ⊥ , 

≠D ⊥ , which contradict the axiom C D ⊥ . In conclusion, the inclusion of fuzzy 
concepts sometime also leads to conflicts in originally consistent fuzzy KBs. 

Well then, where do these problems lie in? We can find the answer in the Zadeh 
semantics of classical FDLs. 

2.2   The Reason of Classical FDLs’ Shortcomings 

Coincidentally, Zadeh fuzzy set, under which the semantics of classical FDLs are 
defined, encounters same criticisms and should be treated as the root of 
abovementioned problems. To find the reason, we sketch a more sophisticate fuzzy 
set using Boolean lattice rather than the interval [0,1] to represent fuzziness. 
Definition 1 (Boolean Lattice Based Fuzzy Set). Suppose X  is the universe, and 
suppose ( , )L  is a Boolean lattice with operators as ⊗ , ⊕ , � , and identity 
elements as 0 , 1 , respectively. Then a Boolean lattice based fuzzy set (e.g. C  and 
D ) is a mapping from X  to L , satisfying: (i) for each ∈x X , ( )∅ =x 0 , 
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( ) =X x 1  and ( )( ) ( )=∼ C x C x� , ( )( ) ( ) ( )∩ = ⊗C D x C x D x , ( )( ) ( ) ( )∪ = ⊕C D x C x D x ; 
(ii) ⊆C D  iff for all ∈x X , ( ) ( )C x D x .  

Here, for a fuzzy set C , ( )C x ( ∈x X ) is a Boolean lattice based membership 
degree of x to C . What’s more, we use a function : [0,1]σ →L  mapping Boolean 
lattice based membership degree (e.g. ( )C x ) to Zadeh membership degree (e.g. 

( ) ( ( ))µ σ=C x C x ). Obviously, the Boolean lattice based fuzzy set satisfies all the set 
rules like a crisp set ever do, and the reason lies in its ability of modeling disjunction 
and inclusion relationships between fuzzy sets. Analogous to Definition 1, we can 
redefine Zadeh fuzzy set using a certain distributive lattice. 
Definition 2 (Zadeh Fuzzy Set). Suppose X  is the universe, and suppose ( , )′L  
is a lattice, all of whose elements are of format [0, ]a  ( [0,1]∈a ) and satisfies: 

1 2[0, ] [0, ]a a  iff 1 2≤a a . Then a Zadeh fuzzy set C  can be represented as a 
mapping : ′→C X L , satisfying: for any ∈x X , ( ) [0, ( )]µ= CC x x . 

Isomorphic to interval [0,1], the lattice ′L  is no longer a Boolean lattice, because 
every element inside doesn’t have its inverse element. What’s more, since ′L  is also 
a linear order, we cannot model disjunction relationships between fuzzy sets. 
Therefore, in classical FDLs, Zadeh semantics blurs the overlapping relationships (e.g. 
disjunction, inclusion) between fuzzy concepts, and thus loses the information of 
these relationships. Essentially, these are the reason of abovementioned problems in 
classical FDLs.  

To make improvements, some papers introduces other semantics of fuzzy 
connectives (e.g. Lukasiewicz semantics) [4], others using lattice representing 
fuzziness [5,6]. According Definition 1, to represent fuzziness, it’s more applicable to 
use Boolean lattice than the general ones. In the following section, a proper Boolean 
lattice in Web Computing environment is founded and is used to build a Boolean 
lattice based FDL named lf-ALC. 

3   lf-ALC: a Boolean Lattice Based FDL in Web Computing 

3.1   Choosing of Boolean Lattice 

Consider fuzzy KB 
1

K  in Example 1, how do we deem that an archaeopteryx is a 
fowl in a degree about 60%, and is a reptile in 30%. Commonly, this is done in a 
voting approach. Suppose we sampled a certain number of (e.g. 100) famous 
paleontologists. Because of their different backgrounds, different major and different 
research experiences, even different believes, it is reasonable that their viewpoints on 
whether archaeopteryx belongs to fowl or reptile will vary each other. And, the last 
thing to do is to collect and synthesize their different viewpoints into a more 
reasonable fuzzy result (e.g. the fuzzy assertions in 

1
K ). 
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Currently, for the sake of the universality of web entities (i.e. almost every people 
has their agents on the Web delegate their words and actions1) and the connectedness 
among them, such a voting approach can be enforced in Web Computing environment. 
A decision-making entity (called decision-maker) can put forwards its questionable 
assertion (e.g. whether archaeopteryx belongs to fowl) to some chosen entities (called 
observers, accordingly) and receives their responses (i.e. their viewpoint). Suppose 

1 2{ , , ... }= nO o o o ( 1≥n ) is the set of chosen observers, then we have a Boolean lattice 
( , )⊆OL  as O ’s power set. Moreover, suppose, each element of OL  is the set of 
those observers who are for the questionable assertion, then OL  can be a proper 
Boolean lattice for fuzziness representation in Web Computing environment. 

3.2   Syntax, Semantics and Inference Problems of lf-ALC 

Here, by contrast to f-ALC, lf-ALC is built on Boolean lattice OL . To make it 
general, we rename ( , )⊆OL  as ( , )L , and rename its set operators as ⊗ , ⊕ , � , 
it’s identity elements ∅ , O  as 0 , 1 , respectively. In this way, we can use another 
better Boolean lattice to substitute OL  whenever necessary.  

Consider three alphabets of symbols, primitive concepts (denoted A ), primitive 
roles (denoted R ), and individuals (denoted a  and b )2. A concept (denoted C  or 
D ) of lf-ALC is build out according to the following syntax rules: 

, | | | | | | . | .→ ¬ ∀ ∃C D A C D C D C R C R CF⊥  

A Boolean Lattice based fuzzy interpretation of lf-ALC is now a pair ( , )= ∆ iI II� , 
where ∆I  is as for the crisp case, the domain, whereas iI  is an Boolean lattice 
based interpretation function mapping (i) individuals as for the crisp case, i.e., 

≠a bI I  if ≠a b ; (ii) a fuzzy concept  C  into a Boolean Lattice based 
membership function : ∆ →C I I L ; (iii) a fuzzy role R  into a Boolean Lattice 
based membership function : ∆ ×∆ →RI I I L .  

For each individual a (resp. each individual pair ( , )a b ), ( )C aI I (resp. 
( , )R a bI I I ) represents those observers who is for the crisp assertion :a C  (resp. 

( , ) :a b R ) w.r.t. interpretation I . Furthermore, we use ( )µC aI I  as the Zadeh 
membership degree of a  belongs to C  w.r.t. I . Reasonably, we have 

2

| ( ) |
( )

log | |
µ =C

C a
a

I I
I I

L
3 . (1) 

                                                           
1 Of cause, we are somewhat overstated, but we trust such a situation is expectable. 
2 Metavariables may have a subscript or superscript. 
3 To a crisp set X , | |X  means the cardinality of X . 
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as the proportion between those observers who are for :a C  and the overall 
observers. Similarly, ( , )µR a bI I I , the Zadeh membership degree w.r.t. I , should be 

2

| ( , ) |
( , )

log | |
µ =R

R a b
a b

I I I
I I I

L
 . (2) 

Additionally, the Boolean lattice based interpretation function iI  has to satisfies the 
following equations: for all ∈∆d I , ( ) ( ) =d 0⊥ I , ( ) ( ) =dF 1I , and 

( ) ( )C D dI  = ( ) ( )⊗C d D dI I  
( ) ( )C D dI  = ( ) ( )⊕C d D dI I  

( ) ( )¬C dI  = ( )C d� I  

( . ) ( )∀R C dI  = ( ( , ) ( ))
′∈∆

′ ′⊗ ⊕
d

R d d C d�
I

I I  

( . ) ( )∃R C dI  = ( ( , ) ( ))
′∈∆

′ ′⊕ ⊗
d

R d d C d
I

I I  

Note that for an individual a , ( . ) ( )∀R C aI I  represents those observers who believe 
that either there’s no other individual b  satisfies the assertion ( , ) :a b R , or every 
individual b  satisfying ( , ) :a b R  also satisfies :b C . Accordingly, ( . ) ( )∃R C aI I  
represents those observers who believe that there exists an individual b  satisfies 
both ( , ) :a b R  and :b C . Obviously, lf-ALC satisfies all rules like the crisp case.  

A terminological axiom is either a fuzzy concept specialization of the form A C , 
or a fuzzy concept definition of the form ≡A C . An interpretation I  satisfies 
A C  iff for all ∈∆d I , ( ) ( )A d C dI I ; Similarly for ≡A C . A fuzzy assertion 

is an expression of the form 1α〈 〉c  or 2α′〈 〉c , where α  is an crisp assertion, 

1c  and 2c  are values in L , but α ′  is an crisp assertion of the form :a C  only. 
An interpretation I  satisfies  :〈 〉a C c  (resp. ( , ) :〈 〉a b R c ) iff ( )C a cI I  
(resp. ( , )R a b cI I I ). Similarly for .  

A fuzzy Knowledge Base (KB) is pair ( , )=K T A�, where T  and A  are finite 
sets of fuzzy terminological axioms and fuzzy assertions, respectively. An 
interpretation I  satisfies (is a model of) T (resp. A ) iff  I  satisfies each 
element in T (resp. A ), while I  satisfies (is a model of) K  iff I  satisfies 
both T  and A . A fuzzy KB K  fuzzy entails a fuzzy assertion α〈 〉c  (denoted 

α〈 〉cBK ) iff every model of K  also satisfies α〈 〉c (similarly for ). What’s 
more, to the inference problems, the extended Tableau algorithm with complexity of 
PSPACE-complete in [5] is also valid for lf-ALC, since lf-ALC can be treated as a 
special case of the lattice based FDLs in this paper. 
Example 3. Suppose 1 2 3{ , , }=O o o o , consider the fuzzy KB 3 3( , )= ∅K A �, where  

3 1 2 3{ { , }, { }}: = : == archaeopteryx Fowl o o archaeopteryx Reptile oA  . 
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Then ( ) 2 / 3 0.6µ = ≈Fowl archaeopteryxI I , ( ) 1/ 3 0.3µ = ≈Reptile archaeopteryxI I . And, 
suppose :α = ¬archaeopteryx Reptile , we have 1 2{ , }3 α =< >o oBK . 

4   Extensions of the Boolean Lattice in lf-ALC 

In Web Computing, to the decision-maker’s aspect, it’s reasonable to prefer one 
observer than another. Therefore, we can attach each observer a weight representing 
the decision-maker’s preference. For example, suppose we have n ( 1≥n ) observers 

1 2{ , , ... }= nO o o o  and a weight function : [0,1]γ →O  assigning each observer a 
proper weight, then, to a crisp assertion :a C , the Zadeh membership degree w.r.t. 
interpretation I  becomes 

( )

( )

( )
( )

γ

µ
γ

∈

∈

=
∑

∑
o C a

C

o O

o

a
o

I II I  . (3) 

In addition, it’s hard to mandate observers to only provide unambiguous answers. In 
most cases, the observers can only give fuzzy viewpoint, e.g. an archaeopteryx is only 
about 60% possibilities to be a fowl. As a result, it is necessary to transform each 
observer’s fuzzy opinion (e.g. 0.7α〈 ≥ 〉 ) in to a Boolean lattice format, although the 
original Zadeh style opinion has already lost the information of set overlapping 
relationships (as mentioned in Section 2). Here we using a simple four-valued 
Boolean lattice 4 4( , )≤L  (with operators as 4⊗ , 4⊕ , 4� ), customized from 
Belnap’s four-valued logic [7], to illustrate the transforming process. 

Before talking about 4L , we first introduce some components that compose the 
elements of it. Firstly, the elements of set { , }t f  represent the attitude of each 
observer: for or against. Secondly, the elements of set { , }⊥F 4  represent the 
confidence degree of the observer:  F  means that he is sure on his attitude because 
he has enough information (i.e. proof), and ⊥  means he is unsure on his attitude 
because his information (i.e. proof) is relatively insufficient. Thus, we get elements in 

4L  as tF , t
⊥

, f
⊥

and fF , with different means as surely trust, unsurely trust, 
unsurely distrust and surely distrust, respectively. What’s more, 4 4≤ ≤f t t

⊥F F , 

4 4≤ ≤f f t
⊥F F , 4 4=t fF F�  and 4 4=t f

⊥ ⊥
� . 

Suppose the observers opinions on assertion α  are in formats of 1α〈 ≥ 〉c  or 

2α〈 ≤ 〉c  where 1 2, [0,1]∈c c . Here, 1α〈 ≥ 〉c (resp. 2α〈 ≤ 〉c ) means that the observer 
thinks the Zadeh membership degree behind α  is 1c  (resp. 2c ) and he is for (resp. 
against) α . Then, the process transforming such opinions to elements in 4L  is as 
following. Construct a function : [0,1]β →O  representing the dividing point 
between assurance and diffidence. It is necessary to point out that, for each observer 

                                                           
4 The symbols here do not represent the top concept and bottom concept in FDLs. 
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∈o O , ( )β o  should be founded by negotiation between decision-maker and o  
before their interaction and remains unchanged throughout the whole interactive 
process. Therefore, for each ∈o O , the mapping from his Zadeh style opinion to 
elements in 4L  is shown in Fig. 1. 

≥ ≤
1

0

oβ( )

tF

t⊥

f⊥

fF

 

Fig. 1. Mapping from Zadeh style opinion of observer o  to elements of 4L  

Example 4. Suppose for observer ∈o O , ( ) 0.6β =o  and his opinion on assertions 

1 :α = a C , 2 :α = a D  are 1 0.4α〈 ≥ 〉 , 2 0.8α〈 ≤ 〉 , respectively. According to Fig. 1, 
we have 1 4α〈 = 〉t

⊥
, 2 4α〈 = 〉f

⊥
. 

To verify the soundness of the mapping in Fig. 1, we only need to verify the cases 
of conjunction, disjunction of t

⊥
 and f

⊥
, since other rule are obviously holding. 

Consider Example 4 again, the opinions 1 0.4α〈 ≥ 〉  and 2 0.8α〈 ≤ 〉  mean that 
observer o  thinks a  belongs to C  in 40% degree and belongs to D  in 80%, but 
with different attitudes. Thus, the values of :a C D  and :a C D  should be 

(0.4, 0.8) 0.4=min  and (0.4,0.8) 0.8=max , respectively. Moreover, it’s reasonable that 
o  prefer to distrust the result of :a C D  and to trust :a C D ’s result. That is to 
say, : 0.4≤a C D  and : 0.8≥a C D , which are in agreement with Boolean 
equalities 4 4⊗ =t f f

⊥ ⊥ F , 4 4⊕ =t f t
⊥ ⊥ F . 

Thus, Boolean lattice OL  can be extended to a new one 4( )′ = n
OL L ( | |=n O ), 

whose partial order , operators ⊗ , ⊕ , � , and identity elements 0 , 1  can be 
defined as: for any elements 1 2( , , .., )= np q q q  and 1 2( , , .., )′ ′ ′ ′= np q q q  in ′

OL , (i) 
′p p  iif for each i ( 1 ≤ ≤i n ), 4

′≤i iq q ; (ii) 4 1 4 2 4( , , .., )= np q q q� � � � ; (iii)  

1 4 1 2 4 2 4( , , .., )′ ′ ′ ′⊗ = ⊗ ⊗ ⊗n np p q q q q q q ;(iv) 1 4 1 2 4 2 4( , , .., )′ ′ ′ ′⊕ = ⊕ ⊕ ⊕n np p q q q q q q ; (v) 
=p 0  iif for each i ( 1 ≤ ≤i n ), 4=iq fF ; (vi) =p 1  iff for each i ( 1 ≤ ≤i n ), 

4=iq tF . 
If we use ′

OL  as the Boolean lattice of lf-ALC, it’s obvious that all the things still 
valid excepting Zadeh membership degree, which needs a new definition. Let’s take 
the crisp assertion :a C  as an example. Suppose for ′∈ Op L  and 4∈q L , ( , )Ind p q  
represent the indices set of 4L  values in p  which are equal to q . Then, the Zadeh 
membership degree w.r.t. interpretation I  becomes (without weight function) 
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( ( ), ) ( ( ), ) ( ( ), )

1 ( )

( )
| |

β

µ ∈ ∈ ∪

+

=
∑ ∑ i

i Ind C a t i Ind C a t Ind C a f

C

o

a
O

⊥ ⊥F
I I I I I I

I I . (4) 

or (with weight function) 

( ( ), ) ( ( ), ) ( ( ), )

| |

1

( ) ( ) ( )

( )
( )

γ β γ

µ
γ

∈ ∈ ∪

=

+

=
∑ ∑

∑

i i i
i Ind C a t i Ind C a t Ind C a f

C O

j
j

o o o

a
o

⊥ ⊥F
I I I I I I

I I . (5) 

5   Conclusions 

By analysis on the shortcoming of classical FDLs, we find a feasible improving 
method, i.e. using Boolean lattices rather than [0,1]  to represent fuzziness. As a 
result, a proper Boolean lattice in Web Computing environment is constructed and is 
utilized to build an improved FDL, named lf-ALC. And finally, some probable 
extensions of the chosen lattice are discussed. Still, there are many work deserves 
further research. For example, because of its limited expressiveness, it is necessary to 
extend both lf-ALC and its Boolean lattice; even, the applications of lf-ALC in Web 
Computing Environment are also necessary. 
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Integrated Distributed Description Logics
(extended abstract)

Antoine Zimmermann

INRIA Rhône-Alpes

Abstract. We propose a Description-Logics-based language that extends stan-
dard DL with distributed capabilities. More precisely, it offers the possibility to
formally describe the semantic relations that exist between two ontologies in a
networked knowledge-based system. Contrary to Distributed Description Logics
[2], it is possible to compose correspondences (≈ bridge rules), while still being
able to hide some of the discrepancies between ontologies. Moreover, when on-
tologies have no nominals, no A-Box axioms, and correspondences are restricted
to cross-ontology subsumption, the satisfiability of a local ontology is not influ-
enced by ontology alignments and other ontologies, i.e., local deduction is in-
variant to the change of the outer system. Although we do not have a complete
reasoning procedure, we provide inference rules and semantic properties, and a
discussion on reasoning in this formalism.

1 Introduction

Description Logics (DL) have been widely used in knowledge-based systems and serve
as the foundation for the accepted standard language of the semantic web, viz., OWL
[4]. However, in their basic form, DL are not so much appropriate when used in a
strongly distributed environment like peer to peer systems, semantic web, or other net-
worked, heterogeneous knowledge-based systems. In distributed environments, ontol-
ogy engineers want to reuse third party ontologies or, even more, parts of existing
ontologies, while maintaining consistency, at least in their local knowledge representa-
tion.

We offer an extension of the DL formalism (Integrated Distributed Description Log-
ics, or IDDL) which comply with the requirements of a distributed knowledge represen-
tation. The main advantages of our approach, compared to others, are (1) its separation
of local semantics (which is standard DL), and global semantics; and (2) it allows com-
position of ontology mappings.

First item means that it is conceptually in accordance with the notion of semantic
integration: local knowledge and reasoning should not be disturbed when embedded
in a network of ontologies. Several research initiative have been launched to define
languages specifically adapted to these issues. Some of them are based on DL. Sect. 2
presents these formalisms, and compares them to our approach. Sect. 3 presents the
syntax and semantics of our new formalism. In Sect. 4, we discuss reasoning in this
formalism by listing the inference rules added to standard DL reasoning, and explain
the particularities (advantages and drawbacks) of the approach.
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2 Related work

In this section, we do not investigate distributed knowledge-based formalism in its gen-
erality. We focus on DL-related work. The use of DL as a basis for a semantic web
representation language was envisage early, and OWL supports “imports” of ontologies
from a distant server. So, to a limited extend, OWL is a language for distributed archi-
tectures. However, since the “import” statement only copies the content of the identified
ontology (using its URI as a URL), it does not so well comply with the specificities of
an evolving, heterogeneous environment like the Web.

[2] defines a semantics for Distributed Description Logics (DDL), based on the
same idea as DFOL [3]. It is built around the idea of contextualizing knowledge. More
precisely, each ontology in a system relates other ontologies to itself in a directional
way, enabling an ontology to “translate” others’ knowledge in its own context. It is di-
rectional because the context to which knowledge is transfered determines how things
are interpreted. Technically, each local ontology has its own domain of interpretation,
and a domain relation defines how information is translated from one ontology to the
other. These relations are not necessarily symmetric. The main disadvantage, with re-
spect to this semantics, is the impossibility to compose so-called “bridge rules”, e.g., if
local concept C1 of ontology O1 is seen (from O1’s context) as a subclass of foreign
concept C2 in ontology O2, and C2 is seen (from O2’s context) as a subclass of concept
C3 in ontology O3, it not possible to deduce that C1 is a subclass of C3 (from O1’s
point of view). So relations between two foreign ontologies are not really taken into
account. Only the relations between foreign ontologies and the local ontology count in
the interpretation of one given context.

Another possible approach, which has good features with respect to modularity of
ontologies, is found in Package-based Description Logics (P-DL) [1]. In this DL-based
formalism, local ontologies (or “package”) can import not just full ontologies but rather
named concepts or roles from foreign ontologies. Each ontology is interpreted in a local
domain, but instead of relating it to others, they simply overlap on the imported terms
interpretation. So there is no difference between the interpretation of a concept from the
importing and the imported ontologies. The biggest problem is that it obliges the whole
network of ontologies to be quite homogeneous.

In [5], a more abstract formalism has been used to compare different approaches in-
terpreting distributed systems. DDL corresponds to what authors called a contextualized
semantics, and they prove that it does not comply with ontology alignment composi-
tion. P-DL would rather correspond to simple semantics, which is tied to homogeneous
and consistent systems. Finally, they propose a third formalism that is conceptually well
suited for heterogeneous ontology integration and comply with alignment composition.
In the present paper, we instantiate it by giving it a concrete DL-based semantics.

3 Syntax and Semantics

A IDDL knowledge base contains two components: a family of local DL ontologies,
and a family of ontology alignments. In Sect. 3.1, we define many DL constructors but
the formalism is appropriate for any subset of them, e.g., AL, ALC, ALCN , SHIQ,
SHOIN , etc.
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3.1 DL Syntax and Semantics

IDDL ontologies have the same syntax and semantics as in standard DL. More precisely,
a DL ontology is composed of concepts, roles and individuals, as well as axioms built
out of these elements. A concept is either a primitive concept A, or, given concepts C,
D, role R, individuals a1, . . . , ak, and natural number n, ⊥, >, C tD, C uD, ∃R.C,
∀R.C, ≤ nR.C, ≥ nR.C, ¬C or {a1, . . . , ak}. A role is either a primitive role P , or,
given roles R and S, R t S, R u S, ¬R, R−, R ◦ S and R+.

Interpretations are pairs 〈∆I , ·I〉, where ∆I is a non-empty set (the domain of
interpretation) and ·I is the functon of interpretation such that for all primitive con-
cepts A, AI ⊆ ∆I , for all primitive roles P , P I ⊆ ∆I × ∆I , and for all indi-
viduals a, aI ∈ ∆I . Interpretations of complex concepts and roles is inductively de-
fined by ⊥I = ∅, >I = ∆I , (C t D)I = CI ∪ DI , (C u D)I = CI ∩ DI ,
(∃R.C)I = {x|∃y.y∈CI ∧ 〈x, y〉 ∈RI}, (∀R.C)I = {x|∀y.〈x, y〉 ∈RI ⇒ y∈CI},
(≤ nR.C)I = {x|]{y ∈CI |〈x, y〉 ∈RI} ≤ n}, (≥ nR.C)I = {x|]{y ∈CI |〈x, y〉 ∈
RI} ≥ n}, (¬C)I = ∆I \ CI , {a1, . . . , ak} = {aI1, . . . , aIk}, (R t S)I = RI ∪ SI ,
(R u S)I = RI ∩ SI , (¬R)I = (∆I × ∆I) \ RI , (R−)I = {〈x, y〉|〈y, x〉 ∈ RI},
(R ◦ S)I = {〈x, y〉|∃z.〈x, z〉∈RI ∧ 〈z, y〉∈SI} and (R+)I is the reflexive-transitive
closure of RI .

Axioms are either subsumption C v D, sub-role axioms R v S, instance asser-
tions C(a), role assertions R(a, b) and individual identities a = b, where C and D are
concepts, R and S are roles, and a and b are individuals. An interpretation I satisfies
axiom C v D iff CI ⊆ DI ; it satisfies R v S iff RI ⊆ SI ; it satisfies C(a) iff
aI ∈CI ; it satisfies R(a, b) iff 〈aI , bI〉∈RI ; and it satisfies a = b iff aI = bI . When I
satisfies an axiom α, it is denoted by I |= α.

An ontology O is composed of a set of terms (primitive concepts/roles and individ-
uals) called the signature of O and denoted by Sig(O), and a set of axioms denoted by
Ax(O). An interpretation I is a model of an ontology O iff for all α∈Ax(O), I |= α.
In this case, we write I |= O. The set of all models of an ontology O is denoted by
Mod(O). A semantic consequence of an ontology O is a formula α such that for all
I∈Mod(O), I |= α.

3.2 Distributed Systems

A Distributed System (DS) is composed of a set of ontologies, interconnected by on-
tology alignments. An ontology alignment describes semantic relations between two
ontologies.

Syntax: An ontology alignment is composed of a set of correspondences. A corre-
spondence can be seen as an axiom that asserts a relation between concepts, roles or
individuals of two distinct ontologies. They are homologous to bridge rules in DDL.
We use a notation similar to DDL in order to identify in which ontology a concept, role
or individual is defined. If a concept/role/individual E belongs to ontology i, then we
write it i :E. The 6 possible types of correspondences between ontologies i and j are:

Definition 1 (Correspondence). A correspondence between two ontologies i and j is
one of the following formula:
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− i :C v←→ j :D is a cross-ontology concept subsumption;

− i :R v←→ j :S is a cross-ontology role subsumption;
− i :C ⊥←→ j :D is a cross-ontology concept disjunction;
− i :R ⊥←→ j :S is a cross-ontology role disjunction;
− i :a ∈←→ j :C is a cross-ontology membership;
− i :a =←→ j :b is a cross-ontology identity.

An ontology alignment is simply a set of correspondences. Together with DL on-
tologies, they form the components of a Distributed System in IDDL.

Definition 2 (Distributed System). A Distributed System (DS for short), is a pair
〈O,A〉 such that O is a set of ontologies, and A = (Aij)i,j∈O is a family of align-
ments relating ontologies of O.1

Semantics: Distributed systems semantics depends on local semantics, but does not in-
terfere with it. A standard DL ontology can be straightforwardly used in IDDL system.
Informally, interpreting a IDDL system consists in assigning a standard DL interpre-
tation to each local ontology, then correlating the domains of interpretation thanks to
what we call an equalizing function.

Definition 3 (Equalizing function). Given a family of local interpretations I, an equal-
izing function ε is a family of functions indexed by I such that for all Ii∈I, εi : ∆Ii →
∆ε where ∆ε is called the global domain of interpretation of ε.

A distributed interpretation assigns a standard DL interpretation to each ontology
in the system, as well as an equalizing function that correlate local knowledge into a
global domain of interpretation.

Definition 4 (Distributed interpretation). Let S = 〈O,A〉 be a DS. A distributed
interpretation of S is a pair 〈I, ε〉 where I is a family of interpretations indexed by O, ε
is an equalizing function for I, such that for all i∈O, Ii interprets i and εi : ∆Ii → ∆ε.

While local satisfiability is the same as standard DL, correspondence satisfaction
involves the equalizing function.

Definition 5 (Satisfaction of a correspondence). Let S be a DS, and i, j two ontolo-
gies of S. Let I = 〈I, ε〉 be a distributed interpretation. We define satisfaction of a
correspondence c (denoted by I |=d c) as follows:

− I |=d i :C
v←→ j :D iff εi(CIi) ⊆ εj(DIj );

− I |=d i :R
v←→ j :S iff εi(RIi) ⊆ εj(SIj );

− I |=d i :C
⊥←→ j :D iff εi(CIi) ∩ εj(DIj ) = ∅;

− I |=d i :R
⊥←→ j :S iff εi(RIi) ∩ εj(SIj ) = ∅;

1 We consistently use bold face to denote a mathematical family of elements. So, O denotes
(Oi)i∈I where I is a set of indices.
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− I |=d i :a
∈←→ j :C iff εi(aIi)∈εj(CIj );

− I |=d i :a
=←→ j :b iff εi(aIi) = εj(bIj ).

Additionally, for all local formula i :φ, I |=d i :φ iff Ii |= φ (i.e., local satisfaction
implies global satisfaction). A distributed interpretation I satisfies an alignment A iff
it satisfies all correspondences of A (denoted by I |=d A) and it satisfies an ontology
Oi iff it satisfies all axioms of Oi (denoted by I |=d Oi). When all ontologies and all
alignments are satisfied, the DS is satisfied by the distributed interpretation. In which
case we call this interpretation a model of the system.

Definition 6 (Model of a DS). Let S = 〈O,A〉 be a DS. A distributed interpretation
I is a model of S (denoted by I |=d S), iff:

− for all Oi∈O, I |=d Oi;
− for all Aij ∈A, I |=d Aij .

The set of all models of a DS is denoted by Mod(S). A formula α is a consequence
of a DS (S |=d α) iff ∀M ∈ Mod(S),M |=d α. This model-theoretic semantics offers
special challenge to the reasoning infrastructure, that we discuss in next section.

4 Reasoning in IDDL

Reasoning in IDDL is a tricky task because there are two levels of interpretation, which
are separated yet interdependent. Local DL inferences are valid in IDDL, but correspon-
dences add new inference rules. Also, we show in Sect. 4.2 how to transpose knowledge
of a DS into a localized ontology. However, this process does not guarantee complete-
ness in general.

4.1 Inference Rules

Correspondences and axioms from several ontologies are used to deduce new axioms
or correspondences, as shown in Fig. 1.

It is easy to prove that these rules lead to correct reasoning2 but completeness is still
under investigation. Rule 14 is a special case because it requires the introduction of a
new individual that does not appear in any other axioms. This is due to the fact that DL
does not provide any means to assert that there exists an unnamed instance of a concept.
Rules 7, 8, 9, 10 and 11 show that it is possible to compose correspondences. Rule 15
shows that alignments can produce inconsistencies, independently of ontologies. It must
be remarked that several seemingly intuitive results are not true in IDDL. For instance,
i :A v←→ j :¬B does not imply, nor is implied by i :A ⊥←→ j :B, because injectivity of
the equalizing function is not required. Moreover, if i :A v←→ i :B (resp. i :a =←→ i :b,
resp. i :a ∈←→ i :A), it is not possible to infer i :A v B (resp. i :a = b, resp. i :A(a)).

2 See http://www.inrialpes.fr/exmo/people/zimmer/DL2007Proof.pdf
for formal proofs.
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i :A v B
i :A

v←→ i :B
(1)

i :A(a)

i :a
∈←→ i :A

(3)

i :a
=←→ j :b

j :b
=←→ i :a

(5)

i :A
v←→ j :B j :B

v←→ k :C

i :A
v←→ k :C

(7)

i :a
∈←→ j :B j :B

v←→ k :C

i :a
∈←→ k :C

(9)

i :A
v←→ j :B j :B

⊥←→ k :C

i :A
⊥←→ k :C

(11)

i :A
⊥←→ j :B i :a

∈←→ j :B

i :¬A(a)
(13)

i :a = b

i :a
=←→ i :b

(2)

i :A
v←→ j :B i :A

′ v←→ j :B
′

i :A t A′ v←→ j :B t B′
(4)

i :A
⊥←→ j :B

j :B
⊥←→ i :A

(6)

i :a
=←→ j :b j :b

=←→ k :c

i :a
=←→ k :c

(8)

i :a
=←→ j :b j :b

∈←→ k :C

i :a
∈←→ k :C

(10)

i :A
⊥←→ j :B i :A

′ v←→ j :B

i :A v ¬A′ (12)

i :a
∈←→ j :B

j :B(x) i :a
=←→ j :x

(14)

i :a
∈←→ j :B j :B

⊥←→ j :B

ut (15)

Fig. 1. Inference rules in IDDL.

It is interesting to note that when the ontologies have no A-Box and do not use
nominals, and when moreover correspondences are limited to cross-ontology subsump-
tions, it is not possible to deduce new local axioms with outer knowledge (only rules
1, 4 and 7 apply). Therefore, in this particular case, local reasoning is not disturbed
by the surrounding DS. This is a particularly interesting feature when the network of
ontologies is constantly evolving. Yet, it does not mean that embedding an ontology in
a DS does not provide interesting knowledge. Indeed, the global semantics level is very
much influenced, and this is crucial in ontology integration. Next section shows how a
DS can be used to define a new DL ontology that integrate the knowledge from all the
system.

4.2 Localizing Distributed Knowledge

Here, we show how to interpret a DS as a standard DL ontology, by building a standard
DL interpretation out of a distributed one. The multiple signatures of the DS ontologies
can be gathered into one vocabulary in the following way.

Definition 7. The integrated vocabulary VS of a distributed system S = 〈O,A〉 is
defined as follows:

− for all primitive concept (resp. primitive role, resp. individual) Xi in ontology Oi,
there exists a primitive concept (resp. primitive role, resp. individual) X→i in VS;
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− for all constructed concept (resp. constructed role) Xi of ontology Oi appearing
in the axioms or alignments of S, there exists a primitive concept (resp. primitive
role) X→i in VS .

The integrated vocabulary can be interpreted by a standard DL interpretation. An
integrated interpretation is a specific DL interpretation defined out of a given distributed
interpretation. Informally, it can be described as the mathematical composition of the
local interpretation functions and the equalizing function.

Definition 8. Given a distributed interpretation I = 〈I, ε〉 of a system S, the integrated
interpretation I→ built out of I is a DL interpretation of VS defined as follows:

− for all primitive concept C→i of VS , (C→i )I
→

= {εi(x);x ∈ CIi
i };

− for all primitive role C→i of VS , (R→i )I
→

= {〈εi(x), εi(y)〉; 〈x, y〉 ∈ RIi
i };

− for all individual a→i of VS , (a→i )I
→

= εi(aIi
i ).

Of course, this interpretation can be extended to interpret constructed concepts like
∃R→.C→. Be careful not to confuse complex concept ∃R→.C→ and the primitive con-
cept (∃R.C)→. See Sect. 4 for details.

Deduction in the integrated vocabulary: Since integrated interpretations are standard
DL interpretations, they may satisfy DL axioms over the integrated vocabulary. Theo. 1
shows how distributed satisfaction influence integrated interpretation satisfaction.

Theorem 1. Let I = 〈I, ε〉 be a distributed interpretation of a DS which contains
concepts Ci, Di, roles Ri, Si, individuals ai, bi, o1, . . . , on in ontology Oi and concept
Cj , role Rj , individual aj in ontology Oj .

Ii |= i :Ci(ai) =⇒ I→ |= C
→
i (a

→
i ) I |= i :Ci

v←→ j :Cj =⇒ I→ |= C
→
i v C→j

Ii |= i :Ri(ai, bi) =⇒ I→ |= R
→
i (a

→
i , b

→
i ) I |= i :Ri

v←→ j :Rj =⇒ I→ |= R
→
i v R→j

Ii |= i :Ci v Di =⇒ I→ |= C
→
i v D→i I |= i :Ci

⊥←→ j :Cj =⇒ I→ |= C
→
i v ¬(C

→
j )

Ii |= i :ai = bi =⇒ I→ |= a
→
i = b

→
i I |= i :Ri

⊥←→ j :Rj =⇒ I→ |= R
→
i v ¬(R

→
j )

I |= i :ai
=←→ j :bj =⇒ I→ |= a

→
i = a

→
j I |= i :ai

∈←→ j :Cj =⇒ I→ |= C
→
j (a

→
i )

Moreover, the following assertions hold:

I→ |= C
→
i tD→i v (Ci tDi)

→ I→ |= R
→
i t S→i v (Ri t Si)

→

I→ |= (Ci tDi)
→ v C→i tD→i I→ |= (Ri t Si)

→ v R→i t S→i
I→ |= C

→
i uD→i v (Ci uDi)

→ I→ |= R
→
i u S→i v (Ri u Si)

→

I→ |= (∃Ri.Ci)
→ v ∃(R→i ).(C

→
i ) I→ |= (R

−
i )
→ v (R

→
i )

−

I→ |= ∃R→i .> v (∃Ri.>)
→ I→ |= (R

→
i )

− v (R
−
i )
→

I→ |= ({o1, . . . , on})→ v {o→1 , . . . , o
→
n } I→ |= (R

+
i )
→ v (R

→
i )

+

I→ |= {o→1 , . . . , o
→
n } v {(o1, . . . , on})→ I→ |= (Ri ◦ Si)

→ v R→i ◦ S→i

Each of the previous assertions is quite easy to prove, but fastidious. Therefore, we
do not reproduce them here but interested readers can find them online.3 For all other

3 http://www.inrialpes.fr/exmo/people/zimmer/DL2007Proof.pdf
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constructors and subsumptions, counter examples can be found where the interpretation
does not satisfy them. This can also be found online.

This theorem allows compiling axioms that are satisfied by all the models of a DS.
Therefore, it is possible to build a new ontology that integrate knowledge from dis-
tributed ontologies and alignments. Such an ontology correctly represents knowledge
of the system, but might not be complete. Nonetheless, Theo. 1 can be used as the basis
of a compilation algorithm which integrate aligned ontologies in a modular way. The
compiled ontology itself could be embedded in a distributed system.

5 Conclusion and further work

We have proposed a new formalism for distributed systems composed of ontologies
and ontology alignments. Its semantics has the advantage of being able to compose
correspondences (i.e., to deduce a new alignment from a chain of alignments exists
from the first to the second ontology). Given some restrictions, it also offers strong
robustness, since the absence of A-Box and nominals, together with only cross-ontology
subsumption correspondences, guarantee that local deduction is invariant to the change
of the outer system (i.e., alignments and other ontologies). Finally, it seems to be a
good candidate semantics for ontology integration and modularization, because of its
two-level semantics.

However, it still needs theoretical investigation. The most important work in the
continuity of what is proposed here is the design of a deduction procedure. This pa-
per already provides correct deductive rules, but completeness is not guaranteed in the
general case. Developing a tableau-like algorithm is hard because the two levels of se-
mantics interact with each others, although they are not processable together by usual
methods. Such a procedure would open the way to implementation and tests.
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Modal Logic Applied to Query Answering
and the Case for Variable Modalities
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Abstract. We present a query answering technique based on notions
and results from modal Correspondence Theory. It allows us to answer a
wide family of conjunctive queries by polynomial reduction to knowledge
base satisfiability problem. An advantage of this technique lies in its
uniformity: it does not depend on a Description Logic (DL), so that
extending a DL does not invalidate the algorithm. Thus, the problem of
answering queries in this family is decidable in any decidable DL. The
construction also leads to an idea of extending the modal language with
so called variable modalities, whose syntax and semantics is introduced
in the paper. On the one hand, this yields a broader family of queries
that can be answered with the same technique. On the other hand, modal
logic with variable modalities is interesting per se, and we formulate some
natural (open) questions about this logic.

1 Introduction

Developing languages and algorithms for reasoning with ontologies is a crucial
aspect of the Semantic Web activity. Among reasoning tasks, querying is a fun-
damental mechanism for extracting information from a KB. Two most important
reasoning services involving queries are query answering and query containment
(also called subsumption); they are mutually reducible (and we focus on query
answering here). While the complexity of DLs is now well understood [1, 11],
the decidability and complexity issues for query answering in expressive DLs
have only recently got partial or complete solutions (see [5, 8] and references
therein). For the expressive DLs that underpin the state-of-the-art web ontology
languages OWL DL and OWL 1.1, even the decidability of query answering is
not established yet.

Usually, query answering techniques are developed for a specific DL, and the
more expressive is a DL, the more complex becomes the query answering algo-
rithm. In this paper, we address the problem from a different perspective: we
develop a uniform technique for answering a certain family of queries, which
means that the algorithm is independent of a DL in which a KB is formulated.
Therefore, extending the expressivity of a DL does not hurt the algorithm (in
contrast to other approaches where, e.g., introducing transitive roles can invali-
date the algorithm, cf. [5, 8]). The basic and most prominent uniform algorithm
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for query answering is so called rolling-up technique (see, e.g., [5]) applicable
to the family of tree-like queries whose root is the only distinguished variable.
Given such a query q(x), the algorithm transforms it into an equivalent concept
C, i.e., in any model, the extensions of C and q(x) coincide. Hence, to answer
the query q(x) is the same as to retrieve all instances of the concept C (and
the latter task is reducible to KB unsatisfiability). The starting point for us is
an observation that, in general, the equivalence of a concept to a query is suf-
ficient, but not necessary for them to have the same answers. It turns out that
the proper relation between C and q(x) that guarantees them to have the same
answers is closely related (or, as we conjecture, even equivalent) to the relation
of local correspondence known from modal Correspondence Theory [2, 6, 9].

To illustrate how this works, consider a cyclic query q(x) ← xRx; it is not
equivalent to any ALC concept, as follows from the tree model property, so
rolling-up is not applicable. Now recall that reflexivity xRx is expressible by
(i.e., locally corresponds on Kripke frames to) a modal formula p→ ♦p, where
p is a propositional variable (its interpretation on a Kripke frame is universally
quantified). Then we introduce a fresh concept name P (i.e., whose interpretation
is not constrained by a KB) and translate this modal formula into a DL concept
¬P t ∃R.P , which, as we prove, always has the same answers as our query q(x).

In general, given a query q(x) from a family specified below, we invoke an
algorithm from Correspondence Theory [6] to build a modal formula ϕ that
locally corresponds to q(x); then we translate ϕ into a concept (usually, in the
same DL as the query) by introducing a fresh concept name for each variable
in ϕ; the resulting concept, as we show, has exactly the same answers as the
original query q(x) over any KB in any DL. The details of this technique are
described in Sect. 2. A natural question arises: what if we additionally allow to
use fresh role names? In terms of modal logic, this means that a formula ϕ will
contain what we call variable modalities. We introduce syntax and semantics for
such a modal language in Sect. 3 and generalise the query answering technique
to this setting, which results in a wider family of queries that can be answered
within this approach. Finally, in Sect. 4 we conclude with formulating some open
problems concerning our query answering technique, as well as definability and
first-order correspondence for the modal logic with variable modalities.

2 Queries answered by concepts

Since our results are applicable to any DL (extending ALC), we do not need
to describe expressive DLs, and we only briefly recall the definition of ALC and
ALCI and fix some notation. The vocabulary consists of finite sets of concept
names CN, role names RN, and individual names (or constants) IN. Concepts of
ALC are defined by the following syntax:

C ::= ⊥ | A | ¬C | C uD | ∀R.C, where A ∈ CN, R ∈ RN.

Other connectives are taken as customary abbreviations, e.g., C → D stands for
¬(C u ¬D). In ALCI, inverse roles R− can additionally be used in place of R.
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A terminology (or a TBox) T is a finite set of axioms of the form C v D,
where C,D are arbitrary concepts. An ABox A is a finite set of assertions of
the form a:C and aRb, where a, b ∈ IN, C is a concept and R a role. Finally, a
knowledge base KB = 〈T ,A〉 consists of a TBox T and an ABox A.

Definition 1. (Semantics) An interpretation I = (∆I , ·I) consists of non-
empty domain ∆I and an interpretation function ·I that maps:

– each constant a ∈ IN to an element aI ∈ ∆I ,
– each concept name C ∈ CN to a subset CI ⊆ ∆I ,
– each role name R ∈ RN to a binary relation RI ⊆ ∆I ×∆I ;

and is extended to concepts, roles, axioms and assertions as follows:

⊥I = ∅ (R−)I = {〈e, d〉 | 〈d, e〉 ∈ RI} I |= C v D iff CI ⊆ DI

(¬C)I = ∆I \ CI (∀R.C)I = { e ∈ ∆I | d ∈ CI I |= a: C iff aI ∈ CI

(CuD)I = CI ∩DI for all d such that 〈e, d〉 ∈ RI} I |= aRb iff 〈aI, bI〉 ∈ RI

Here I |= Φ stands for ‘I satisfies Φ’. An interpretation is called a model of a
KB if it satisfies all its TBox axioms and ABox assertions. A knowledge base
KB entails Φ (notation: KB |= Φ) if I |= Φ, for all models I of KB.

Definition 2. (Queries) A conjunctive query is an expression of the form

q(~x) ← ∃~y (
t1(~x, ~y) ∧ . . . ∧ tn(~x, ~y)

)
,

where ~x, ~y are tuples of (distinguished , resp., non-distinguished) variables, and
each atom ti(~x, ~y) is of the form u:C (concept atom) or uRv (role atom), where
C is a concept, R a role, and u, v are either variables from ~x, ~y or constants.1

A query without concept atoms is called relational. Queries with 0 and 1 dis-
tinguished variables are called boolean and unary resp. Given an interpretation
I = 〈∆, ·I〉, a query q of arity m is interpreted as follows:

qI := { ~e ∈ ∆m | I |= ∃~y (
t1(~e, ~y) ∧ . . . ∧ tn(~e, ~y)

) }.
The answer set of a query q(~x) w.r.t. a knowledge base KB is defined as the set
of tuples of constants ~a that satisfy the query q in all models of KB:

ansKB(q) := { ~a ∈ IN | KB |= q(~a) }.
The following is the main notion of our paper (in fact, it can be formulated

for an arbitrary first-order formula q in the appropriate language, cf. Example 2).

Definition 3. A unary query q(x) is answered by a concept C (written as
q(x) ≈ C) if, for any KB and any a ∈ IN, we have: KB |= q(a) ⇔ KB |= a:C;
in other words, if the queries q(x) and x:C always have the same answer set.2

A boolean query q is answered by a concept C (notation: q ≈ C) if, for any
KB, the equivalence holds: KB |= q ⇔ KB |= a:C, where a is a fresh constant.
1 In what follows, w.l.o.g. we consider queries without constants, since constants can

be eliminated at the price of introducing nominals: xRa is equivalent to xRz ∧ z: {a}.
2 Strictly speaking, we should define: q(x) ≈ C over a DL L iff q(x) and x: C have

the same answers for any KB formulated in L. However, we shall not complicate the
matters, since in all our results whenever q ≈ C holds, it hold in fact for any DL L.
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Our task is to determine what kind of queries can be answered by concepts
and when these concepts can be found efficiently (and preferably in the same
language as the query). For this aim, we will use results from a branch of modal
logic called the Correspondence Theory. Briefly, this theory is devoted to ques-
tions whether a modally definable class of frames is also first-order definable, and
if so, whether the corresponding first-order formula can be found efficiently (and
similarly in the other direction). The background information on that theory
can be found in [2, Chap. 3]; here we will recall its basic notions.

Formulas of the (multi-)modal language with nmodalities �i and a countable
set of propositional variables pi are defined by the following syntax:

ϕ ::= ⊥ | pi | ϕ→ ψ | �iϕ.

As K. Schild observed in [10], this language is a notational variant of ALC with n
role names Ri.3 Exploiting this fact, whenever ϕ is a modal formula, we denote
by Cϕ the concept obtained from ϕ by replacing �i with ∀Ri and pi with fresh
concept names Pi (it is convenient to reserve a countable set of fresh concept
names, i.e., that will not occur in any KB or query).

Definition 4 (Kripke semantics). A frame F = 〈∆, r1, . . . , rn〉 consists of a
non-empty set ∆ and n binary relations ri on ∆. A model M = 〈F, ν〉 (based
on F ) consists of a frame F and a valuation of variables pν

i ⊆ ∆. The notion
“a formula ϕ is true at a point e ∈ ∆ in a model M” (notation: M, e |= ϕ) is
defined inductively: M, e 6|= ⊥; M, e |= pi iff e ∈ pν

i ; M, e |= ϕ→ ψ iff M, e 6|= ϕ
or M, e |= ψ; M, e |= �iϕ iff M,d |= ϕ for all d ∈ ∆ such that 〈e, d〉 ∈ ri. A for-
mula ϕ is valid (at a point e) in a frame F (notation: F, e  ϕ or F  ϕ resp.)
if it is true (at this point) in all models based on F .

Definition 5 (Correspondence). Let ϕ be a modal formula, α(x) and β first-
order formulae in the vocabulary {R1, . . . , Rn,=} with one and no free vari-
ables, resp. We say that α(x) locally corresponds to ϕ (notation: α(x) ! ϕ) if
F |= α(e) ⇔ F, e  ϕ, for any frame F and any its point e. Similarly, β globally
corresponds to ϕ (notation: β ! ϕ) if F |= β ⇔ F  ϕ, for any frame F .

For example, a formula p → ♦p corresponds (both locally and globally) to
reflexivity, whereas �(�p→ p)→ �p is valid in a frame F iff F is transitive and
has no infinite ascending chains, which is a (monadic) second-order property.

We are ready to establish a relationship between the correspondence relation
(q ! ϕ) and query answering (q ≈ Cϕ). We conjecture that they are equivalent;
however, we have succeeded to prove only one implication and partially the
converse one. For proofs, see a paper [13] and a recent technical report [12].

Theorem 6 (Reduction). Let q(x) be a unary relational4 query, ϕ a modal
formula. If q(x) locally corresponds to ϕ, then the query q(x) is answered by the
ALC-concept Cϕ. In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.

Similarly for boolean queries and global correspondence: if q!ϕ then q ≈ Cϕ.
3 Note that the words ‘correspondence theory’ in the title of his paper refer to this

observation only and have nothing to do with modal Correspondence Theory.
4 Queries that additionally involve concept atoms y: C are covered by Theorem 10.
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Lemma 7 (Partial converse). (1) Suppose that a unary relational query q(x)
is answered by a concept Cϕ, i.e., q(x) ≈ Cϕ, for some modal formula ϕ. Then:

a) F |= q(e) ⇒ F, e  ϕ, for any frame F and any its point e;
b) F |= q(e)⇐ F, e  ϕ, for any finitely branching5 frame F and any point e.

(2) The same holds for boolean queries and global validity (F  ϕ), but only for
‘finite’ instead of ‘finitely branching’ frames in (b).

It is undecidable to determine whether a given FO formula corresponds to
some modal formula [3]. There were few attempts to find FO fragments for which
the problem is decidable.6 We apply (and extend) those results and identify
several families of queries for which the answering concept can be built efficiently.
The family K below stems from so called Kracht’s fragment [6]; the family Z
contains queries beyond that fragment. Queries from both K and Z are answered
by ALC-concepts. By “forgetting” the direction of edges7 in queries, we obtain a
family E of queries that are answered by ALCI-concepts. The formal description
of these families of relational queries (and their non-relational analogues), the
corresponding algorithm and the proofs can be found in [13].

Corollary 8. There exist a (polynomial) algorithm that takes a unary relational
conjunctive query q(x) from the following families K, Z, and E and returns a
concept in ALC (for q ∈ K ∪ Z) or ALCI (for q ∈ E) that answers this query.
Furthermore: K 6⊆ Z, Z 6⊆ K, and (K ∪ Z) ⊂ E. So, for any DL L, the problem
of answering queries within these families has the same complexity as L itself.

Family K: take an oriented tree with the root x, and add any number of
oriented chains linking x with other nodes (in any direction).

Family Z: take an “anti-tree” (i.e., an oriented tree with edges directed from
leaves to the root); merge all its leaves and denote the resulting node by x.

Family E: the graph of a query is connected and has no cycles that consist
of non-distinguished variables only (i.e., any cycle contains the node x).

Example 1. The queries q1(x) ← xRy ∧ xSy and q2(x) ← xRy ∧ ySx are
answered by the concepts ∀R.Y → ∃S.Y and X → ∃R.∃S.X resp. The following
two queries witness that the families K and Z are incomparable w.r.t. inclusion:

Query in K \ Z: q3(x) ← xRv ∧ vSy ∧ vQz ∧ xRy ∧ xRz
Concept: ∀R.(Y u Z)→ ∃R.(∃S.Y u ∃Q.Z)
Query in Z \K: q4(x) ← xRy ∧ xSy ∧ yPv ∧ xRz ∧ xSz ∧ zQv
Concept: ∀R.(Y u Z)→ ∃S.( (Y u ∃P.V ) t (Z u ∃Q.¬V )

)
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5 I.e., any point of the frame has a finite number of successors.
6 And much more results in the “modal to first-order” direction; see [4] for an overview.
7 It is convenient to represent a relational query as an oriented graph, whose nodes

are distinguished (•) and non-distinguished (◦) variables and edges are role atoms.
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Example 2. Boolean (not necesserily conjunctive) queries can be answered sim-
ilarly; namely, we can check for modally definable properties of roles [2, Ch. 3].
For instance, whether a role R is reflexive, transitive, dense, eucleadean, conflu-
ent etc. in a KB can be checked, by Theorem 6, using the DL-translations of the
modal formulae p→ ♦p, ♦p→ ♦♦p, ♦♦p→ ♦p, ♦p→ �♦p, ♦�p→ �♦p resp.

3 Modal logic with variable modalities

The results obtained above inspire to introduce a natural extension of modal
logic, which is interesting per se and in addition yields to a wider family of
queries that can be answered with the same technique. Recall that in order to
answer, e.g., a query q(x)← xRx, we introduced a fresh concept name P and
then proved that q(x) has the same answers as the concept ¬P t ∃R.P . It is
not hard to see that, without fresh concept names, only tree-like queries can
be answered (and this will coincide with the rolling-up technique). So it were
fresh concept names that enabled us to answer cyclic queries. Now, can we gain
even more if we allow to use fresh role names? As we show below, the answer
is Yes (but additional queries are usually not conjunctive, but rather first-order
formulae of other kinds).

Recall that in the definition of the validity of a modal formula in a frame, we
quantify over interpretations of propositional variables (i.e., unary predicates),
but interpretation of modalities (i.e., binary predicates) is fixed. In other words,
the standard modal logic is a logic of constant modalities and propositional
variables. Therefore it is natural to consider a notion of validity, in which the
rôle of unary and binary predicates is symmetric. So, we extend modal logic with
variable modalities and propositional constants.

The vocabulary of the mixed modal logic consists ofm propositional constants
A1, . . . , Am, n constant modalities �1, . . . ,�n, and countable sets of proposi-
tional variables pi and variable modalities �i. The syntax for formulae is:

ϕ ::= ⊥ | pi | Ai | ϕ→ ψ | �iϕ | �iϕ

Definition 9 (Semantics). A frame F = 〈∆, ~α,~r 〉 consists of a non-empty
set ∆, a list ~α of m unary predicates αi ⊆ ∆, and a list ~r of n binary rela-
tions ri ⊆ ∆×∆. A model M = 〈F,~π,~s 〉 consists of a frame F and countable
sequences of unary predicates πi ⊆ ∆ and binary relations si ⊆ ∆×∆.

The notion “a formula ϕ is true at a point e ∈ ∆ in a model M” is defined
inductively: boolean cases are standard;M, e |= pi iff e ∈ πi;M, e |= Ai iff e ∈ αi;
M, e |= �iϕ iff M,d |= ϕ for all d ∈ ∆ such that 〈e, d〉 ∈ ri; and similarly for �i

and si. The notion of validity of a formula (at a point) in a frame is standard,
but note that here saying “for all models M” involves quantification over unary
binary predicates si (hence it is no longer a monadic second-order notion).

The notion of correspondence is defined as in Def. 5, but for first-order for-
mulae in the vocabulary {A1, . . . , Am, R1, . . . , Rn,=}. The mixed modal lan-
guage is much more expressive. For instance, F  �p→ �p iff r = ∆×∆; and
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F |= p→ �p iff |∆| = 1; these properties are not expressible in the standard
modal language (see. [12] for more examples). It turns out that almost all the
results from the previous section can be generalised to the mixed modal logic,
with even more elegant formulations, as we do not need to rule out concept
atoms x:C from queries now. In what follows, whenever ϕ is a mixed modal
formula, by Cϕ we denote a concept obtained from ϕ by replacing �i with ∀Ri,
�i with ∀Si, and pi with Pi, where concept names Pi and role names Si are
fresh (symbols Ai are left unchanged). The following results are proved in [12].

Theorem 10 (Reduction). Let q(x) be a unary query, ϕ a mixed modal for-
mula. If q(x) locally corresponds to ϕ, then the query q(x) is answered by the
ALC-concept Cϕ. In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.

Similarly for boolean queries and global correspondence: if q!ϕ then q ≈ Cϕ.

Lemma 11 (Partial converse). (1) Suppose that a unary query q(x) is an-
swered by by a concept Cϕ, i.e., q(x) ≈ Cϕ, for some mixed modal formula ϕ.
Then F |= q(e) implies F, e  ϕ, for any frame F and any its point e.

(2) The same holds for boolean queries and the global validity (F  ϕ).

Example 3 (Mary likes all cats). Suppose that a KB contains an individual
Mary, a concept Cat and a role Likes, and we want to express a boolean query
whether “Mary likes all cats”. A straightforward way to do this is to write a
concept subsumption: Cat v ∃Likes−.{Mary}, but it contains an inverse role and
a nominal, even if the language of KB does not, thus increasing the complex-
ity of reasoning [11]. This query can also be formulated using role negation:
Mary:∀¬Likes.¬Cat, again with an increase of the complexity [7]. The solution
we propose enables one to express this query in ALC. To this end, note that a
mixed modal formula �p → �(A→ p) locally corresponds to a first-order for-
mula q(x) := ∀y (A(y)→ xRy) (see [12] for a proof). Now let A stand for Cat and
R for Likes, then our query “Mary likes all cats” can be represented as q(Mary).
Finally, we apply Theorem 10 and conclude that q(Mary) holds w.r.t. KB iff
Mary is an instance (w.r.t. KB) of the following concept (where the concept
name SomeConc and the role name SomeRel are fresh):

∀Likes.SomeConc → ∀SomeRel.(Cat→ SomeConc).

4 Conclusions and open quesions

One of the achievements of this paper is the established relationship between
query answering in DL and Correspondence Theory (Theorems 6 and 10). It
allowed us to build a uniform query answering algorithm for some families of
conjunctive queries. Furthermore, a modal logic with variable modalities was
introduced; although it is quite a natural extension of the standard modal logic,
it has not been considered in the literature, to the best of our knowledge.

There is a number of natural problems left open, answers to which would
complete the whole picture. Here we mention some of them.
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Q1 Do the converses of Theorems 6 and 10 hold?
Q2 Which conjunctive queries locally/globally correspond to modal formulae

(with or without �’s)? At least, are these families of queries decidable?
Q3 Which conjunctive queries can be answered by ALC-concepts (with or with-

out fresh role names)? By Theorems 6 and 10, queries from Q2 form a subset
of queries from Q3, and by Corollary 8, they contain the families K and Z.

Q4 The same questions Q2 and Q3 for the logics ALCI, ALCQ, and ALCQI.
Q5 The expressive power of the mixed modal logic: What classes of frames are

definable (i.e., an analogue of Goldblatt-Thomason theorem [2, Th. 3.19])?
Which of them are first-order definable?
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The Minimal Finite Model Visualization as an
Ontology Debugging Tool

Guntis Barzdins and Martins Barinskis

IMCS, University of Latvia
martins.barinskis@gmail.com, guntis.barzdins@mii.lu.lv

Abstract. We present an new Protégé plugin for constructing a minimal
satisfiability model of an OWL ontology and visualizing it in the original
music score notation.

1 Introduction

The ontology satisfiability is a property that indicates whether all classes defined
in the ontology can possibly have any instances. Satisfiability implies consistency.
The described Protégé plugin [1] complements the traditional ontology satisfia-
bility debugging tools [2]: if an automatically constructed minimal model of the
ontology contradicts the author’s intentions, then the ontology itself is either
wrong or incomplete.

Currently, we consider only ontologies with a finite satisfiability model. Here
we focus on the model visualization enhancements, while the overall approach is
described in [3].

2 Acquiring and Visualizing a Satisfiability Model

Let us consider a simple OWL DL pizza ontology:

Ontology(
Class(Pizza partial restriction(hasTopping

someValuesFrom(PizzaTopping)) owl:Thing)
Class(MeatyPizza complete restriction(hasTopping

someValuesFrom(MeatTopping)) Pizza
restriction(lessHealthyThan someValuesFrom(VegetarianPizza)))

Class(CheeseOnlyPizza complete restriction(hasTopping
someValuesFrom(CheeseTopping)) Pizza
restriction(hasTopping allValuesFrom(CheeseTopping)))

Class(VegetarianPizza complete complementOf(restriction(hasTopping
someValuesFrom(MeatTopping))) Pizza)

Class(PizzaTopping partial owl:Thing)
Class(CheeseTopping partial PizzaTopping)
Class(MeatTopping partial PizzaTopping)
DisjointClasses(CheeseTopping MeatTopping)
DisjointClasses(PizzaTopping Pizza)
ObjectProperty(hasTopping domain(Pizza) range(PizzaTopping))

)

Pellet and Fact++, the popular OWL DL/OWL 1.1 reasoners, do not output
an ontology satisfiability model. Therefore, to build a model, we map the OWL
ontology to the FOL formula and use Mace4 , a FOL model builder:
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relation(CheeseOnlyPizza(_), [ 1, 0, 0, 0 ]),
relation(CheeseTopping(_), [ 0, 1, 0, 0 ]),
relation(MeatTopping(_), [ 0, 0, 0, 1 ]),
relation(MeatyPizza(_), [ 0, 0, 1, 0 ]),
relation(Pizza(_), [ 1, 0, 1, 0 ]),
relation(PizzaTopping(_), [ 0, 1, 0, 1 ]),
relation(VegetarianPizza(_), [ 1, 0, 0, 0 ]),
relation(hasTopping(_,_), [ 0, 1, 0, 0,

0, 0, 0, 0,
0, 1, 0, 1,
0, 0, 0, 0 ]),

relation(lessHealthyThan(_,_), [ 0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 0, 0,
0, 0, 0, 0 ])

The created satisfiability model is further visualized using an original “music
score notation”:

The traditional class hierarchy and individuals are visualized as lines that
are interconnected by the notes (relations). Filtering can be used to navigate
larger models.
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Structural Theory of Science as a Systematic
Framework for the Design of DL’s and CD’s for

E-Science

Hansje Braam

Utrecht University, Faculty of Humanities
hansje.braam@let.uu.nl

1 Context

The construction of ontologies (DL-instances, Concrete Domains) for E-Science
(in my individual case E-Humanities) is quite hard:
i) in many cases we have to cope with ontological divergencies, up to completely
disjunct ontologies, as many competing theories (and scientific practices) rely on
non-common features, entity-classes and relations;
ii) many scientifically relevant predicates have arity > 2, a potential problem for
DL(CD)’s;
iii) in science (natural science, but humanities as well) formalisms are used with
high complexity (mathematics, formal grammars, predicate logics, restricted nat-
ural language etc.);
iv) higher order predicates occur -especially in the humanities- (f. e. it is possi-
ble to reason about certains modes of interpretation). It is a.o. this semantical
complexity which distinguishes science from folk cognition.
I propose to use Structural Theory of Science (the classical reference [1], see
also [2]) as a common framework for the analysis of scientific theories (and
practices) in which the specifications of adequate ontologies can be related and
subsequently used in the systematic construction of the DL’s and CD’s.

2 Structural Theory of Science

Structural theory of science (STS) is basically a semantical approach to scien-
tific theories. It focusses on a model-theoretical exposition of the meaning of
theories. Thus, it is not restricted to formal deductive theories. STS has been
applied to wide range of scientific theories, including physics, linguistics, psy-
chology, economy and theory of literature. It also facilitates the exact study of
theory dynamics and intertheoretical relations. Theories are not approached as
deductive systems of statements (axioms, propositions, theorems etc.) but as
possibly complex expressions about the relations between certain sets of models.
Models are tuples of domains and predicates of the theory. Simply put, four
levels are relevant:
i) the set of the intended applications IA(T ) (in most cases, that what the theory
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is about: the empirical field);
ii) the set of all possible models for the basic ontology of the theory Mpp(T ),
excluding its theoretical notions (e.g. including only what the theory takes for
granted);
iii) the set of all possible models for the ontology of the theory Mp(T ), which
includes the domains and ranges of its theoretical predicates;
iv) the set of models of the theory itself M(T ), the theoretical predicates are
specified in full.
An approximating function F relates the set of intended applications to M :
the empirical claim of a theory T is that F (IA(T )) ⊂ M(T ). Generally we
have F (IA(T )) ⊆ M(T ) ⊆ Mp(T ) and Mpp(T ) is a projection of Mp(T ). In
DL-terms one could associate IA with possible models for the ABox of T and
M with all models for its TBox. Example: for a simple theory ILT of inter-
pretation of literary English works we could have Mpp(ILT ) as a set of tu-
ples 〈Text, Interpreter〉, Mp(ILT ) as tuples from Mpp(ILT ) extended with
the full Interprete-relation (i.e. Interpreter × Text × Interpretation), where
Interpretation is a ILT-qualified subset of Text. The specification of M(ILT )
(by specification of Interprete) may well be non-computational. IA(ILT ) covers
English literary works with interpretations by certain interpreters. The interthe-
oretical relations which can be defined on these 4 levels are quite relevant for
epistemological and methodological reasons. These relations are therefore also
important in the academic educational realm.
STS is expressed using set-theoretical concepts [4] and cannot be used as an im-
plementation language, it is much too strong for that. However, it can be used as
a common context for the study of possible DL and CD versions for fragments
of scientific theories. In this way we can have a theoretical environment for sys-
tematic analysis and development of DL/CD for E-Science. Important issues are
how the STS concepts of theoreticity, theory-nets, reduction and emergency [3]
can be connected to relations between ontologies in the DL/OWL world. An
urgent need is the extension of STS (and DL’s) towards the incorporation of
empirical experimentation. This will need extensive analysis of experimentation
and data gathering itself [5] as well as action logics.
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Integrating Semantic Annotations in Bayesian
Causal Models
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1 Introduction

Probabilistic reasoning has been powered by the formalization of causality theory
through Bayesian causal models[1]. Even when its semantic is flexible enough to
model complex problems, it has to deal with the problem of interoperability
between models. In the research community the necessity of contexts for these
models has been pointed out. We need means to represent the context on which
the causal model is developed and the meaning of causal model events in the
real world.

2 Semantic Bayesian Causal Models

We introduce Semantic Bayesian Causal Models(SBCM) which integrate a causal
model with a semantic layer into an intelligent agent. An SBCM works as an in-
ference engine in an intelligent agent in stochastic environments and is basically
constituted by a Bayesian causal model to represent and reason about causal
relationships among events, and semantic annotations in an ontology recognized
by other agents that describe these events. A SBCM is represented by:

M = 〈V,U,GV U , P (vi|pai, ui), P (u), C, Z, F,A,O,B〉 (1)

where V is the set of endogenous variables, U is the set of exogenous variables,
GV U is a causal graph consisting of variables in V × U , P (v) is the Bayesian
probabilistic distribution, P (u) is a probabilistic distribution used to explain bias
in the system or interference produced by external factors, C ⊂ V represents
endogenous variables that can be manipulated by agent (control variables), Z
is the subset of endogenous variables that cannot be manipulated by agent (co-
variates), F ∈ Z represents agent objectives which we interpret as final cause in
Causality theory, A is the set of semantic annotations over V expressed through
Description Logics (DL) statements in terms of OWL ontology O, and B is the
set of current beliefs expressed as interventions (Vi = vi)1.

Agent inference process is performed at two levels: semantic and causal. For-
mer enables common understanding between agents meanwhile the latter sum-
marizes agent experience and guides its behavior. In the first phase, agent per-
ceives the environment through its sensors and transforms its perceptions into
1 Capital letters represent variables (Vi) meanwhile small letter represents values(vi)
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DL statements expressed in a given ontology. Then perceptions are compared
against annotations over variables in Z to determine if any covariate can be
instantiated (node instantiation phase). The result of this process is a set of
interventions over Z that are integrated with current beliefs (B). Annotations
associated to every variable (Ai) will be expressed as queries in triplet format
(SPARQL). The result of running a variable query over current perceptions will
determine if the variable is activated (intervened). A special variable in the query
will be bind to the variable value in the intervention. If Ai doesn’t contain this
special variable, Z variable is made true when perceptions match annotations.
Otherwise, is made false using a kind of negation as failure.

In the second phase beliefs are revised with current perceptions and resulting
interventions are applied to the causal model producing an instantiated causal
model used to perform the inference. Plans aligned to reach F are identified and
through a heuristic the most feasible plan and action are selected. Selected action
is represented by an intervention over a control variable (Cw = cw). Annotations
over Cw are instantiated with cw and triplets resulting are used to encode action.

3 Conclussions

Having annotations over causal model variables enables matching variables among
different causal models and calculating a distributed causal effect[2] through
nodes sharing the same semantic content. Agents will be in position to exchange
information about causal relationships influencing other agents behavior to en-
force cooperation.

Besides, semantic information associated to variables presenting an irregular
behavior (noise) would lead to causal relationships discovery. Semantic informa-
tion dismissed in the node instantiation phase can be used for this purpose. This
way, we are in a position of not just learning probabilistic distributions but the
causal structure too[3].

The final purpose of this model is to develop agents that reason over a network
of causal relationships guided by Causality theory introduced by Aristotle and
mathematical models developed by J. Pearl. We call this architecture Causal
Agent.
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1 Introduction

We describe the ontological modeling issues encountered in the EU-funded NEU-
ROWEB project. The aim of the project is to support association studies in the
field of neurovascular medicine, integrating the different local repositories main-
tained by the clinical partners. Specifically association studies are carried out by
searching statistical correlations between a feature and an aggregate state (i.e.,
phenotype), such as the occurrence of a complex/multi-factorial pathology. In
medicine, and thus also in the specific neurovascular domain, the occurrence of
a phenotype is implicitly asserted through the diagnostic process, an activity
that is deeply rooted in the expert knowledge of the clinical community. There-
fore, the major ontological commitment is to define phenotypes having a shared
semantic, and connected to the data stored in local repositories. Since associa-
tion studies are extremely sensitive to noise, a knowledge-intensive treatment is
required.

2 A Critical Assessment of Existing Bio-Ontologies

Independent analyses of common-use, generalist biomedical ontologies (such as
SNOMED-CT) have often revealed significant deficiencies. These are not pri-
marily due to DL expressiveness limits, but rather to the adoption of too generic
semantics for relations, which lead to inconsistencies in specific cases. For in-
stance, Ceusters et al. [1] provide examples of erroneous subsumption relations
in SNOMED-CT, as a consequence of using relationships that are too generic
in their scope. This sort of representation defects is usually grounded on an in-
sufficient conceptual modeling due to the lack of expert core knowledge and,
in turn, it also leads to neglecting semantic issues being discussed in the for-
mal logic community. Clinically-grounded phenotypes, the core entities to be
modeled, are aggregate concepts, which can be deconstructed into fundamental
building blocks. In analogy to the work done in the genomic field [2], we identify
four conceptual components: (A) the anatomical part interested, (B) the value

Proceeding of DL2007 - Statements of Interest 529



i
i

“dl07-proceedings” — 2007/5/21 — 15:39 — page 530 — #540 i
i

i
i

i
i

observed, (C) the device or method used for the diagnostic exam, (D) the etiol-
ogy, i.e. the complex of causes and risk factors concurring to the pathogenesis
of the disorder. The modeling issues to be faced are two-fold, conceptual and
formal: (1) clinical phenotypes are not explicitly described (e.g., in manuals); on
the contrary, they are grounded on the core expert knowledge guiding the diag-
nostic process. (2) the aggregate nature of phenotypes requires a mereological
treatment; therefore it is necessary to explicitly take into account the different
formal semantics of part-of relations, as described both by foundational works
in knowledge representation [3, 4] and in biomedicine ontological modeling [5, 6]
fields. We argue that the availability of core expert knowledge is the enabling
factor of an adequate use of formal relation semantics; as a matter of fact, in
order to develop the conceptual model, we oriented Knowledge Acquisition to
explicitly formulate the otherwise implicit mereological semantics assumed by
the domain experts. Without core expert knowledge sources, the semantic speci-
fication of such relationships would be ungrounded. This strategy has lead to the
development of a two-layered, inter-connected ontological framework [7]: the top
level is a taxonomy of pathology types and subtypes; the bottom level enables to
represent the building blocks underlying the pathological phenotypes, exploiting
the different mereological relations already identified (anatomical part, value,
diagnostic device, etiology). The formal language adopted is SHIQ providing
the required expressive power for mereological relations, as discussed in [3]. The
specific experience acquired through the NEUROWEB project suggests that se-
mantic refinements, spawned by formal contributions, provide valuable guidance
to improve the Knowledge Engineering task. In turn, an advancement in the
field of Knowledge Representation requires an adequate Knowledge Engineering
methodology, capable of supporting the adoption of a DL enriched of expressive-
ness for ontological modeling in specific domains.
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An ExpTime Tableau-based Decision Procedure
for ALCQI

Yu Ding and Volker Haarslev
Concordia University, Montreal, Canada

1 Motivation and Notions
The algebraic method, when used to deal with qualified number restrictions, is re-
alized by an atomic decomposition step that generates an exponential number of
sub-problems[HTM01]. It is not very clear this approach could lead to worst-case
optimal tableau-based decision procedures for the fundamental concept satisfia-
bility problem. Interestingly, it is known from practice that the algebraic method
has better run-time performance. So far the practical success however is confined
in DLs without inverse roles, and it is unclear how to use the algebraic method
for DLs having both Q and I. All these are baffling and beg for answers.

Firstly, we confirm that the algebraic method in general, according to the
well-known result on integer linear programming [Pap81], leads to a worst-case
ExpTime tableau-based decision procedure for the concept satisfiability prob-
lem. Secondly, we extends the algebraic method to DLs with inverse roles. To
realize two goals simultaneously, several ingredients must be prepared to form
a recipe. Naturally, the well-known global (sub)tableaux caching technique and
the atomic decomposition principle must be selected. But neither of the two is
directly applicable to DLs with inverse roles, extra ingredients are given below.

Tableau Structure: The tableau structure (TS) is a labeled graph. Each node
is labeled with a set of concepts, each edge is labeled with a role. Additionally,
(1) each node is labeled with (0 to many) algebraic objects1; (2) each edge is
associated with two variables, one for indicator and one for cardinality number.

Propositional Branch: This notion abstracts the execution of the u-rule
and the t-rule (common of tableau expansion rules for DLs in the ALC-family).

Cut Formulae: Given a concept E subject to concept satisfiability test w.r.t.
a GCI > v G in ALCQI, for each modal subformula (of E and G) of the form
∃./nR.C (where R is any role), > v C t C̃ t ∃≤0R−.> is a cut formula2.

Constraints Fine-Tuning:3 In the tableau structure, let x and y be neigh-
bors, x is completed and y is not completed, x has a R−-edge to y, we have:
– if ∃≤nR.C ∈ B(y) and C ∈ C(y), then ∃≤n−1R.C ∈ B′(y); else ∃≤nR.C ∈ B′(y);
– if ∃≥nR.C ∈ B(y) and C ∈ C(y), then ∃≥n−1R.C ∈ B′(y); else ∃≥nR.C ∈ B′(y);

where B(y) denotes the working propositional branch, and B′(y) its fine-tuning.
The adjustment of restrictions of a propositional branch at a node based on the
cut-sets (C(y), concepts from cut formulae) at its neighbors is called fine-tuning.

Atomic Decomposition and Integer Linear Programs: What is typical
of the algebraic approach is the building of one integer linear program from
the decomposition of role fillers for a group of (qualified) number restrictions.
1 Each object represents an integer program [A|B]x = b, where A is m × (2m − 1)

coefficient matrix, B is m×m matrix, b is a m-vector, s.t. x ≥ 0, integer.
2 It can be read in ALCQI as ∃≥1R−.> v C t C̃ or in ALCI as ∃R−.> v C t C̃.
3 Due to space limit, the fine-tuning shown here is correct only for tree structures.
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The atomic decomposition forms all combinations4 about role fillers and their
negations. Each such combination is considered as a conjunction, and will be
formed as a successor node. The unsat. of one combination (i.e. one successor)
is reflected by setting the indicator variable to 0, which in turn might affect the
feasibility of the integer program at the fine-tuned working propositional branch.

2 A Short Description of the Decision Procedure

Decision Procedure: There are two major data structures: Nogood (for un-
sat caching across different tableau structures) and Witness (for static blocking
of tableau nodes within one tableau structure). The procedure starts building
a tableau structure (TS) from a root node labeled with the concept subject to
satisfiability test. It switches to explore a different TS if the current one can not
be saturated clash-free. When switching to explore another TS, at least one new
Nogood will be found. Thus, at most 2O(n) number of TSs will be explored5.

Complexity Analysis: Three factors are considered : (1) the maximum cost
per tableau node; (2) the maximum size of a tableau structure; (3) the maximum
number of tableau structures necessarily to form. We allow 2O(nc) cost per node
for some constant c, but require the size of each tableau structure be of 2O(n) and
only 2O(n) such tableau structures be formed. So, the total cost is 2O(nmax(1,c)).

Conclusion: For DLs with both inverse roles and (qualified) number restric-
tions, we have introduced restricted cut-formulae to guarantee the soundness of
the global (sub)-tableaux caching [DM99], and introduced the fine-tuning of qual-
ified number restrictions to adapt the algebraic method to DLs with inverse
roles. The former can be treated like GCIs; the latter can be integrated in the
tableau expansion rules as shown in [HTM01] for SHQ. Solving integer linear
program is known to be NP-complete, and so is the propositional satisfiability
problem. Both problems possibly appear simultaneously in each tableau node.
The decision procedure is designed to respect these facts. Further, the incon-
sistency propagation rules[DM99] are extended to work on tableau structures
labeled with algebraic objects. The decision procedure is a worst-case ExpTime
framework for SHOQ and SHIQ. Details and proofs are omitted. Comments
and references to important literature are regrettably impossible to give here.
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Tools for the QuOnto System 
Conversion between OWL and DL-LiteF with Protégé - 

OWL Plug-in 
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1   Introduction 

The QuOnto System [1] was developed to implement efficient reasoning algorithms 
over Knowledge Bases with large amount of instances. It is based on a particular 
Description Logic, called DL-LiteF [2], briefly described as: 

 
It represents a good trade-off between expressive power and computational 
complexity of sound and complete reasoning, in particular, it is tailored to capture 
basic ontology languages and allows to answer to complex queries expressed on 
ontologies in LOG-SPACE compared to the data complexity (the data size) [3]. This 
system doesn't feature yet a user interface nor managing tools and it uses a particular 
XML syntax to write the ontology, this makes it not easy-to-use. Protégé is an open-
source ontology editor based on Java that has a plug-in architecture which  makes it 
flexible and easy to be extended. In addition it can read and write ontologies in OWL 
format, that is the standard language proposed by W3C. This features have driven the 
idea to use it as a framework to manage some element of the QuOnto System. 

2   Description 

The first work for this objective is to translate ontologies written in OWL language to 
an XML document following the proprietary XML Schema used as TBox input for 
QuOnto. 

The translation from OWL to DL-LiteF is not always possible because DL-LiteF is 
a strict subset of OWL, in particular of OWL-Lite, the least expressive fragment of 
OWL, which presents some constructs (e.g., some kinds of role restrictions) that 
cannot be expressed in DL-LiteF, and that make reasoning in OWL-Lite not-tractable 
if the formalism is not restricted [1]; so it makes the ontology check necessary to 
know if it is DL-LiteF expressible, and in this case, we would submit it to the QuOnto 
engine. 
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When the ontology has been defined in Protégé [4] it is possible to access its OWL 
code through the Protégé API [5]. This allows the complete list of the ontology 
components to be obtained, and subsequently checked and translated. 

The ontology check consists of the analysis of the constructs involved in the 
definition of the particular OWL ontology in order to know whether a corresponding 
one in DL-LiteF exists for each one: we use Protégé API to scan the whole ontology 
structure inspecting each OWL element so to recognize, depending on the nesting of 
the elements, if the conversion can take place; only in this case we can obtain the 
corresponding ontology in DL-LiteF (QuOnto compliant) that now we are able to 
submit, through the QuOnto API, to the QuOnto reasoner. At this point, it is possible 
to invoke QuOnto for a consistency check. 

This issue has represented the critical task: to design the whole mapping existing 
between OWL constructs and DL-LiteF constructs (if the mapping is possible), so to 
pass by the original ontology in OWL to an equivalent ontology in DL-LiteF, where 
“equivalent” means that “they have the same logical models”. 

3   Conclusions and future work 

We have shown how it is possible to extend the features of a largely used ontology 
editor to translate an ontology from OWL to DL-LiteF, in order to carry out reasoning 
tasks on it using the QuOnto System. The use of the Protégé API has been a valid way 
to proceed, having it offered useful features to access to the OWL source code. 
Thanks to this Protégé plug-in, testing the QuOnto capabilities and comparing it with 
other reasoners will be easier for the user. 

In future, we would investigate how to link Protégé directly to the QuOnto Core 
API to allow to the user to manage this system in a more simple and practical way. 
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1 Introduction

In the recent past, there has been a growing interest in reasoning over large
ABoxes. As an example, consider a large-scale infrastructure monitoring system,
where types of monitored events are modelled as concepts in the TBox and actual
observations are represented as individuals with corresponding assertions in the
ABox. ABox reasoning (such as instance retrieval and instance check) is used
for analyzing the acquired monitoring data.

In many scenarios, the ABox data is produced distributedly, e.g. by the sensor
system which acquired the observation. Today’s established reasoners (RacerPro,
Pellet, Fact++, KAON2) require the complete ABox to be available locally for
query answering. However, centralizing the ABox is frequently not an option:
Data is owned by different organizations, who do not want it to be replicated
outside of their control. Data volumes may be too large to be handled by a
single reasoner and induce high network traffic. High data rates prevent effective
caching.

Existing approaches to reasoning over distributed ABoxes [1] cannot directly
be adopted as they assume several semantically-mapped TBoxes. As they pro-
pose to extend the underlying reasoning algorithm, they require to modify an
existing reasoning implementation, which is only possible for open source imple-
mentations and requires in-depth knowledge about implementation details.

This work therefore investigates an alternative approach, where reasoner in-
stances are considered black boxes and process a query using subqueries to other
relevant reasoner instances. We assume a set of reasoner instances {Ri} with a
common TBox T and a distributed ABox A =

⋃
iAi, where Ai is the ABox

subset available at Ri. The goal is to answer (grounded) conjunctive queries
Q = q1∧ . . .∧qn (with qi (named) concept or role query terms), i.e. to determine
all (named) variable bindings for which 〈T ,A〉 |= Q.

Each reasoner instance consists of a query processing component and a reason-
ing component with a local knowledge base. The query processing component
processes the incoming query, generates subqueries to other relevant reasoner
instances and adds their answers to the local knowledge base. Then the local
reasoning component simply answers the original query w.r.t. the updated local
knowledge base and returns the result. Off-the-shelf reasoners can be reused as a
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reasoning component. The query processing component is separate and supports
different query answering strategies. Apart from conjunctive queries, the query
language allows retrieval of explicit ABox assertions. This setup provides a flex-
ible framework for query answering over distributed ABoxes. We design query
answering strategies for different combinations of DL expressivity and types of
ABox distribution and investigate their properties such as answer completeness.

A naive strategy downloads all ABoxes Ai to the local knowledge base us-
ing subqueries that retrieve all assertions. The reasoning component checks the
consistency of

⋃
iAi and answers Q. This strategy delivers complete answers for

arbitrary ABox distributions and the DL supported by the reasoning component.
A second strategy can be used for partitioned ABoxes, i.e. HAi

∩HAj
= ∅ for

all i, j, i 6= j where HAi
is the set of individuals that occur in assertions in Ai.

In this case, A is consistent iff Ai is consistent for every i. A variable binding
satisfies a conjunct qk w.r.t. 〈T ,A〉 iff there are i, k so that the binding satisfies
qk w.r.t. 〈T ,Ai〉 (see also [2]). So the query Q is answered by retrieving satisfying
variable bindings for each conjunct qk from each Ri (this can be optimized by
using appropriate index structures). The resulting bindings are then consolidated
w.r.t. the original conjunctive query. This strategy delivers complete answers also
for expressive DLs such as SHIQ.

A third strategy allows shared individuals among ABox subsets (Nshared =⋃
i,j,i6=j HAi

∩HAj
), but imposes the following restrictions: For all a ∈ Nshared

only concept assertions Cshared(a) and role assertions R(a, b), R(b, a) with R v
Rshared, b arbitrary, are allowed. Cshared is disjoint from all other named con-
cepts, R v Rshared does not occur in any concept definition and role axiom
except role hierarchy. These restrictions still allow to express the underlying
graph structure of a monitored infrastructure, for example. Moreover, consis-
tency checks and query conjuncts can be answered locally, which allows to pro-
cess conjunctive queries as described for the previous strategy. Answers are com-
plete for expressive DLs such as SHIQ.

We have implemented this framework and use it as a testbed for experiments
with different query answering strategies: Reasoner instances use an extended
SPARQL query engine as query processing component and Pellet as reason-
ing component. They communicate using SPARQL and the SPARQL protocol.
Future work includes developing new strategies with less restrictions on ABox
distribution. We investigate the spectrum between the two extremes of (i) down-
loading all ABox assertions (naive strategy) for gaining complete answers and
(ii) downloading only ABox assertions about selected individuals for gaining a
certain guaranteed degree of completeness.
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Explaining Subsumption and Unsatisfiability
Our approach follows the idea of adapting a tableaux algorithm for explain-
ing subsumption and unsatisfiability as suggested in [1, 4]. The explanation
follows the proof and uses the structure of a tableaux tree for the production
of natural-language explanations. Our method covers the DL SHIN includ-
ing GCIs. We rely on a data structure for annotated terms and nodes to keep
book of dependencies between expressions and tableaux nodes and to identify
those that contribute to a clash (are relevant). We saturate the tableaux tree
to search for alternative explanation candidates. An evaluation function then
chooses the best option according to the shortest length. Future work aims at
evaluation functions based on empirical knowledge to differentiate explanation
options w.r.t. explanation quality. Irrelevant expressions are hidden in the expla-
nation. Furthermore we have developed a technique to optimize an explanation
by aggregating a sequence of similar explanation steps into one assertion that a
user can drill down if desired. Concerning role hierarchies we have implemented
a general methodology to explain the inheritance of properties between roles.
Our prototype Tabex is implemented in Lisp (CLOS) and capable of explain-
ing within SHF including GCIs. Tabex improves the explanation quality by
aggregating explanation steps and utilizing the idea of drill-down and roll-up.
Optionally it can utilize RacerPro for optimization purposes.

Explaining and Patching Non-Subsumption
When applying the techniques from above, a non-subsumption results in at
least one model for the corresponding negated subsumption query. Each of
this models is caused by an unclosed tableaux path and can be interpreted as
counter examples wrt. the subsumption query. The idea of explaining non-
subsumption is quite similar to the approach for subsumption. All explana-
tions of unclosed paths build up the explanation that ends when there are no
more successors generated and constrained by the subsumer and subsumee.
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The problem with patching a non-subsumption is the infinite search
space caused by the infinite many ways of closing at least one of the potentially
many unclosed tableaux paths. Therefore, our idea is to constrain the search
space by concentrating on a set of common errors of unexperienced users stud-
ied in [5]. The errors from [5] considered in this approach are: allquantification
instead of existential quantification, wrong use of negation in combination with
a quantor (¬∀r.(..) vs. ∀r.(¬..) and ¬∃r.(..) vs. ∃r.(¬..)) and use of a partial
instead of a complete definition. Our strategy looks for symptoms of the de-
scribed errors whithin an unclosed path. If we find such symptoms in a node,
we investigate all involved concept definitions in order to identify the error.

Although concentrating on the mentioned errors reduces the search space
significantly, the approach often leads to many suggestions. A first idea to rate
suggestions is to leave suggestions leading to a trivial (partial) subsumption un-
considered as mentioned in [3]. A second idea is that the user wants to patch
the non-subsumption but does not want the class hierarchy to change elsewhere
(compare with [2]). As a first simple metric we compute the differences a sug-
gestion would cause within the direct sub- and superconcepts for all concepts
of the KB with help of an external reasoner. A suggestion with little impact
on the hierarchy is rated better than one with a high impact. Furthermore, a
suggestion patching the non-subsumption is preferred than one which does not.

Conclusion and Outlook
We argue that tableaux-based methods are valuable for explaining as well as
providing clues for repairing an unwanted non-subsumption. In comparison to
axiom pinpointing our approach currently is restricted in language expressivity,
but more robust with respect to large amounts of axioms and provides more
detailed explanations. An extension to ABox explanations seems possible.
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Introduction The purpose of model checking technique is to verify whether the im-
plemented computer program (the model) satisfies the specified requirements (the for-
mulas). Now let K be the Kripke model representing the behavior of the system and R
be the set of formulas. The model checking process verifies whether every formula in
R is satisfied by the model, which has I as the set of initial states. Formally, it checks
whether ∀f ∈ R,∀s ∈ I : K, s � f is true or not. We propose an approach to per-
form model checking of the restricted CTL* formula based on the top of description
logics reasoning services. This approach allows us to build the ontology of the atomic
propositions used both in the model and in the formula.

We realize our approach by performing the following steps: (i) representing the
model in the assertion box (ABox) of the description-logic based knowledge base, (ii)
defining the ontology of atomic propositions in the terminology box (TBox) of the
knowledge base, (iii) defining a part of the formal semantics of CTL* logic on top of
the DL semantics, (iv) defining the translation rules for the formula.

Representation of the Kripke Model and the Ontology of Atomic Propositions The
Kripke model is represented as a set of axioms AM . There are three types of axiom in
AM . The first type of the axiom, State(x), defines the state s of Kripke model K,
where x is a unique individual name representing state s. The second type of the axiom,
next(xi, xj) ,defines the state transition between si and sj . The last kind of axiom,
Vi(x), is created for each pi ∈ L(s). The concept Vi represents the atomic proposition
pi. For each state s of the Kripke model K, an assertion is created in AM , where x
is a unique individual name representing the state s. The state transitions (si, sj) are
defined by the assertions in form of next(xi, xj). The set of atomic propositions that
label a state are represented as an assertion about instance membership. That is, for each
pi ∈ L(s) an assertion Vi(x) is created in AM . The concept Vi represents the atomic
proposition pi. The ontology of atomic propositions is defined in TAP , which has the
purpose as the common vocabulary.

Formal Semantics of CTL* Logic in Description Logics The basic idea in emulating
the formal semantics of CTL* temporal logic on top of the description logic semantics
is to construct the Kripke model in the ABox. Furthermore, we require the epistemic
operator K, which is presented in [1], to fix the interpretation of the Kripke model rep-
resented in the ABox. Therefore, the epistemic operator K immediately appears in the
concepts representing atomic propositions and the roles representing state transitions.
(see equations 1, 7 - 10.)
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s � pi ⇔ KB � KVi(x) (1)

s � E (g1) ⇔ KB � D1(x) (2)

π � g1 ⇔ KB � D1(σ1) (3)

π � ¬g1 ⇔ KB � ¬D1(σ1) (4)

π � g1 ∨ g2 ⇔ KB � (D1 tD2)(σ1) (5)

π � g1 ∧ g2 ⇔ KB � (D1 uD2)(σ1) (6)

π � X g1 ⇔ KB � (∃Knext.D1)(σ1) (7)

π � G g1 ⇔ 〈TM ∪ {Daux ≡ D1 u ∃Knext.Daux},AM 〉 � Daux (σ1) (8)

π � F g1 ⇔ KB � (D1 t ∃Knext+.D1) (σ1) (9)

π � g1 U g2 ⇔ 〈TM ∪ {Daux ≡ D2 t (D1 u ∃Knext.Daux)},AM 〉 (10)

� Daux (σ1)

Fig. 1. Formal semantics of a subset of CTL* logic in ALCK.

Translating CTL* Formulas into TBox Concepts The restricted CTL* formulas has
the form of E [φ], where φ is the LTL formula enclosed in a E path quantifier. The
first step is to decompose φ into a parse tree. Now we can perform the translation of the
LTL formula φ, by visiting the nodes in the parse tree starting from the leaf nodes and
toward the root node. Suppose that we have a counter idx, which has the initial value 0.
For each visit in the node, we create a new axiom in the TBox Tf according to the rules
in Fig. 2 and increase the counter idx. The concepts Di and Dj refer to the concepts
created after translating the previous sub formulas gi and gj , respectively.

LTL formula concepts added to Tf

pi Didx ≡ KVi

¬gi Didx ≡ ¬Di

gi ∨ gj Didx ≡ Di tDj

gi ∧ gj Didx ≡ Di uDj

Xgi Didx ≡ ∃Knext.Di

Ggi Didx ≡ Di u ∃Knext.Didx

Fgi Didx ≡ Di t ∃Knext+.Di

gi U gj Didx ≡ Dj t (Di u ∃Knext.Didx)

Fig. 2. Translation table of a subset of CTL* sub formulas intoALCK concepts.

Performing the Model Checking Let K and s be the Kripke model representing the
dynamic behavior of a system and the initial state of the model. The formula f rep-
resents the desired property. The model checking K, s � f can be performed as an
instance checking KBM � C(x), whereas KBM : 〈TAP ∪ Tf ,AM 〉.
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Description Logics in the Calculus of Structures

Jean-David Roubach1,2, Pascal Yim2, and Joaquín Rodriguez1

1 INRETS – ESTAS
Villeneuve d’Ascq, France

{roubach,rodriguez}@inrets.fr
2 École Centrale de Lille – LAGIS
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Abstract. We introduce a new proof system for the description logic
ALC in the framework of the calculus of structures, a structural proof
theory that employs deep inference. This new formal presentation intro-
duces positive proofs for description logics. Moreover, this result makes
possible the study of sub-structural refinements of description logics, for
which a semantics can now be defined.

1 A calculus of structures for description logics

Proof systems in the calculus of structures are defined by a set of deep inference
rules operating on structures[1]. The rules are said to be deep because unlike
the sequent calculus for which rules must be applied at the root of sequents, the
rules of the calculus of structures can be applied at any depth inside a structure.

As noted by Schild[2], ALC is a syntactic variant of propositional multi-
modal logic K(m). Therefore, since this logic involves no interaction between its
modalities, its proof system in the calculus of structures can be straightforwardly
extended from a proof system of unimodal K in the calculus of structures, such
as the cut-free proof system SKSgK described in [3].

Let A be a countable set equipped with a bijective function ·̄ : A → A,
such that ¯̄A = A, and Ā 6= A for every A ∈ A. The elements of A are called
primitive concepts, and two of them are denoted by > and ⊥ such that >̄ := ⊥
and ⊥̄ := >.

The set R of prestructures of ALC concepts is defined by the following gram-
mar, where A is a primitive concept and R is a role name:

C,D ::= > | ⊥ | A | C̄ | (C,D) | [C,D] | ∃R.C | ∀R.C .

On the setR, the relation = is defined to be the smallest congruence relation
induced by the following equations.

Associativity

(C, (D,E)) = ((C,D), E)

[C, [D,E]] = [[C,D], E]

Commutativity

[C,D] = [D,C]

(C,D) = (D,C)
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Units

(C,>) = C

[C,⊥] = C

[>,>] = >
(⊥,⊥) = ⊥

Negation

(C,D) = [C̄, D̄]

[C,D] = (C̄, D̄)
¯̄C = C

Roles

∀R.C = ∃R.C̄

∃R.C = ∀R.C̄
∀R.> = >
∃R.⊥ = ⊥

A structure is an element of R/=, i.e. an equivalence class of prestructures. For a
given structure C, the structure C̄ is called its negation. Contexts are defined by
the following syntax, where C stands for any structure: S ::= {◦} | [C,S] | (C,S).

An inference rule is a scheme of the kind
S{C}

ρ
S{D} . This rule specifies a step of

rewriting inside a generic context S{◦}. A proof in a given system, is a finite
chain of instances of inference rules in the system, whose uppermost structure
is the unit >.

2 System SKSgALC

The following set of rules defines the sound and complete cut-free proof system
SKSgALC for ALC in the calculus of structures :

S{>}
i↓
S[C, C̄]

S(C, C̄)
i↑

S{⊥}S([C,D], E)
s
S[C, (D,E)]S{⊥}

w↓
S{C}

S{C}
w↑

S{>}
S[C,C]

c↓
S{C}

S{C}
c↑
S(C,C)

S{∀R.[C̄,D]}
k↓
S[∀R.C,∀R.D]

S(∃R.C,∃R.D)
k↑

S{∃R.(C̄,D)}
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Approximating OWL-DL Ontologies

Edward Thomas and Jeff Z. Pan

Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. In this poster, we propose to recast the idea of knowledge
compilation into approximating OWL DL ontologies with DL-Lite on-
tologies, against which query answering has only polynomial data com-
plexity. We identify a useful category of queries for which our approach
also guarantees completeness. Furthermore, we paper report on the im-
plementation of our approach in the ONTOSEARCH2 system.

1 Introduction

Ontologies play a key role in the Semantic Web [1], for which W3C has stan-
dardised the Web Ontology Language OWL [2]; in this poster, we are interested
in the OWL DL sub-language (‘DL’ for Description Logic) due to the existence
of reasoning support. A growing library of ontologies is available online, covering
a wide range of human knowledge. For this large body of knowledge to be usable
by Semantic Web applications, a framework that allows efficient query answering
over ontologies is required.

Query answering over OWL DL is a hard problem. It has been shown that
the complexity of ontology entailment in SHOIN (D+), i.e., OWL DL, is Nex-
ptime. This indicates query answering over OWL DL ontologies is at least Nex-
ptime. Approximation has been identified as a potential way to reduce the com-
plexity of reasoning over OWL DL ontologies. Existing approachesare mainly
based on syntactic approximation of ontological axioms and queries. All these
approaches could introduce unsound answers. To the best of our knowledge,
we have not seen any published framework on sound (and possibly incomplete)
approximations for ontology query answering, not to mention efficient ones.

We propose to recast the idea of knowledge compilation [3] into semantic
approximation of OWL DL ontologies. The idea of knowledge compilation is
simple: users can write statements in an expressive representation language and
these such statements can be complied into a restricted language that allows ef-
ficient inference. In this way, users do not have to use a less expressive language
which might be too limited for practical applications. In [3], Selman and Kautz
showed how propositional logical theories can be compiled into Horn theories
that approximate the original information; they also applied this idea on sub-
sumption reasoning for the Description Logic FL. In this poster, we investigate
applying knowledge compilation on query answering over OWL DL ontologies.
Namely, we propose approximating OWL DL ontologies [4] (or simply source
ontologies) with corresponding DL-Lite [5, 6] ontologies (or simply target on-
tologies), against which query answering has only polynomial data complexity,
and provide algorithms to compute target DL-Lite ontologies.
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2 Implementation

We have implemented the approximation algorithm in the ontology search and
query tool, ONTOSEARCH2 [7]. Unlike existing syntactic approximation ap-
proach, our approach always guarantees sound answers for conjunctive and dis-
junctive queries over ontologies. For queries without non-distinguished variables
(which modern OWL DL reasoners like Racer and KAON2 disallow anyway), our
approach guarantees both soundness and completeness. Our preliminary evalu-
ations in the ONTOSEARCH2 system shows that our approach is very scalable:
ONTOSEARCH2 outperforms existing OWL DL reasoners significantly. In gen-
eral, our results indicate that the user can still have efficient querying answering
support when they use expressive ontology languages, such as OWL DL and
OWL 1.1.

For our future work, one of the main challenges is to extend the query lan-
guage to support datatype properties and some datatype predicates/built-ins.
Secondly, we will investigate benchmarks for querying answering over more com-
plex ontologies. Furthermore, it is interesting to see how to make it more com-
plete for queries with non-distinguished variables. Last but not least, we shall
investigate further optimisations on calculating target ontologies and how to
apply our semantic approximations to other light-weight ontology languages.
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Practical Conforming Datatype Groups

Dave Turner and Jeremy J. Carroll {DavidT,Jeremy.Carroll}@hp.com
HP Laboratories, Bristol, UK

Abstract. The proposed OWL 1.1 language is based on the description
logics SROIQ and SHOQ(Dn), whose features include the use of n-
ary datatype predicates. The means of specifying such predicates, which
must be usefully expressive without breaking decidability properties, is
omitted; rectifying this omission is nontrivial.

1 Discussion

A finite predicate conjunction over a datatype group G = (∆D,DG , Φ1
G , ΦG) is a

statement of the form
∧k
j=1 pj(v

(j)
1 , . . . , v

(j)
nj ) where pj is an nj-ary predicate in

DG ∪ Φ1
G ∪ ΦG . The datatype group G is said to be conforming if

1. DG , Φ1
G and ΦG are closed under negation,

2. a binary inequality predicate 6=d ∈ ΦG is defined for each datatype d ∈ DG ,
and importantly

3. the satisfiability of finite predicate conjunctions over G is decidable.

Pan and Horrocks [1] present a datatype group containing the predicate
kmtrsPerMile = D(k, m, "k=1.6*m") for converting between distances measured
in kilometers and miles. Elsewhere they suggest a predicate of objects that are
small enough to have no additional postage cost: smallObj = D(l, w, "l+w<10").

Theory of Arithmetic A näıve generalisation of this syntax is too expressive
and quickly leads to non-conforming datatype groups. For example, consider a
datatype group containing

integerAddition = D(i, j, k, "i=j+k")
and integerMultiplication = D(i, j, k, "i=j*k")

viewed as ternary predicates over integerD. The satisfiability problem over
this datatype group amounts to the solution of Diophantine equations, which is
Hilbert’s tenth problem and is known to be undecidable.

Note that a datatype group containing either one of these predicates could
be conforming; it is the presence of both which forces undecidability. The insta-
bility of conformingness under merging of intersecting datatype groups is not an
artificial problem: in the context of OWL there are a small, finite number of base
datatypes and one would expect to want to merge intersecting datatype groups
reasonably often. The open-world style of the Semantic Web encourages such
merges, so it would be inappropriate to forbid them completely. Furthermore,
without both multiplication and addition, end-users would not even be able to
convert between ◦F and ◦C: farenheitToCelsius = D(f, c, "f=1.8*c+32.0").
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Implementation of Arithmetic An example from [1] declares that the Yang-
tze river is 3937.5 miles long and uses the kmtrsPerMile predicate to deduce
that it is also 6300.0km long, using the XML Schema datatype float. If instead
we start from a length of 3937.501 miles, then

〈6300.0015, 3937.501〉 ∈ [[kmtrsPerMile]]
and 〈6300.0015, 3937.5007〉 ∈ [[kmtrsPerMile]],

so that the Yangtze river may be deduced also to be 3937.5007 miles long.
We implemented a system to do conversions between floats representing

lengths in km, m, cm, mm, µm, inches, feet, yards, fathoms, poles, chains, fur-
longs, statute and nautical miles and leagues, and deduced the length of the
Yangtze to be both 6335.3584km and 6361.8555km, and nearly 800, 000 other
values, starting from a declaration that its length in miles is 3937.5. These round-
ing errors were highly dependent on the structure of the definitions of the units,
as multiplication in float is not associative.

Additionally, suppose the Volga river were declared to be 3668.8003km long,
then it would have no value for its lengthInMile property at all, since

〈3668.8000, 2293.0000〉 ∈ [[kmtrsPerMile]]
〈3668.8005, 2293.0002〉 ∈ [[kmtrsPerMile]]
and @x ∈ float. 2293.0 < x < 2293.0002

Notice that this cannot be remedied by using the arbitrary-precision decimal
instead of the fixed-precision float: for example the temperature 75.0◦F has no
corresponding decimal representation in ◦C.

In practice, many applications do not require the declarative style of arith-
metic that datatypes like kmtrsPerMile would allow. Instead, a procedural ap-
proach is adequate. For example, a user may be happy that the Volga can be
deduced to be 2293.0km long, and may be equally happy with 2293.0002km, as
long as one, and only one, of the options is chosen.

2 Conclusions and Future Work

Datatype groups are motivated by the requirements of DL users to be able to
express complex constraints simultaneously on multiple data values. However,
there has been little discussion regarding datatype groups that satisfy these user
requirements whilst also being conforming and computationally feasible. We have
shown that this question is far from trivial; see [2] for more details.
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